Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Cell Culture Conditions
2.3. Preparation of Derivatives from L. vaginalis BC17
2.4. Genotoxicity Assay
2.4.1. Cytotoxicity and Cytostasis Assay on TK6 Cells
2.4.2. Measurement of Micronuclei (MNi) Frequency on TK6 Cells
2.5. Impact of L. vaginalis BC17 and Its Derivatives on Intestinal Cell Viability
2.6. Co-Incubation of L. vaginalis BC17 with Intestinal Cells and Survival in Gastric Fluid
2.7. Impact of L. vaginalis BC17 and Its Derivatives on Bifidobacterium spp. and Enteropathogens’ Adhesion to Caco-2 Cells
2.8. Anti-Inflammatory Activity of L. vaginalis BC17 and Its Derivatives
2.8.1. Protection from Inflammatory Stress
2.8.2. Modulation of Nitric Oxide Production
2.9. Formulation of L. vaginalis BC17 and Its Derivatives in Fast-Disintegrating Tablets
2.9.1. Preparation of Freeze-Dried Tablets
2.9.2. Size, Weight, Disintegration, pH, and Content Uniformity of the Tablets
2.9.3. Viability of L. vaginalis BC17 and Microbial Contamination Control
2.9.4. Technological and Functional Stability
2.10. Data and Statistical Analysis
3. Results
3.1. Assessment of the Genotoxicity of L. vaginalis BC17 Derivatives
3.2. Compatibility of L. vaginalis BC17 and Its Derivatives with Intestinal Cells
3.3. Probiotic Properties of L. vaginalis BC17
3.4. Effects of L. vaginalis BC17 and Its Derivatives on the Adhesion of Bifidobacterium spp. and Enteropathogens to Caco-2 Cells
3.4.1. Bifidobacterium spp. Adhesion in the Presence of L. vaginalis BC17 and Its Derivatives
3.4.2. Enteropathogens’ Adhesion in the Presence of L. vaginalis BC17 and Its Derivatives
3.5. Anti-Inflammatory Properties of L. vaginalis BC17 and Its Derivatives
3.5.1. Protection of the Intestinal Cells from Inflammatory Stress
3.5.2. Reduction of Nitric Oxide Production in Macrophages
3.6. Formulation of L. vaginalis BC17 in Fast-Disintegrating Tablets
3.6.1. Selection of Tablet Composition
3.6.2. Technological Characterization of Tablets
3.6.3. Technological Stability of Tablets and Contamination Check
3.6.4. Survival of L. vaginalis BC17
3.6.5. Functional Characterization of Tablets and Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BHI | Brain Heart Infusion |
CFS | Cell-Free Supernatant |
CFU | Colony-Forming Unit |
CP | CycloPhosphamide |
EPS | ExoPolySaccharides |
FBS | Fetal Bovine Serum |
HK | Heat-Killed |
LPS | LipoPolySaccharide |
MMC | Mutagens Mitomycin C |
MNi | MicroNuclei |
MRS | de Man, Rogosa, and Sharpe broth |
MTT | 3-(45-diMethylThiazol-2-yl)-2,5-diphenylTetrazol |
MX | MaltodeXtrin |
NO | Nitric Oxide |
NA | Nutrient Agar |
OECD | Organisation for Economic Co-operation and Development |
PBS | Phosphate Buffer Solution |
PD | Population Doubling |
RPD | Relative Population Doubling |
SCFAs | Short-Chain Fatty Acids |
SD | Standard Deviation |
SDS | Sodium Dodecyl Sulfate |
SEM | Standard Error of the Mean |
TEER | TransEpithelial Electrical Resistance |
TSA | Tripticase Soy Agar |
VINB | VINBlastine |
References
- Forsgren, M.; Isolauri, E.; Salminen, S.; Rautava, S. Late Preterm Birth Has Direct and Indirect Effects on Infant Gut Microbiota Development during the First Six Months of Life. Acta Paediatr. 2017, 106, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Coelho, G.D.P.; Ayres, L.F.A.; Barreto, D.S.; Henriques, B.D.; Prado, M.R.M.C.; Passos, C.M. Dos Acquisition of Microbiota According to the Type of Birth: An Integrative Review. Rev. Lat. Am. Enferm. 2021, 29, e3446. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef]
- Tamburini, S.; Shen, N.; Wu, H.C.; Clemente, J.C. The Microbiome in Early Life: Implications for Health Outcomes. Nat. Med. 2016, 22, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Cano-Ibáñez, N.; Pinto-Gallardo, M.; Amezcua-Prieto, C. The Impact of Probiotics, Prebiotics, and Synbiotics during Pregnancy or Lactation on the Intestinal Microbiota of Children Born by Cesarean Section: A Systematic Review. Nutrients 2022, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Selvamani, S.; Kapoor, N.; Ajmera, A.; El Enshasy, H.A.; Dailin, D.J.; Sukmawati, D.; Abomoelak, M.; Nurjayadi, M.; Abomoelak, B. Prebiotics in New-Born and Children’s Health. Microorganisms 2023, 11, 2453. [Google Scholar] [CrossRef]
- Bhattacharyya, C.; Barman, D.; Tripathi, D.; Dutta, S.; Bhattacharya, C.; Alam, M.; Choudhury, P.; Devi, U.; Mahanta, J.; Rasaily, R.; et al. Influence of Maternal Breast Milk and Vaginal Microbiome on Neonatal Gut Microbiome: A Longitudinal Study during the First Year. Microbiol. Spectr. 2023, 11, e04967-22. [Google Scholar] [CrossRef]
- Kennedy, K.M.; Plagemann, A.; Sommer, J.; Hofmann, M.; Henrich, W.; Surette, M.G.; Braun, T.; Sloboda, D.M. Delivery Mode, Birth Order, and Sex Impact Neonatal Microbial Colonization. Gut Microbes 2025, 17, 2491667. [Google Scholar] [CrossRef]
- Dekaboruah, E.; Suryavanshi, M.V.; Chettri, D.; Verma, A.K. Human Microbiome: An Academic Update on Human Body Site Specific Surveillance and Its Possible Role. Arch. Microbiol. 2020, 202, 2147–2167. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, S.V. The Gut Microbiome: Relationships with Disease and Opportunities for Therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Z.; Li, Z.; Xiao, X. Unveiling the Neonatal Gut Microbiota: Exploring the Influence of Delivery Mode on Early Microbial Colonization and Intervention Strategies. Arch. Gynecol. Obstet. 2024, 310, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Abdulqadir, R.; Engers, J.; Al-Sadi, R. Role of Bifidobacterium in Modulating the Intestinal Epithelial Tight Junction Barrier: Current Knowledge and Perspectives. Curr. Dev. Nutr. 2023, 7, 102026. [Google Scholar] [CrossRef]
- Palmnäs-Bédard, M.S.; Costabile, G.; Vetrani, C.; Åberg, S.; Hjalmarsson, Y.; Dicksved, J.; Riccardi, G.; Landberg, R. The Human Gut Microbiota and Glucose Metabolism: A Scoping Review of Key Bacteria and the Potential Role of SCFAs. Am. J. Clin. Nutr. 2022, 116, 862–874. [Google Scholar] [CrossRef]
- Avitabile, E.; Menotti, L.; Croatti, V.; Giordani, B.; Parolin, C.; Vitali, B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int. J. Mol. Sci. 2024, 25, 9168. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Pradhan, S.; Chakrabarti, S.; Mondal, K.C.; Ghosh, K. Current Status of Probiotic and Related Health Benefits. Appl. Food Res. 2022, 2, 100185. [Google Scholar] [CrossRef]
- Giordani, B.; Abruzzo, A.; Parolin, C.; Foschi, C.; Laghi, L.; Marangoni, A.; Luppi, B.; Vitali, B. Prebiotic Activity of Vaginal Lactobacilli on Bifidobacteria: From Concept to Formulation. Microbiol. Spectr. 2023, 11, e02009-22. [Google Scholar] [CrossRef]
- Giordani, B.; Parolin, C.; Abruzzo, A.; Foschi, C.; Marangoni, A.; Luppi, B.; Vitali, B. Limosilactobacillus Vaginalis Exerts Bifidogenic Effects: A Novel Postbiotic Strategy for Infant Prebiotic Supplementation. Nutrients 2023, 15, 4433. [Google Scholar] [CrossRef]
- Lebeer, S.; Claes, I.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; von Ossowski, I.; Reunanen, J.; Palva, A.; de Vos, W.M.; De Keersmaecker, S.C.J.; et al. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells. Appl. Environ. Microbiol. 2012, 78, 185–193. [Google Scholar] [CrossRef]
- Mihhalevski, A.; Sarand, I.; Viiard, E.; Salumets, A.; Paalme, T. Growth Characterization of Individual Rye Sourdough Bacteria by Isothermal Microcalorimetry. J. Appl. Microbiol. 2011, 110, 529–540. [Google Scholar] [CrossRef]
- Baruzzi, F.; Poltronieri, P.; Quero, G.M.; Morea, M.; Morelli, L. An in Vitro Protocol for Direct Isolation of Potential Probiotic Lactobacilli from Raw Bovine Milk and Traditional Fermented Milks. Appl. Microbiol. Biotechnol. 2011, 90, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Asan-Ozusaglam, M.; Gunyakti, A. A New Probiotic Candidate Bacterium from Human Milk: Limosilactobacillus Vaginalis MA-10. Acta Aliment. 2021, 50, 13–21. [Google Scholar] [CrossRef]
- Torp, A.M.; Bahl, M.I.; Boisen, A.; Licht, T.R. Optimizing Oral Delivery of next Generation Probiotics. Trends Food Sci. Technol. 2022, 119, 101–109. [Google Scholar] [CrossRef]
- Baral, K.C.; Bajracharya, R.; Lee, S.H.; Han, H.-K. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int. J. Nanomed. 2021, 16, 7535–7556. [Google Scholar] [CrossRef]
- Ge, S.; Han, J.; Sun, Q.; Zhou, Q.; Ye, Z.; Li, P.; Gu, Q. Research Progress on Improving the Freeze-Drying Resistance of Probiotics: A Review. Trends Food Sci. Technol. 2024, 147, 104425. [Google Scholar] [CrossRef]
- Jameel, F. Application of QbD Elements in the Development and Manufacturing of a Lyophilized Product; Springer: Cham, Switzerland, 2023; pp. 423–449. [Google Scholar]
- Parolin, C.; Marangoni, A.; Laghi, L.; Foschi, C.; Ñahui Palomino, R.A.; Calonghi, N.; Cevenini, R.; Vitali, B. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity. PLoS ONE 2015, 10, e0131220. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, M.; Parolin, C.; Bukvicki, D.; Siroli, L.; Vitali, B.; De Angelis, M.; Lanciotti, R.; Patrignani, F. Probiotic and Metabolic Characterization of Vaginal Lactobacilli for a Potential Use in Functional Foods. Microorganisms 2021, 9, 833. [Google Scholar] [CrossRef]
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test; OECD: Paris, France, 2023; ISBN 9789264264861.
- Lenzi, M.; Cocchi, V.; Hrelia, P. Flow Cytometry vs. Optical Microscopy in the Evaluation of the Genotoxic Potential of Xenobiotic Compounds. Cytom. B Clin. Cytom. 2018, 94, 852–862. [Google Scholar] [CrossRef]
- Cocchi, V.; Gasperini, S.; Lenzi, M. Anthraquinones: Genotoxic until Proven Otherwise? A Study on a Substance-Based Medical Device to Implement Available Data for a Correct Risk Assessment. Toxics 2022, 10, 142. [Google Scholar] [CrossRef]
- Lenzi, M.; Gasperini, S.; Corli, G.; Marti, M.; Hrelia, P. Genotoxicity Evaluation of The Novel Psychoactive Substance MTTA. Int. J. Mol. Sci. 2023, 24, 10498. [Google Scholar] [CrossRef]
- Gasperini, S.; Bilel, S.; Cocchi, V.; Marti, M.; Lenzi, M.; Hrelia, P. The Genotoxicity of Acrylfentanyl, Ocfentanyl and Furanylfentanyl Raises the Concern of Long-Term Consequences. Int. J. Mol. Sci. 2022, 23, 14406. [Google Scholar] [CrossRef]
- Giordani, B.; Melgoza, L.M.; Parolin, C.; Foschi, C.; Marangoni, A.; Abruzzo, A.; Dalena, F.; Cerchiara, T.; Bigucci, F.; Luppi, B.; et al. Vaginal Bifidobacterium Breve for Preventing Urogenital Infections: Development of Delayed Release Mucoadhesive Oral Tablets. Int. J. Pharm. 2018, 550, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.L.; Bian, X.; Ma, C.M.; Yang, Y.; Liu, X.F.; Wang, Y.; Fan, J.; Zhang, N. In Vitro Evaluation of Probiotic Properties of Lactobacillus acidophilus AD125 and Antagonism against Escherichia coli O157:H7 Adhesion to Caco-2 Cell. Food Funct. 2023, 14, 2472–2480. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Ramírez, L.M.; Hernández-Chiñas, U.; Moreno-Guerrero, S.S.; Ramírez-Pacheco, A.; Eslava, C.A. Probiotic Properties and Immunomodulatory Activity of Lactobacillus Strains Isolated from Dairy Products. Microorganisms 2021, 9, 825. [Google Scholar] [CrossRef] [PubMed]
- Corazza, E.; Pizzi, A.; Parolin, C.; Giordani, B.; Abruzzo, A.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Vitali, B. Orange Peel Lactiplantibacillus Plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-Inflammatory Activity. Pharmaceutics 2024, 16, 1470. [Google Scholar] [CrossRef]
- El Basset, W.; Cornu, R.; Zaiter, T.; Jacquin, L.; Pellequer, Y.; Moulari, B.; Diab-Assaf, M.; Brunel, F.; Monteil, V.; Béduneau, A. Impact of Polyethylene Nanoplastics on Human Intestinal Cells. Nanotoxicology 2024, 18, 499–510. [Google Scholar] [CrossRef]
- Neal-Kluever, A.; Fisher, J.; Grylack, L.; Kakiuchi-Kiyota, S.; Halpern, W. Physiology of the Neonatal Gastrointestinal System Relevant to the Disposition of Orally Administered Medications. Drug Metab. Dispos. 2019, 47, 293–313. [Google Scholar] [CrossRef]
- FAO/WHO. Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Volume 86, ISBN 92-5-105513-0.
- Presti, I.; D’Orazio, G.; Labra, M.; La Ferla, B.; Mezzasalma, V.; Bizzaro, G.; Giardina, S.; Michelotti, A.; Tursi, F.; Vassallo, M.; et al. Evaluation of the Probiotic Properties of New Lactobacillus and Bifidobacterium Strains and Their in Vitro Effect. Appl. Microbiol. Biotechnol. 2015, 99, 5613–5626. [Google Scholar] [CrossRef]
- Hemmingsen, L.M.; Giordani, B.; Pettersen, A.K.; Vitali, B.; Basnet, P.; Škalko-Basnet, N. Liposomes-in-Chitosan Hydrogel Boosts Potential of Chlorhexidine in Biofilm Eradication in Vitro. Carbohydr. Polym. 2021, 262, 117939. [Google Scholar] [CrossRef]
- Al-Najjar, M.A.A.; Abdulrazzaq, S.B.; Alzaghari, L.F.; Mahmod, A.I.; Omar, A.; Hasen, E.; Athamneh, T.; Talib, W.H.; Chellappan, D.K.; Barakat, M. Evaluation of Immunomodulatory Potential of Probiotic Conditioned Medium on Murine Macrophages. Sci. Rep. 2024, 14, 7126. [Google Scholar] [CrossRef]
- Gittings, S.; Turnbull, N.; Henry, B.; Roberts, C.J.; Gershkovich, P. Characterisation of Human Saliva as a Platform for Oral Dissolution Medium Development. Eur. J. Pharm. Biopharm. 2015, 91, 16–24. [Google Scholar] [CrossRef]
- Microbiological Quality of Non-Sterile Pharmaceutical Preparations and Substances for Pharmaceutical Use. In European Pharmacopeia; EDQM: Strasbourg, France, 2011.
- Haranahalli Nataraj, B.; Behare, P.V.; Yadav, H.; Srivastava, A.K. Emerging Pre-Clinical Safety Assessments for Potential Probiotic Strains: A Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 8155–8183. [Google Scholar] [CrossRef]
- Colautti, A.; Arnoldi, M.; Comi, G.; Iacumin, L. Antibiotic Resistance and Virulence Factors in Lactobacilli: Something to Carefully Consider. Food Microbiol. 2022, 103, 103934. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.-T.; Shih, T.-W.; Liu, S.-H.; Pan, T.-M. Safety and Mutagenicity Evaluation of Vigiis 101 Powder Made from Lactobacillus paracasei subsp. Paracasei NTU 101. Regul. Toxicol. Pharmacol. 2015, 71, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lynch, B.; Zhao, J.; Guo, Y.; Mak, A. Lactobacillus rhamnosus MP108: Toxicological Evaluation. J. Food Sci. 2021, 86, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.-L.; Wu, C.-C.; Chen, T.-Y.; Tsai, Y.-C.; Peng, W.-S.; Yang, D.-J.; Kang, J.-J. Toxicity Studies of Lactobacillus plantarum PS128TM Isolated from Spontaneously Fermented Mustard Greens. Foods 2019, 8, 668. [Google Scholar] [CrossRef]
- Pradhan, D.; Singh, R.; Tyagi, A.; Rashmi, H.M.; Batish, V.K.; Grover, S. Assessing Safety of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 Using In Vitro Approaches and an In Vivo Murine Model. Regul. Toxicol. Pharmacol. 2019, 101, 1–11. [Google Scholar] [CrossRef]
- Falzone, L.; Lavoro, A.; Candido, S.; Salmeri, M.; Zanghì, A.; Libra, M. Benefits and Concerns of Probiotics: An Overview of the Potential Genotoxicity of the Colibactin-Producing Escherichia coli Nissle 1917 Strain. Gut Microbes 2024, 16, 2397874. [Google Scholar] [CrossRef]
- Bhat, M.I.; Singh, V.K.; Sharma, D.; Kapila, S.; Kapila, R. Adherence Capability and Safety Assessment of an Indigenous Probiotic Strain Lactobacillus rhamnosus MTCC-5897. Microb. Pathog. 2019, 130, 120–130. [Google Scholar] [CrossRef]
- Jayashree, S.; Karthikeyan, R.; Nithyalakshmi, S.; Ranjani, J.; Gunasekaran, P.; Rajendhran, J. Anti-Adhesion Property of the Potential Probiotic Strain Lactobacillus fermentum 8711 Against Methicillin-Resistant Staphylococcus aureus (MRSA). Front. Microbiol. 2018, 9, 411. [Google Scholar] [CrossRef]
- Rokana, N.; Mallappa, R.H.; Batish, V.K.; Grover, S. Interaction between Putative Probiotic Lactobacillus Strains of Indian Gut Origin and Salmonella: Impact on Intestinal Barrier Function. LWT 2017, 84, 851–860. [Google Scholar] [CrossRef]
- Hou, Q.; Ye, L.; Liu, H.; Huang, L.; Yang, Q.; Turner, J.; Yu, Q. Lactobacillus Accelerates ISCs Regeneration to Protect the Integrity of Intestinal Mucosa through Activation of STAT3 Signaling Pathway Induced by LPLs Secretion of IL-22. Cell Death Differ. 2018, 25, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Mu, C.; Xu, L.; Yu, K.; Shen, L.; Zhu, W. Host-Microbiota Interaction in Intestinal Stem Cell Homeostasis. Gut Microbes 2024, 16, 2353399. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jung, K.B.; Kwon, O.; Son, Y.S.; Choi, E.; Yu, W.D.; Son, N.; Jeon, J.H.; Jo, H.; Yang, H.; et al. Limosilactobacillus reuteri DS0384 Promotes Intestinal Epithelial Maturation via the Postbiotic Effect in Human Intestinal Organoids and Infant Mice. Gut Microbes 2022, 14, 2121580. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Khachatryan, L.G.; Younis, N.K.; Mustafa, M.A.; Ahmad, N.; Athab, Z.H.; Polyanskaya, A.V.; Kasanave, E.V.; Mirzaei, R.; Karampoor, S. Microbiota-Derived Short Chain Fatty Acids in Pediatric Health and Diseases: From Gut Development to Neuroprotection. Front. Microbiol. 2024, 15, 1456793. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and Paraprobiotics: From Concepts to Applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Chalvon-Demersay, T.; Correa, F.; Bosi, P.; Trevisi, P. Review: A Systematic Review of the Effects of Functional Amino Acids on Small Intestine Barrier Function and Immunity in Piglets. Animal 2023, 17, 100771. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Hou, Y.; Yin, Y.; Qiu, Y.; Wu, G.; Hu, C.A.A. Roles of Amino Acids in Preventing and Treating Intestinal Diseases: Recent Studies with Pig Models. Amino Acids 2017, 49, 1277–1291. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Zhang, M.; Su, Y.; Pan, Z.; Liang, J.; Xie, X.; Wang, Q.; Chen, J.; Zhou, L.; et al. Gegen Qinlian Decoction Activates AhR/IL-22 to Repair Intestinal Barrier by Modulating Gut Microbiota-Related Tryptophan Metabolism in Ulcerative Colitis Mice. J. Ethnopharmacol. 2023, 302, 115919. [Google Scholar] [CrossRef]
- Yang, Z.; Liao, S.F. Physiological Effects of Dietary Amino Acids on Gut Health and Functions of Swine. Front. Vet. Sci. 2019, 6, 169. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Dai, Z.; Piao, X.; Wu, Z.; Wang, B.; Zhu, Y.; Zeng, Z. L-Methionine Supplementation Maintains the Integrity and Barrier Function of the Small-Intestinal Mucosa in Post-Weaning Piglets. Amino Acids 2014, 46, 1131–1142. [Google Scholar] [CrossRef]
- Mostafavi Abdolmaleky, H.; Zhou, J.-R. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef]
- Singh, T.P.; Kaur, G.; Kapila, S.; Malik, R.K. Antagonistic Activity of Lactobacillus Reuteri Strains on the Adhesion Characteristics of Selected Pathogens. Front. Microbiol. 2017, 8, 486. [Google Scholar] [CrossRef]
- Wang, T.; Sun, H.; Chen, J.; Luo, L.; Gu, Y.; Wang, X.; Shan, Y.; Yi, Y.; Liu, B.; Zhou, Y.; et al. Anti-Adhesion Effects of Lactobacillus Strains on Caco-2 Cells Against Escherichia coli and Their Application in Ameliorating the Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice. Probiotics Antimicrob. Proteins 2021, 13, 1632–1643. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Behbahani, B.; Noshad, M.; Falah, F. Inhibition of Escherichia coli Adhesion to Human Intestinal Caco-2 cells by Probiotic Candidate Lactobacillus plantarum Strain L15. Microb. Pathog. 2019, 136, 103677. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, D.; Wang, J.; Li, H.; Liu, J.; Liu, A.; Wang, J.; Guan, G.; Luo, J.; Yin, H.; et al. Assessment of Probiotic Adhesion and Inhibitory Effect on Escherichia coli and Salmonella Adhesion. Arch. Microbiol. 2021, 203, 6267–6274. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.C.; de Sousa Melo, D.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics Antimicrob. Proteins 2021, 13, 102–112. [Google Scholar] [CrossRef]
- Karbowiak, M.; Gałek, M.; Szydłowska, A.; Zielińska, D. The Influence of the Degree of Thermal Inactivation of Probiotic Lactic Acid Bacteria and Their Postbiotics on Aggregation and Adhesion Inhibition of Selected Pathogens. Pathogens 2022, 11, 1260. [Google Scholar] [CrossRef]
- Abramov, V.M.; Kosarev, I.V.; Priputnevich, T.V.; Machulin, A.V.; Abashina, T.N.; Chikileva, I.O.; Donetskova, A.D.; Takada, K.; Melnikov, V.G.; Vasilenko, R.N.; et al. S-Layer Protein 2 of Vaginal Lactobacillus Crispatus 2029 Enhances Growth, Differentiation, VEGF Production and Barrier Functions in Intestinal Epithelial Cell Line Caco-2. Int. J. Biol. Macromol. 2021, 189, 410–419. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Z.; Tang, P.; Wu, Y.; Zhang, A.; Li, D.; Wang, C.-Z.; Wan, J.-Y.; Yao, H.; Yuan, C.-S. Probiotics Fortify Intestinal Barrier Function: A Systematic Review and Meta-Analysis of Randomized Trials. Front. Immunol. 2023, 14, 1143548. [Google Scholar] [CrossRef] [PubMed]
- Castro-Bravo, N.; Wells, J.M.; Margolles, A.; Ruas-Madiedo, P. Interactions of Surface Exopolysaccharides from Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front. Microbiol. 2018, 9, 2426. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, M.; Zhang, H.; Zhou, W.; Liu, W.; Pi, X.; Xing, J. An Exopolysaccharide from Lactobacillus pentosus YY-112: Structure and Effect on the Human Intestinal Microbiota. Food Funct. 2023, 14, 7718–7726. [Google Scholar] [CrossRef]
- Giordani, B.; Naldi, M.; Croatti, V.; Parolin, C.; Erdoğan, Ü.; Bartolini, M.; Vitali, B. Exopolysaccharides from Vaginal Lactobacilli Modulate Microbial Biofilms. Microb. Cell Fact. 2023, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, Z.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Surface Components and Metabolites of Probiotics for Regulation of Intestinal Epithelial Barrier. Microb. Cell Fact. 2020, 19, 23. [Google Scholar] [CrossRef]
- di Vito, R.; Di Mezza, A.; Conte, C.; Traina, G. The Crosstalk between Intestinal Epithelial Cells and Mast Cells Is Modulated by the Probiotic Supplementation in Co-Culture Models. Int. J. Mol. Sci. 2023, 24, 4157. [Google Scholar] [CrossRef]
- Mennigen, R.; Nolte, K.; Rijcken, E.; Utech, M.; Loeffler, B.; Senninger, N.; Bruewer, M. Probiotic Mixture VSL#3 Protects the Epithelial Barrier by Maintaining Tight Junction Protein Expression and Preventing Apoptosis in a Murine Model of Colitis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 296, G1140–G1149. [Google Scholar] [CrossRef]
- Wan, L.Y.M.; Chen, Z.J.; Shah, N.P.; El-Nezami, H. Modulation of Intestinal Epithelial Defense Responses by Probiotic Bacteria. Crit. Rev. Food Sci. Nutr. 2016, 56, 2628–2641. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W.; et al. A Novel Postbiotic from Lactobacillus rhamnosus GG with a Beneficial Effect on Intestinal Barrier Function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef]
- Dani, C.; Coviello, C.; Corsini, I.; Arena, F.; Antonelli, A.; Rossolini, G. Lactobacillus Sepsis and Probiotic Therapy in Newborns: Two New Cases and Literature Review. Am. J. Perinatol. Rep. 2015, 06, e25–e29. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Li, P.; Feng, X.; Mao, Z.; Wei, J.; Lin, X.; Li, X.; Wang, L. Exploring the Protective Effects of Freeze-Dried Lactobacillus rhamnosus under Optimized Cryoprotectants Formulation. LWT 2023, 173, 114295. [Google Scholar] [CrossRef]
- Gao, X.; Kong, J.; Zhu, H.; Mao, B.; Cui, S.; Zhao, J. Lactobacillus, Bifidobacterium and Lactococcus Response to Environmental Stress: Mechanisms and Application of Cross-protection to Improve Resistance against Freeze-drying. J. Appl. Microbiol. 2022, 132, 802–821. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Y.; Xia, Y.; Song, X.; Ai, L. Characteristics of Probiotic Preparations and Their Applications. Foods 2022, 11, 2472. [Google Scholar] [CrossRef]
- Ahmed, I.S.; Shamma, R.N.; Shoukri, R.A. Development and Optimization of Lyophilized Orally Disintegrating Tablets Using Factorial Design. Pharm. Dev. Technol. 2013, 18, 935–943. [Google Scholar] [CrossRef]
- Hoffmann, A.; Daniels, R. Ultra–Fast Disintegrating ODTs Comprising Viable Probiotic Bacteria and HPMC as a Mucoadhesive. Eur. J. Pharm. Biopharm. 2019, 139, 240–245. [Google Scholar] [CrossRef]
- Zajicek, A.; Fossler, M.J.; Barrett, J.S.; Worthington, J.H.; Ternik, R.; Charkoftaki, G.; Lum, S.; Breitkreutz, J.; Baltezor, M.; Macheras, P.; et al. A Report from the Pediatric Formulations Task Force: Perspectives on the State of Child-Friendly Oral Dosage Forms. AAPS J. 2013, 15, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, A.; Vitali, B.; Lombardi, F.; Guerrini, L.; Cinque, B.; Parolin, C.; Bigucci, F.; Cerchiara, T.; Arbizzani, C.; Gallucci, M.C.; et al. Mucoadhesive Buccal Films for Local Delivery of Lactobacillus Brevis. Pharmaceutics 2020, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Portilla, Z.; Melgoza-Contreras, L.M.; Reynoso-Camacho, R.; Pérez-Carreón, J.I.; Gutiérrez-Nava, A. Incorporation of Bifidobacterium sp. into Powder Products through a Fluidized Bed Process for Enteric Targeted Release. J. Dairy Sci. 2020, 103, 11129–11137. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, K.; Zupančič, Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of Electrospun Nanofibers That Enable High Loading and Long-Term Viability of Probiotics. Eur. J. Pharm. Biopharm. 2019, 136, 108–119. [Google Scholar] [CrossRef]
Tablet’s Composition | Diameter (mm) | Thickness (mm) | Weight (g) | Image |
---|---|---|---|---|
MX 30% | 12.97 ± 0.14 | 3.72 ± 0.10 | 0.17 ± 0.01 | |
MX 10% + CFS-BC17 dil 1:2 | 12.93 ± 0.19 | 3.85 ± 0.24 | 0.08 ± 0.00 | |
MX 10% + CFS-BC17 ud | 12.89 ± 0.17 | 3.87 ± 0.29 | 0.09 ± 0.00 | |
MX 20% + CFS-BC17 dil 1:2 | 13.23 ± 0.34 | 3.93 ± 0.29 | 0.14 ± 0.00 | |
MX 20% + CFS-BC17 ud | 13.06 ± 0.16 | 3.95 ± 0.29 | 0.15 ± 0.01 | |
MX 30% + CFS-BC17 dil 1:2 | 13.29 ± 0.27 | 4.05 ± 0.16 | 0.18 ± 0.01 | |
MX 30% + CFS-BC17 ud | 13.28 ± 0.30 | 4.02 ± 0.14 | 0.18 ± 0.00 |
Tablet | Diameter (mm) | Thickness (mm) | Weight (g) | pH | Content Uniformity (ABS) |
---|---|---|---|---|---|
Viable+CFS-BC17 | 13.35 ± 0.22 | 4.33 ± 0.25 | 0.18 ± 0.00 | 6.89 ± 0.17 | 0.24 ± 0.00 |
HK+CFS-BC17 | 13.42 ± 0.18 | 4.30 ± 0.27 | 0.18 ± 0.01 | 6.77 ± 0.03 | 0.24 ± 0.01 |
Tablet | T1 | T2 | T3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Diameter (mm) | Thickness (mm) | Weight (g) | Diameter (mm) | Thickness (mm) | Weight (g) | Diameter (mm) | Thickness (mm) | Weight (g) | |
Viable+CFS-BC17 | 13.47 ± 0.44 | 4.27 ± 0.20 | 0.18 ± 0.01 | 13.54 ± 0.43 | 4.21 ± 0.23 | 0.18 ± 0.01 | 13.85 ± 0.22 | 4.21 ± 0.23 | 0.18 ± 0.01 |
HK+CFS-BC17 | 13.46 ± 0.37 | 4.27 ± 0.29 | 0.18 ± 0.01 | 13.62 ± 0.41 | 4.21 ± 0.26 | 0.18 ± 0.01 | 13.94 ± 0.13 | 4.15 ± 0.23 | 0.18 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordani, B.; Monti, F.; Corazza, E.; Gasperini, S.; Parolin, C.; Abruzzo, A.; Foschi, C.; Marangoni, A.; Lenzi, M.; Luppi, B.; et al. Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation. Pharmaceutics 2025, 17, 1011. https://doi.org/10.3390/pharmaceutics17081011
Giordani B, Monti F, Corazza E, Gasperini S, Parolin C, Abruzzo A, Foschi C, Marangoni A, Lenzi M, Luppi B, et al. Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation. Pharmaceutics. 2025; 17(8):1011. https://doi.org/10.3390/pharmaceutics17081011
Chicago/Turabian StyleGiordani, Barbara, Federica Monti, Elisa Corazza, Sofia Gasperini, Carola Parolin, Angela Abruzzo, Claudio Foschi, Antonella Marangoni, Monia Lenzi, Barbara Luppi, and et al. 2025. "Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation" Pharmaceutics 17, no. 8: 1011. https://doi.org/10.3390/pharmaceutics17081011
APA StyleGiordani, B., Monti, F., Corazza, E., Gasperini, S., Parolin, C., Abruzzo, A., Foschi, C., Marangoni, A., Lenzi, M., Luppi, B., & Vitali, B. (2025). Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation. Pharmaceutics, 17(8), 1011. https://doi.org/10.3390/pharmaceutics17081011