Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Method
2.2.1. Microfluidic Chip Fabrication
2.2.2. Carbamazepine Solution Preparation
2.2.3. Statistical Analysis of Phase Transitions
2.2.4. MD Simulation
2.2.5. CGMD Simulation
2.2.6. X-Ray Powder Diffraction (XRPD)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADLCs | Amorphous dense liquid clusters |
PDMS | Polydimethylsiloxane |
MD | Molecular dynamics |
NPT | Number of atoms, pressure, and temperature |
CGMD | Coarse-grained molecular dynamics |
CBZ | Carbamazepine |
XRD | X-ray Diffraction |
References
- Brouwers, J.; Brewster, M.E.; Augustijns, P. Supersaturating Drug Delivery Systems: The Answer to Solubility-Limited Oral Bioavailability. J. Pharm. Sci. 2009, 98, 2549–2572. [Google Scholar] [CrossRef]
- Jain, N.K.; Gupta, U. Application of dendrimer–drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1035–1052. [Google Scholar] [CrossRef]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. [Google Scholar] [CrossRef]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. Int. Sch. Res. Not. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed]
- Jambhekar, S.S.; Breen, P.J. Drug dissolution: Significance of physicochemical properties and physiological conditions. Drug Discov. Today 2013, 18, 1173–1184. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24. [Google Scholar] [CrossRef]
- Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301. [Google Scholar] [CrossRef] [PubMed]
- Shayanfar, A.; Velaga, S.; Jouyban, A. Solubility of carbamazepine, nicotinamide and carbamazepine–nicotinamide cocrystal in ethanol–water mixtures. Fluid Phase Equilibria 2014, 363, 97–105. [Google Scholar] [CrossRef]
- Xu, W.; Riikonen, J.; Lehto, V.-P. Mesoporous systems for poorly soluble drugs. Int. J. Pharm. 2013, 453, 181–197. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.; Zhang, G.G.Z.; Grant, D.J.W.; Suryanarayanan, R. In situ dehydration of carbamazepine dihydrate: A novel technique to prepare amorphous anhydrous carbamazeping. Pharm. Dev. Technol. 2000, 5, 257–266. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Lobmann, K.; Grohganz, H.; Rades, T. Transformations between co-amorphous and co-crystal systems and their influence on the formation and physical stability of co-amorphous systems. Mol. Pharm. 2019, 16, 1294–1304. [Google Scholar] [CrossRef]
- Aoki, C.; Ma, X.; Higashi, K.; Ishizuka, Y.; Ueda, K.; Kadota, K.; Fukuzawa, K.; Tozuka, Y.; Kawakami, K.; Yonemochi, E.; et al. Stabilization mechanism of amorphous carbamazeping by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature. Int. J. Pharm. 2021, 600, 120491. [Google Scholar] [CrossRef]
- Bertoni, S.; Albertini, B.; Passerini, N. Different BCS Class II Drug-Gelucire Solid Dispersions Prepared by Spray Congealing: Evaluation of Solid State Properties and In Vitro Performances. Pharmaceutics 2020, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Childs, S.L.; Rodríguez-Hornedo, N.; Reddy, L.S.; Jayasankar, A.; Maheshwari, C.; McCausland, L.; Shipplett, R.; Stahly, B.C. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 2008, 10, 856–864. [Google Scholar] [CrossRef]
- O’Mahony, M.A.; Croker, D.M.; Rasmuson, Å.C.; Veesler, S.; Hodnett, B.K. Measuring the Solubility of a Quickly Transforming Metastable Polymorph of Carbamazepine. Org. Process Res. Dev. 2013, 17, 512–518. [Google Scholar] [CrossRef]
- Beig, A.; Miller, J.M.; Dahan, A. Accounting for the solubility–permeability interplay in oral formulation development for poor water solubility drugs: The effect of PEG-400 on carbamazepine absorption. Eur. J. Pharm. Biopharm. 2012, 81, 386–391. [Google Scholar] [CrossRef]
- Liu, W.; Dang, L.; Black, S.; Wei, H. Solubility of Carbamazepine (Form III) in Different Solvents from (275 to 343) K. J. Chem. Eng. Data 2008, 53, 2204–2206. [Google Scholar] [CrossRef]
- Rabti, H.; Mohammed Salmani, J.M.; Elamin, E.S.; Lammari, N.; Zhang, J.; Ping, Q. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs. Asian J. Pharm. Sci. 2014, 9, 146–154. [Google Scholar] [CrossRef]
- Porter Iii, W.W.; Elie, S.C.; Matzger, A.J. Polymorphism in Carbamazepine Cocrystals. Cryst. Growth Des. 2008, 8, 14–16. [Google Scholar] [CrossRef]
- Harris, R.K.; Ghi, P.Y.; Puschmann, H.; Apperley, D.C.; Griesser, U.J.; Hammond, R.B.; Ma, C.; Roberts, K.J.; Pearce, G.J.; Yates, J.R.; et al. Structural Studies of the Polymorphs of Carbamazepine, Its Dihydrate, and Two Solvates. Org. Process Res. Dev. 2005, 9, 902–910. [Google Scholar] [CrossRef]
- Lang, M.; Kampf, J.W.; Matzger, A.J. Form IV of Carbamazepine. J. Pharm. Sci. 2002, 91, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Grzesiak, A.L.; Lang, M.; Kim, K.; Matzger, A.J. Comparison of the Four Anhydrous Polymorphs of Carbamazepine and the Crystal Structure of Form I. J. Pharm. Sci. 2003, 92, 2260–2271. [Google Scholar] [CrossRef]
- Grohganz, H.; Priemel, P.A.; Löbmann, K.; Nielsen, L.H.; Laitinen, R.; Mullertz, A.; Van den Mooter, G.; Rades, T. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin. Drug Deliv. 2014, 11, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Edueng, K.; Mahlin, D.; Bergström, C.A.S. The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharm. Res. 2017, 34, 1754–1772. [Google Scholar] [CrossRef]
- Dengale, S.J.; Grohganz, H.; Rades, T.; Löbmann, K. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv. Rev. 2016, 100, 116–125. [Google Scholar] [CrossRef]
- Yue, P.; Xiao, M.; Xie, Y.; Ma, Y.; Guan, Y.; Wu, Z.; Hu, P.; Wang, Y. The Roles of Vitrification of Stabilizers/Matrix Formers for the Redispersibility of Drug Nanocrystals After Solidification: A Case Study. AAPS PharmSciTech 2016, 17, 1274–1284. [Google Scholar] [CrossRef]
- Kumaravelrajan, R.; Narayanan, N.; Suba, V.; Bhaskar, K. Simultaneous delivery of Nifedipine and Metoprolol tartarate using sandwiched osmotic pump tablet system. Int. J. Pharm. 2010, 399, 60–70. [Google Scholar] [CrossRef]
- Verma, R.K.; Kaushal, A.M.; Garg, S. Development and evaluation of extended release formulations of isosorbide mononitrate based on osmotic technology. Int. J. Pharm. 2003, 263, 9–24. [Google Scholar] [CrossRef]
- Šehić, S.; Betz, G.; Hadžidedić, Š.; El-Arini, S.K.; Leuenberger, H. Investigation of intrinsic dissolution behavior of different carbamazepine samples. Int. J. Pharm. 2010, 386, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm. 2000, 193, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, E.T.; Xu, H.; Parsons, S.; Nudelman, F. Revealing the early stages of carbamazeping crystallization by cryoTEM and 3D electron diffraction. IUCrJ 2021, 8, 860–866. [Google Scholar] [CrossRef]
- Herboth, R.; Lyubartsev, A.P. Exploring carbamazeping polymorph crystal growth in water by enhanced sampling simulations. ACS Omega 2024, 9, 36718–36731. [Google Scholar]
- Velev, O.D.; Prevo, B.G.; Bhatt, K.H. On-chip manipulation of free droplets. Nature 2003, 426, 515–516. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019, 9, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.G.; Park, M.; Kim, D.H.; Lee, E.Y.; Kim, W.-S.; Seo, T.S. Tunable three-dimensional graphene assembly architectures through controlled diffusion of aqueous solution from a micro-droplet. NPG Asia Mater. 2016, 8, e329. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Sun, H.; Ren, P.; Fried, J.R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Leimkuhler, B.; Noorizadeh, E.; Penrose, O. Comparing the Efficiencies of Stochastic Isothermal Molecular Dynamics Methods. J. Stat. Phys. 2011, 143, 921–942. [Google Scholar] [CrossRef]
- Vögele, M.; Holm, C.; Smiatek, J. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium). J. Chem. Phys. 2015, 143, 243151. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Ikni, A.; Clair, B.; Scouflaire, P.; Veesler, S.; Gillet, J.; Hassan, N.E.; Dumas, F.; Bire, S. Experimental Demonstration of the Carbamazepine Crystallization from Non-photochemical Laser-Induced Nucleation in Acetonitrile and Methanol. Cryst. Growth Des. 2014, 14, 3286–3299. [Google Scholar] [CrossRef]
- Galkin, O.; Vekilov, P.G. Direct Determination of the Nucleation Rates of Protein Crystals. J. Phys. Chem. B 1999, 103, 10965–10971. [Google Scholar] [CrossRef]
- Gebauer, D.; Kellermeier, M.; Gale, J.D.; Bergström, L.; Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014, 43, 2348–2371. [Google Scholar] [CrossRef] [PubMed]
- Nanev, C.N.; Penkova, A. Nucleation of lysozyme crystals under external electric and ultrasonic fields. J. Cryst. Growth 2001, 232, 285–293. [Google Scholar] [CrossRef]
- Nielsen, M.H.; Aloni, S.; De Yoreo, J.J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162. [Google Scholar] [CrossRef]
- Pouget, E.M.; Bomans, P.H.H.; Goos, J.A.C.M.; Frederik, P.M.; de With, G.; Sommerdijk, N.A.J.M. The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM. Science 2009, 323, 1455–1458. [Google Scholar] [CrossRef]
- Stephens, C.J.; Kim, Y.-Y.; Evans, S.D.; Meldrum, F.C.; Christenson, H.K. Early Stages of Crystallization of Calcium Carbonate Revealed in Picoliter Droplets. J. Am. Chem. Soc. 2011, 133, 5210–5213. [Google Scholar] [CrossRef]
- Seefeldt, K.; Miller, J.; Alvarez-Núñez, F.; Rodríguez-Hornedo, N. Crystallization Pathways and Kinetics of Carbamazepine–Nicotinamide Cocrystals from the Amorphous State by In Situ Thermomicroscopy, Spectroscopy, and Calorimetry Studies. J. Pharm. Sci. 2007, 96, 1147–1158. [Google Scholar] [CrossRef]
- Malwade, C.R.; Rong, B.-G.; Qu, H.; Christensen, L.P. Evaporative crystallization of carbamazepine from different organic solvents. Presented at 20th International Workshop on Industrial Crystallization, Odense, Denmark, 18–20 September 2013. [Google Scholar]
- Chang, S.T.; Velev, O.D. Evaporation-Induced Particle Microseparations inside Droplets Floating on a Chip. Langmuir 2006, 22, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Bots, P.; Benning, L.G.; Rodriguez-Blanco, J.D.; Roncal-Herrero, T.; Shaw, S. Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Cryst. Growth Des. 2012, 12, 3806–3814. [Google Scholar] [CrossRef]
- Pouget, E.M.; Bomans, P.H.H.; Dey, A.; Frederik, P.M.; de With, G.; Sommerdijk, N. The Development of Morphology and Structure in Hexagonal Vaterite. J. Am. Chem. Soc. 2010, 132, 11560–11565. [Google Scholar] [CrossRef] [PubMed]
- Van Driessche, A.E.S.; Benning, L.G.; Rodriguez-Blanco, J.D.; Ossorio, M.; Bots, P.; García-Ruiz, J.M. The Role and Implications of Bassanite as a Stable Precursor Phase to Gypsum Precipitation. Science 2012, 336, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Vekilov, P.G. Nucleation. Cryst. Growth Des. 2010, 10, 5007–5019. [Google Scholar] [CrossRef] [PubMed]
Carbamazepine Concentration (mg/mL) | 1 | 3 | 5 | 7 | 9 | 3 | 3 | |
---|---|---|---|---|---|---|---|---|
Solution composition (v/v) | MeOH (%) | 100 | 100 | 100 | 100 | 100 | 90 | 70 |
Water (%) | 0 | 0 | 0 | 0 | 0 | 10 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Lee, C.; Park, J.H.; Go, E.M.; Cho, S.; Lee, J.; Kwak, S.K.; Bae, J.; Seo, T.S. Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System. Pharmaceutics 2025, 17, 1035. https://doi.org/10.3390/pharmaceutics17081035
Zhu X, Lee C, Park JH, Go EM, Cho S, Lee J, Kwak SK, Bae J, Seo TS. Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System. Pharmaceutics. 2025; 17(8):1035. https://doi.org/10.3390/pharmaceutics17081035
Chicago/Turabian StyleZhu, Xiaoling, Cheongcheon Lee, Ju Hyun Park, Eun Min Go, Suha Cho, Jonghwi Lee, Sang Kyu Kwak, Jaehyeong Bae, and Tae Seok Seo. 2025. "Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System" Pharmaceutics 17, no. 8: 1035. https://doi.org/10.3390/pharmaceutics17081035
APA StyleZhu, X., Lee, C., Park, J. H., Go, E. M., Cho, S., Lee, J., Kwak, S. K., Bae, J., & Seo, T. S. (2025). Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System. Pharmaceutics, 17(8), 1035. https://doi.org/10.3390/pharmaceutics17081035