Modeling the Influence of CYP2C9 and ABCB1 Gene Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Losartan
Abstract
1. Introduction
2. Materials and Methods
2.1. Mathematical Model of Losartan Metabolism with ABCB1 Influence
2.2. Nomenclature of Genotypes
2.3. Pharmacokinetic Analysis
- AUC from 0 to the lower boundary (x) was derived:
- AUC from 0 to the upper boundary (y) was derived:
- AUC from x to y was calculated as the difference between AUC0–y and AUC0–x:
- A linear regression line was derived for the semilogarithmic plot of plasma concentration versus time using the 6, 8, and 10 h time points, as in the article from which data were extracted for model validation [41].
- t1/2 was calculated:
2.4. Virtual Population for Mathematical Cardiorenal Model
2.5. Modeling the Impact of ABCB1 Genetic Variants on Losartan Treatment Response
2.6. Parameter Estimation
2.7. Parameter Identifiability
2.8. Sensitivity Analysis
2.9. Digitizing of Plots
2.10. Statistical Analysis
2.11. Software
3. Results
3.1. Model Developing
3.2. Analysis of Experimental Data for Model Validation
3.3. Validation of the Model
3.4. Comparison of Simulated and Experimental Pharmacokinetic Parameters
3.5. Sensitivity Analysis
3.6. Simulation of Losartan Antihypertensive Therapy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Childs, S.; Ling, V. The MDR Superfamily of Genes and Its Biological Implications. Important Adv. Oncol. 1994, 98, 21–36. [Google Scholar]
- Dean, M.; Allikmets, R. Evolution of ATP-Binding Cassette Transporter Genes. Curr. Opin. Genet. Dev. 1995, 5, 779–785. [Google Scholar] [CrossRef]
- Ambudkar, S.V.; Lelong, I.H.; Zhang, J.; Cardarelli, C. Purification and Reconstitution of Human P-Glycoprotein. Methods Enzymol. 1998, 292, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, M.M.; Ling, V. The Molecular Basis of Multidrug Resistance in Cancer: The Early Years of P-Glycoprotein Research. FEBS Lett. 2006, 580, 998–1009. [Google Scholar] [CrossRef]
- Sauna, Z.E.; Smith, M.M.; Müller, M.; Kerr, K.M.; Ambudkar, S.V. The Mechanism of Action of Multidrug-Resistance-Linked P-Glycoprotein. J. Bioenerg. Biomembr. 2001, 33, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; van der Valk, M.A.; Robanus-Maandag, E.C.; te Riele, H.P. Disruption of the Mouse Mdr1a P-Glycoprotein Gene Leads to a Deficiency in the Blood-Brain Barrier and to Increased Sensitivity to Drugs. Cell 1994, 77, 491–502. [Google Scholar] [CrossRef]
- Virgintino, D.; Robertson, D.; Errede, M.; Benagiano, V.; Tauer, U.; Roncali, L.; Bertossi, M. Expression of Caveolin-1 in Human Brain Microvessels. Neuroscience 2002, 115, 145–152. [Google Scholar] [CrossRef]
- Sakaeda, T. MDR1 Genotype-Related Pharmacokinetics: Fact or Fiction? Drug Metab. Pharmacokinet. 2005, 20, 391–414. [Google Scholar] [CrossRef]
- Tatsuta, T.; Naito, M.; Oh-hara, T.; Sugawara, I.; Tsuruo, T. Functional Involvement of P-Glycoprotein in Blood-Brain Barrier. J. Biol. Chem. 1992, 267, 20383–20391. [Google Scholar] [CrossRef]
- Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular Localization of the Multidrug-Resistance Gene Product P-Glycoprotein in Normal Human Tissues. Proc. Natl. Acad. Sci. USA 1987, 84, 7735–7738. [Google Scholar] [CrossRef]
- Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Immunohistochemical Localization in Normal Tissues of Different Epitopes in the Multidrug Transport Protein P170: Evidence for Localization in Brain Capillaries and Crossreactivity of One Antibody with a Muscle Protein. J. Histochem. Cytochem. 1989, 37, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Wolking, S.; Schaeffeler, E.; Lerche, H.; Schwab, M.; Nies, A.T. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin. Pharmacokinet. 2015, 54, 709–735. [Google Scholar] [CrossRef]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional Polymorphisms of the Human Multidrug-Resistance Gene: Multiple Sequence Variations and Correlation of One Allele with P-Glycoprotein Expression and Activity in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef]
- Mickley, L.A.; Lee, J.S.; Weng, Z.; Zhan, Z.; Alvarez, M.; Wilson, W.; Bates, S.E.; Fojo, T. Genetic Polymorphism in MDR-1: A Tool for Examining Allelic Expression in Normal Cells, Unselected and Drug-Selected Cell Lines, and Human Tumors. Blood 1998, 91, 1749–1756. [Google Scholar] [CrossRef]
- Illmer, T.; Schuler, U.S.; Thiede, C.; Schwarz, U.I.; Kim, R.B.; Gotthard, S.; Freund, D.; Schäkel, U.; Ehninger, G.; Schaich, M. MDR1 Gene Polymorphisms Affect Therapy Outcome in Acute Myeloid Leukemia Patients. Cancer Res. 2002, 62, 4955–4962. [Google Scholar] [PubMed]
- Jeannesson, E.; Albertini, L.; Siest, G.; Gomes, A.-M.; Ribeiro, V.; Aslanidis, C.; Schmitz, G.; Visvikis-Siest, S. Determination of ABCB1 Polymorphisms and Haplotypes Frequencies in a French Population. Fundam. Clin. Pharmacol. 2007, 21, 411–418. [Google Scholar] [CrossRef]
- Kroetz, D.L.; Pauli-Magnus, C.; Hodges, L.M.; Huang, C.C.; Kawamoto, M.; Johns, S.J.; Stryke, D.; Ferrin, T.E.; DeYoung, J.; Taylor, T.; et al. Sequence Diversity and Haplotype Structure in the Human ABCB1 (MDR1, Multidrug Resistance Transporter) Gene. Pharmacogenetics 2003, 13, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Sai, K.; Itoda, M.; Saito, Y.; Kurose, K.; Katori, N.; Kaniwa, N.; Komamura, K.; Kotake, T.; Morishita, H.; Tomoike, H.; et al. Genetic Variations and Haplotype Structures of the ABCB1 Gene in a Japanese Population: An Expanded Haplotype Block Covering the Distal Promoter Region, and Associated Ethnic Differences. Ann. Hum. Genet. 2006, 70, 605–622. [Google Scholar] [CrossRef]
- Saito, K.; Miyake, S.; Moriya, H.; Yamazaki, M.; Itoh, F.; Imai, K.; Kurosawa, N.; Owada, E.; Miyamoto, A. Detection of the Four Sequence Variations of MDR1 Gene Using TaqMan MGB Probe Based Real-Time PCR and Haplotype Analysis in Healthy Japanese Subjects. Clin. Biochem. 2003, 36, 511–518. [Google Scholar] [CrossRef]
- Tang, K.; Ngoi, S.-M.; Gwee, P.-C.; Chua, J.M.Z.; Lee, E.J.D.; Chong, S.S.; Lee, C.G.L. Distinct Haplotype Profiles and Strong Linkage Disequilibrium at the MDR1 Multidrug Transporter Gene Locus in Three Ethnic Asian Populations. Pharmacogenetics 2002, 12, 437–450. [Google Scholar] [CrossRef]
- Wang, D.; Johnson, A.D.; Papp, A.C.; Kroetz, D.L.; Sadée, W. Multidrug Resistance Polypeptide 1 (MDR1, ABCB1) Variant 3435C>T Affects mRNA Stability. Pharmacogenet Genom. 2005, 15, 693–704. [Google Scholar] [CrossRef]
- Soldner, A.; Benet, L.Z.; Mutschler, E.; Christians, U. Active Transport of the Angiotensin-II Antagonist Losartan and Its Main Metabolite EXP 3174 across MDCK-MDR1 and Caco-2 Cell Monolayers. Br. J. Pharmacol. 2000, 129, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, P.B.; Wong, P.C.; Chiu, A.T.; Herblin, W.F.; Benfield, P.; Carini, D.J.; Lee, R.J.; Wexler, R.R.; Saye, J.A.; Smith, R.D. Angiotensin II Receptors and Angiotensin II Receptor Antagonists. Pharmacol. Rev. 1993, 45, 205–251. [Google Scholar] [CrossRef] [PubMed]
- Stearns, R.A.; Chakravarty, P.K.; Chen, R.; Chiu, S.H. Biotransformation of Losartan to Its Active Carboxylic Acid Metabolite in Human Liver Microsomes. Role of Cytochrome P4502C and 3A Subfamily Members. Drug Metab. Dispos. 1995, 23, 207–215. [Google Scholar] [CrossRef]
- Tybring, G.; Hidestrand, M.; Oscarson, M.; Ingelman-Sundberg, M.; Dahl, M.L.; Eliasson, E. Role of CYP2C9 Polymorphism in Losartan Oxidation. Drug Metab. Dispos. 2001, 29, 1051–1056. [Google Scholar]
- Yun, C.H.; Lee, H.S.; Lee, H.; Rho, J.K.; Jeong, H.G.; Guengerich, F.P. Oxidation of the Angiotensin II Receptor Antagonist Losartan (DuP 753) in Human Liver Microsomes. Role of Cytochrome P4503A(4) in Formation of the Active Metabolite EXP3174. Drug Metab. Dispos. 1995, 23, 285–289. [Google Scholar] [CrossRef]
- Lo, M.W.; Goldberg, M.R.; McCrea, J.B.; Lu, H.; Furtek, C.I.; Bjornsson, T.D. Pharmacokinetics of Losartan, an Angiotensin II Receptor Antagonist, and Its Active Metabolite EXP3174 in Humans. Clin. Pharmacol. Ther. 1995, 58, 641–649. [Google Scholar] [CrossRef]
- Kirchheiner, J.; Brockmöller, J. Clinical Consequences of Cytochrome P450 2C9 Polymorphisms. Clin. Pharmacol. Ther. 2005, 77, 1–16. [Google Scholar] [CrossRef]
- Lee, C.R.; Goldstein, J.A.; Pieper, J.A. Cytochrome P450 2C9 Polymorphisms: A Comprehensive Review of the in-Vitro and Human Data. Pharmacogenetics 2002, 12, 251–263. [Google Scholar] [CrossRef]
- Ged, C.; Umbenhauer, D.R.; Bellew, T.M.; Bork, R.W.; Srivastava, P.K.; Shinriki, N.; Lloyd, R.S.; Guengerich, F.P. Characterization of cDNAs, mRNAs, and Proteins Related to Human Liver Microsomal Cytochrome P-450 (S)-Mephenytoin 4′-Hydroxylase. Biochemistry 1988, 27, 6929–6940. [Google Scholar] [CrossRef]
- Stubbins, M.J.; Harries, L.W.; Smith, G.; Tarbit, M.H.; Wolf, C.R. Genetic Analysis of the Human Cytochrome P450 CYP2C9 Locus. Pharmacogenetics 1996, 6, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Sullivan-Klose, T.H.; Ghanayem, B.I.; Bell, D.A.; Zhang, Z.Y.; Kaminsky, L.S.; Shenfield, G.M.; Miners, J.O.; Birkett, D.J.; Goldstein, J.A. The Role of the CYP2C9-Leu359 Allelic Variant in the Tolbutamide Polymorphism. Pharmacogenetics 1996, 6, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Yasar, U.; Forslund-Bergengren, C.; Tybring, G.; Dorado, P.; Llerena, A.; Sjöqvist, F.; Eliasson, E.; Dahl, M.-L. Pharmacokinetics of Losartan and Its Metabolite E-3174 in Relation to the CYP2C9 Genotype. Clin. Pharmacol. Ther. 2002, 71, 89–98. [Google Scholar] [CrossRef]
- Ninomiya, H.; Mamiya, K.; Matsuo, S.; Ieiri, I.; Higuchi, S.; Tashiro, N. Genetic Polymorphism of the CYP2C Subfamily and Excessive Serum Phenytoin Concentration with Central Nervous System Intoxication. Ther. Drug Monit. 2000, 22, 230–232. [Google Scholar] [CrossRef]
- Rettie, A.E.; Haining, R.L.; Bajpai, M.; Levy, R.H. A Common Genetic Basis for Idiosyncratic Toxicity of Warfarin and Phenytoin. Epilepsy Res. 1999, 35, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Babaev, D.S.; Kutumova, E.; Kolpakov, F. Modeling the Differential Effect of CYP2C9 Gene Alleles on Losartan Metabolism. Math. Biol. Bioinform. 2024, 19, 533–564. [Google Scholar] [CrossRef]
- Babaev, D.; Kutumova, E.; Kolpakov, F. Mathematical Modeling of Pharmacokinetics and Pharmacodynamics of Losartan in Relation to CYP2C9 Allele Variants. Front. Syst. Biol. 2025, 5, 1504077. [Google Scholar] [CrossRef]
- Kutumova, E.; Kovaleva, A.; Sharipov, R.; Lifshits, G.; Kolpakov, F. Mathematical Modelling of the Influence of ACE I/D Polymorphism on Blood Pressure and Antihypertensive Therapy. Heliyon 2024, 10, e29988. [Google Scholar] [CrossRef]
- Kutumova, E.; Kiselev, I.; Sharipov, R.; Lifshits, G.; Kolpakov, F. Thoroughly Calibrated Modular Agent-Based Model of the Human Cardiovascular and Renal Systems for Blood Pressure Regulation in Health and Disease. Front. Physiol. 2021, 12, 746300. [Google Scholar] [CrossRef]
- Kutumova, E.; Kiselev, I.; Sharipov, R.; Lifshits, G.; Kolpakov, F. Mathematical Modeling of Antihypertensive Therapy. Front. Physiol. 2022, 13, 1070115. [Google Scholar] [CrossRef]
- Shin, H.-B.; Jung, E.H.; Kang, P.; Lim, C.W.; Oh, K.-Y.; Cho, C.-K.; Lee, Y.J.; Choi, C.-I.; Jang, C.-G.; Lee, S.-Y.; et al. ABCB1 c.2677G>T/c.3435C>T Diplotype Increases the Early-Phase Oral Absorption of Losartan. Arch. Pharm. Res. 2020, 43, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Malik-Sheriff, R.S.; Glont, M.; Nguyen, T.V.N.; Tiwari, K.; Roberts, M.G.; Xavier, A.; Vu, M.T.; Men, J.; Maire, M.; Kananathan, S.; et al. BioModels-15 Years of Sharing Computational Models in Life Science. Nucleic Acids Res. 2020, 48, D407–D415. [Google Scholar] [CrossRef] [PubMed]
- Gradman, A.H.; Arcuri, K.E.; Goldberg, A.I.; Ikeda, L.S.; Nelson, E.B.; Snavely, D.B.; Sweet, C.S. A Randomized, Placebo-Controlled, Double-Blind, Parallel Study of Various Doses of Losartan Potassium Compared with Enalapril Maleate in Patients with Essential Hypertension. Hypertension 1995, 25, 1345–1350. [Google Scholar] [CrossRef]
- Tanabe, M.; Ieiri, I.; Nagata, N.; Inoue, K.; Ito, S.; Kanamori, Y.; Takahashi, M.; Kurata, Y.; Kigawa, J.; Higuchi, S.; et al. Expression of P-Glycoprotein in Human Placenta: Relation to Genetic Polymorphism of the Multidrug Resistance (MDR)-1 Gene. J. Pharmacol. Exp. Ther. 2001, 297, 1137–1143. [Google Scholar] [CrossRef]
- Kirby, S.; Brain, P.; Jones, B. Fitting E(Max) Models to Clinical Trial Dose-Response Data. Pharm. Stat. 2011, 10, 143–149. [Google Scholar] [CrossRef]
- Runarsson, T.; Yao, X. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Trans. Evol. Comput. 2000, 4, 284–294. [Google Scholar] [CrossRef]
- Sierra, M.R.; Coello, C.A.C. Improving PSO-Based Multi-Objective Optimization Using Crowding, Mutation and Epsilon-Dominance. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005. [Google Scholar]
- Nebro, A.J.; Durillo, J.J.; Luna, F.; Dorronsoro, B.; Alba, E. MOCell: A Cellular Genetic Algorithm for Multiobjective Optimization. Int. J. Intell. Syst. 2009, 24, 726–746. [Google Scholar] [CrossRef]
- Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmüller, U.; Timmer, J. Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models by Exploiting the Profile Likelihood. Bioinformatics 2009, 25, 1923–1929. [Google Scholar] [CrossRef]
- Raue, A.; Becker, V.; Klingmüller, U.; Timmer, J. Identifiability and Observability Analysis for Experimental Design in Nonlinear Dynamical Models. Chaos 2010, 20, 045105. [Google Scholar] [CrossRef]
- Rabitz, H.A.; Kramer, M.A.; Dacol, D.K. Sensitivity Analysis in Chemical Kinetics. Annu. Rev. Phys. Chem. 1983, 34, 419–461. [Google Scholar] [CrossRef]
- Bae, J.; Choi, C.; Kim, M.; Oh, D.; Keum, S.; Park, J.; Kim, B.; Bang, H.; Oh, S.; Kang, B.; et al. Frequency of CYP2C9 Alleles in Koreans and Their Effects on Losartan Pharmacokinetics. Acta Pharmacol. Sin. 2011, 32, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Göktaş, M.T.; Pepedil, F.; Karaca, Ö.; Kalkışım, S.; Cevik, L.; Gumus, E.; Guven, G.S.; Babaoglu, M.O.; Bozkurt, A.; Yasar, U. Relationship between Genetic Polymorphisms of Drug Efflux Transporter MDR1 (ABCB1) and Response to Losartan in Hypertension Patients. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2460–2467. [Google Scholar]
- Kolpakov, F.; Akberdin, I.; Kashapov, T.; Kiselev, L.; Kolmykov, S.; Kondrakhin, Y.; Kutumova, E.; Mandrik, N.; Pintus, S.; Ryabova, A.; et al. BioUML: An Integrated Environment for Systems Biology and Collaborative Analysis of Biomedical Data. Nucleic Acids Res. 2019, 47, W225–W233. [Google Scholar] [CrossRef] [PubMed]
- Kolpakov, F.; Akberdin, I.; Kiselev, I.; Kolmykov, S.; Kondrakhin, Y.; Kulyashov, M.; Kutumova, E.; Pintus, S.; Ryabova, A.; Sharipov, R.; et al. BioUML-towards a Universal Research Platform. Nucleic Acids Res. 2022, 50, W124–W131. [Google Scholar] [CrossRef]
- Keating, S.M.; Waltemath, D.; König, M.; Zhang, F.; Dräger, A.; Chaouiya, C.; Bergmann, F.T.; Finney, A.; Gillespie, C.S.; Helikar, T.; et al. SBML Level 3: An Extensible Format for the Exchange and Reuse of Biological Models. Mol. Syst. Biol. 2020, 16, e9110. [Google Scholar] [CrossRef] [PubMed]
- Novère, N.L.; Hucka, M.; Mi, H.; Moodie, S.; Schreiber, F.; Sorokin, A.; Demir, E.; Wegner, K.; Aladjem, M.I.; Wimalaratne, S.M.; et al. The Systems Biology Graphical Notation. Nat. Biotechnol. 2009, 27, 735–741. [Google Scholar] [CrossRef]
- Hindmarsh, A.; Brown, P.; Grant, K.E.; Lee, S.; Serban, R.; Shumaker, D.; Woodward, C. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Trans. Math. Softw. (TOMS) 2004, 31, 363–396. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Wang, L.-S.; Zhang, W.; Tan, Z.-R.; Fan, L.; Chen, B.-L.; Li, Q.; Liu, J.; Tu, J.-H.; et al. Effects of the CYP2C9*13 Allele on the Pharmacokinetics of Losartan in Healthy Male Subjects. Xenobiotica 2009, 39, 788–793. [Google Scholar] [CrossRef]
- Park, H.-J.; Shinn, H.K.; Ryu, S.H.; Lee, H.-S.; Park, C.-S.; Kang, J.-H. Genetic Polymorphisms in the ABCB1 Gene and the Effects of Fentanyl in Koreans. Clin. Pharmacol. Ther. 2007, 81, 539–546. [Google Scholar] [CrossRef]
- Bae, J.-W.; Kim, H.-K.; Kim, J.-H.; Yang, S.-I.; Kim, M.-J.; Jang, C.-G.; Park, Y.-S.; Lee, S.-Y. Allele and Genotype Frequencies of CYP2C9 in a Korean Population. Br. J. Clin. Pharmacol. 2005, 60, 418–422. [Google Scholar] [CrossRef]
- Lee, H.W.; Lim, M.-S.; Lee, J.; Jegal, M.-Y.; Kim, D.-W.; Lee, W.-K.; Jang, I.-J.; Shin, J.-G.; Yoon, Y.-R. Frequency of CYP2C9 Variant Alleles, Including CYP2C9*13 in a Korean Population and Effect on Glimepiride Pharmacokinetics. J. Clin. Pharm. Ther. 2012, 37, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.R.; Shon, J.H.; Kim, M.K.; Lim, Y.C.; Lee, H.R.; Park, J.Y.; Cha, I.J.; Shin, J.G. Frequency of Cytochrome P450 2C9 Mutant Alleles in a Korean Population. Br. J. Clin. Pharmacol. 2001, 51, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Dominiczak, A.F.; Negrin, D.C.; Clark, J.S.; Brosnan, M.J.; McBride, M.W.; Alexander, M.Y. Genes and Hypertension: From Gene Mapping in Experimental Models to Vascular Gene Transfer Strategies. Hypertension 2000, 35, 164–172. [Google Scholar] [CrossRef]
- Menni, C.; Mangino, M.; Zhang, F.; Clement, G.; Snieder, H.; Padmanabhan, S.; Spector, T.D. Heritability Analyses Show Visit-to-Visit Blood Pressure Variability Reflects Different Pathological Phenotypes in Younger and Older Adults: Evidence from UK Twins. J. Hypertens. 2013, 31, 2356–2361. [Google Scholar] [CrossRef] [PubMed]
rsID | Nucleotide Substitution | Position of the Substitution | Type of Mutation | Amino Acid Substitution |
---|---|---|---|---|
rs1128503 | C1236T | 13 exon | Synonymous | - |
rs2032582 | G2677T | 22 exon | Nonsynonymous | Ala893Ser |
rs2032582 | G2677A | 22 exon | Nonsynonymous | Ala893Thr |
rs1045642 | C3435T | 27 exon | Synonymous | - |
Allele Name | rsID | Nucleotide Substitution | Position of the Substitution | Type of Mutation | Amino Acid Substitution |
---|---|---|---|---|---|
CYP2C9*2 | rs1799853 | C430T | 3 exon | Nonsynonymous | Arg144Cys |
CYP2C9*3 | rs1057910 | A1075C | 7 exon | Nonsynonymous | Ile359Leu |
Pharmacokinetic Parameter | Description |
---|---|
AUC0–∞ | The area under the concentration–time curve from zero to infinity (nmol·h/L) |
AUCx–y | AUC from x to y h (nmol·h/L) |
Cmax | The maximum plasma concentration (nM) |
t1/2 | The terminal elimination half-life (h) |
tmax | The time at which Cmax occurred (h) |
CL/F | The apparent oral clearance of losartan (L/h) |
Coefficient | Value |
---|---|
Emax (unitless) | 0.955 |
ED50 (nmol·h/L) | 5304.326 |
α (unitless) | 6.785 |
GG/CC vs. CYP2C9*1/CYP2C9*1 | GT/CT vs. CYP2C9*1/CYP2C9*1 | TT/TT vs. CYP2C9*1/CYP2C9*1 |
---|---|---|
322.501 | 278.345 | 1510.341 |
Genotype | Pharmacokinetic Parameter | Clinical Data: Mean ± SD (95% Confidence Interval) # | Model Prediction |
---|---|---|---|
CYP2C9*1/CYP2C9*1 | Cmax, losartan (nM) | 555.923 ± 232.679 (408.134, 703.712) | 435.059 |
t1/2, losartan (h) | 1.920 ± 0.760 (1.440, 2.400) | 1.057 ** | |
AUC0–∞, losartan (nmol·h/L) | 1305.746 ± 241.665 (1152.282, 1459.210) | 1352.644 | |
CL/F (L/h) | 94.000 ± 18.000 (82.000, 106.000) | 80.182 * | |
Cmax, E-3174 (nM) | 1200.046 ± 192.493 (1077.592, 1322.499) | 983.035 ** | |
t1/2, E-3174 (h) | 4.290 ± 0.400 (4.040, 4.540) | 3.360 ** | |
AUC0–∞, E-3174 (nmol·h/L) | 7946.670 ± 1067.063 (7268.711, 8624.628) | 7708.524 | |
CYP2C9*3/CYP2C9*3 | Cmax, losartan (nM) | 1040.908 | 646.686 |
t1/2, losartan (h) | 4.720 | 1.194 | |
AUC0–∞, losartan (nmol·h/L) | 3156.538 | 2444.236 | |
CL/F (L/h) | 37.000 | 44.373 | |
Cmax, E-3174 (nM) | 43.717 | 23.418 | |
t1/2, E-3174 (h) | 10.560 | 3.771 | |
AUC0–∞, E-3174 (nmol·h/L) | 917.601 | 196.994 |
Genotype | Pharmacokinetic Parameter | Clinical Data # | Model Prediction |
---|---|---|---|
GG/CC | Cmax, losartan (nM) | 574.1 ± 238.3 | 350.7 |
tmax, losartan (h) | 2.0 (0.5–4.0) | 1.6 | |
t1/2, losartan (h) | 2.4 ± 0.8 | 1.5 * | |
AUC0–∞, losartan (nmol·h/L) | 1649.3 ± 698.2 | 1349.1 | |
CL/F (L/h) | 83.0 ± 30.6 | 80.4 | |
Cmax, E-3174 (nM) | 1085.8 ± 312.7 | 885.1 | |
tmax, E-3174 (h) | 4.0 (3.0–6.0) | 4.2 | |
t1/2, E-3174 (h) | 4.7 ± 0.8 | 4.1 | |
AUC0–∞, E-3174 (nmol·h/L) | 7825.9 ± 1560.0 | 7732.6 | |
Cmax, losartan+E-3174 (nM) | 1288.6 ± 334.4 | 1063.2 | |
GT/CT | Cmax, losartan (nM) | 786.0 ± 270.0 | 435.1 * |
tmax, losartan (h) | 1.5 (0.5–3.0) | 1.5 | |
t1/2, losartan (h) | 1.9 ± 0.7 | 1.1 * | |
AUC0–∞, losartan (nmol·h/L) | 1755.0 ± 436.4 | 1352.6 | |
CL/F (L/h) | 71.4 ± 19.5 | 80.2 | |
Cmax, E-3174 (nM) | 1192.5 ± 474.0 | 983.0 | |
tmax, E-3174 (h) | 3.0 (2.0–6.0) | 3.8 | |
t1/2, E-3174 (h) | 4.6 ± 0.9 | 3.4 * | |
AUC0–∞, E-3174 (nmol·h/L) | 8276.3 ± 1383.3 | 7708.5 | |
Cmax, losartan+E-3174 (nM) | 1445.2 ± 482.7 | 1192.4 | |
TT/TT | Cmax, losartan (nM) | 1033.4 ± 475.5 | 965.4 |
tmax, losartan (h) | 1.0 (0.5–1.5) | 0.9 | |
t1/2, losartan (h) | 2.2 ± 0.4 | 0.6 * | |
AUC0–∞, losartan (nmol·h/L) | 1788.4 ± 506.6 | 1391.4 | |
CL/F (L/h) | 70.9 ± 18.7 | 78.0 | |
Cmax, E-3174 (nM) | 1484.6 ± 464.6 | 1207.0 | |
tmax, E-3174 (h) | 2.0 (1.5–4.0) | 2.3 | |
t1/2, E-3174 (h) | 4.6 ± 0.4 | 2.9 * | |
AUC0–∞, E-3174 (nmol·h/L) | 8614.5 ± 1577.2 | 7441.6 | |
Cmax, losartan+E-3174 (nM) | 1884.0 ± 484.8 | 1608.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaev, D.; Kutumova, E.; Kolpakov, F. Modeling the Influence of CYP2C9 and ABCB1 Gene Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Losartan. Pharmaceutics 2025, 17, 935. https://doi.org/10.3390/pharmaceutics17070935
Babaev D, Kutumova E, Kolpakov F. Modeling the Influence of CYP2C9 and ABCB1 Gene Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Losartan. Pharmaceutics. 2025; 17(7):935. https://doi.org/10.3390/pharmaceutics17070935
Chicago/Turabian StyleBabaev, Dmitry, Elena Kutumova, and Fedor Kolpakov. 2025. "Modeling the Influence of CYP2C9 and ABCB1 Gene Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Losartan" Pharmaceutics 17, no. 7: 935. https://doi.org/10.3390/pharmaceutics17070935
APA StyleBabaev, D., Kutumova, E., & Kolpakov, F. (2025). Modeling the Influence of CYP2C9 and ABCB1 Gene Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Losartan. Pharmaceutics, 17(7), 935. https://doi.org/10.3390/pharmaceutics17070935