Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example
Abstract
1. Introduction
Fundamentals of Laser Microinterferometry
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. X-Ray Diffraction
2.2.2. Differential Scanning Calorimetry and Thermogravimetric Analysis
2.2.3. Laser Microinterferometry
2.2.4. Refractometry
2.2.5. HSPiP Software-Based Solubility Prediction
3. Results and Discussion
3.1. Characteristics of the Structure and Thermal Transitions of Darunavir
3.2. Dissolution of Darunavir in Solvents
3.2.1. Practically Insoluble
3.2.2. Partial Soluble
3.2.3. Very Soluble
Evaluation of Dissolution Kinetics
3.3. Comparison of Solubility Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredient |
DSC | Differential scanning calorimetry |
DTT | Dissolution titration template |
FDM | Facilitated dissolution method |
HPLC | High-performance liquid chromatography |
HSP | Hansen solubility parameters |
HSPiP | Hansen solubility parameters in practice |
LCST | Lower critical solution temperature |
PEG 400 | Polyethylene glycol 400 |
PEG 4000 | Polyethylene glycol 4000 |
PEG-40 HCO | Polyethylene glycol 40 hydrogenated castor oil |
PG | Propylene glycol |
PPG 425 | Polypropylene glycol 425 |
QCM | Quartz Crystal Microbalance |
SPA | Single-particle analysis |
SSF | Saturation shake-flask |
TGA | Thermogravimetric analysis |
UCST | Upper critical solution temperature |
UV | Ultraviolet |
μDISS | Microdissolution |
References
- Könczöl, Á.; Dargó, G. Brief overview of solubility methods: Recent trends in equilibrium solubility measurement and predictive models. Drug Discov. Today Technol. 2018, 27, 3–10. [Google Scholar] [CrossRef]
- Pan, L.; Ho, Q.; Tsutsui, K.; Takahashi, L. Comparison of chromatographic and spectroscopic methods used to rank compounds for aqueous solubility. J. Pharm. Sci. 2001, 90, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Alsenz, J.; Kansy, M. High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev. 2007, 59, 546–567. [Google Scholar] [CrossRef]
- Yamashita, T.; Dohta, Y.; Nakamura, T.; Fukami, T. High-speed solubility screening assay using ultra-performance liquid chromatography/mass spectrometry in drug discovery. J. Chromatogr. A 2009, 1182, 72–76. [Google Scholar] [CrossRef]
- Guha, R.; Dexheimer, T.S.; Kestranek, A.N.; Jadhav, A.; Chervenak, A.M.; Ford, M.G.; Simeonov, A.; Roth, G.P.; Thomas, C.J. Exploratory analysis of kinetic solubility measurements of a small molecule library. Bioorg. Med. Chem. 2011, 19, 4127–4134. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeia, 35th ed.; United States Pharmacopeial Convention: Rockville, MD, USA, 2012.
- European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013.
- State Pharmacopoeia of the Russian Federation, 14th ed.; Ministry of Health of the Russian Federation: Moscow, Russia, 2018.
- Bartolomei, M.; Bertocchi, P.; Antoniella, E.; Rodomonte, A. Physico-chemical characterisation and intrinsic dissolution studies of a new hydrate form of diclofenac sodium: Comparison with anhydrous form. J. Pharm. Biomed. Anal. 2006, 40, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.G.; Ferraz, H.G. Intrinsic dissolution as a tool for evaluating drug solubility in accordance with the biopharmaceutics classification system. Dissolution Technol. 2011, 18, 6–13. [Google Scholar] [CrossRef]
- Yu, L.X.; Carlin, A.S.; Amidon, G.L.; Hussain, A.S. Hussain. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. Int. J. Pharm. 2004, 270, 221–227. [Google Scholar] [CrossRef]
- Bevan, C.D.; Lloyd, R.S. A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. 2000, 72, 1781–1787. [Google Scholar] [CrossRef]
- Fligge, T.A.; Schuler, A. Integration of a rapid automated solubility classification into early validation of hits obtained by high throughput screening. J. Pharm. Biomed. Anal. 2006, 42, 449–454. [Google Scholar] [CrossRef]
- Kramer, C.; Heinisch, T.; Fligge, T.; Beck, B.; Clark, T. A consistent dataset of kinetic solubilities for early-phase drug discovery. ChemMedChem Chem. Enabling Drug Discov. 2009, 4, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Baybekov, S.; Llompart, P.; Marcou, G.; Gizzi, P.; Galzi, J.; Ramos, P.; Saurel, O.; Bourban, C.; Minoletti, C.; Varnek, A. Kinetic solubility: Experimental and machine-learning modeling perspectives. Mol. Inform. 2024, 43, e202300216. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A.; Fuguet, E.; Llinàs, A.; Ràfols, C.; Bosch, E.; Völgyi, G.; Verbić, T.; Boldyreva, E.; Takács-Novák, K. Equilibrium solubility measurement of ionizable drugs–consensus recommendations for improving data quality. ADMET DMPK 2016, 4, 117–178. [Google Scholar] [CrossRef]
- Baka, E.; Comer, J.E.; Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Bozkir, A.; Denli, Z.F.; Basaran, B. Effect of hydroxypropyl-beta-cyclodextrin on the solubility, stability and in-vitro release of ciprofloxacin for ocular drug delivery. Acta Pol. Pharm. 2012, 69, 719–724. [Google Scholar]
- Itoh, K.; Tozuka, Y.; Oguchi, T.; Yamamoto, K. Improvement of physicochemical properties of N-4472 part I formulation design by using self-microemulsifying system. Int. J. Pharm. 2002, 238, 153–160. [Google Scholar] [CrossRef]
- Völgyi, G.; Baka, E.; Box, K.J.; Comer, J.E.; Takács-Novák, K. Study of pH-dependent solubility of organic bases. Revisit of Henderson-Hasselbalch relationship. Anal. Chim. Acta 2010, 673, 40–46. [Google Scholar] [CrossRef]
- Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci. 2009, 330, 443–448. [Google Scholar] [CrossRef]
- Glomme, A.; März, J.; Dressman, J. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. 2005, 94, 1–16. [Google Scholar] [CrossRef]
- Nakashima, S.; Yamamoto, K.; Arai, Y.; Ikeda, Y. Impact of physicochemical profiling for rational approach on drug discovery. Chem. Pharm. Bull. 2013, 61, 1228–1238. [Google Scholar] [CrossRef]
- Wenlock, M.C.; Austin, R.P.; Potter, T.; Barton, P. A highly automated assay for determining the aqueous equilibrium solubility of drug discovery compounds. JALA J. Assoc. Lab. Autom. 2011, 16, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Alelyunas, Y.W.; Liu, R.; Pelosi-Kilby, L.; Shen, C. Application of a Dried-DMSO rapid throughput 24-h equilibrium solubility in advancing discovery candidates. Eur. J. Pharm. Sci. 2009, 37, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Alsenz, J.; Meister, E.; Haenel, E. Development of a partially automated solubility screening (PASS) assay for early drug development. J. Pharm. Sci. 2007, 96, 1748–1762. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Venkatesh, S. Miniature device for aqueous and non-aqueous solubility measurements during drug discovery. Pharm. Res. 2014, 21, 1758–1761. [Google Scholar] [CrossRef]
- Andersson, S.B.E.; Alvebratt, C.; Bevernage, J.; Bonneau, D.; da Costa Mathews, C.; Dattani, R.; Edueng, K.; He, Y.; Holm, R.; Madsen, C.; et al. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs. J. Pharm. Sci. 2016, 105, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Shih, F.-M.L.; Kimura, T.; Rytting, J. Solubility determination of barely aqueous-soluble organic solids. J. Pharm. Sci. 1979, 68, 1267–1272. [Google Scholar] [CrossRef]
- Takács-Novák, K.; Urac, M.; Horváth, P.; Völgyi, G.; Anderson, B.D.; Avdeef, A. Equilibrium solubility measurement of compounds with low dissolution rate by Higuchi’s Facilitated Dissolution Method. A validation study. Eur. J. Pharm. Sci. 2017, 106, 133–141. [Google Scholar] [CrossRef]
- Avdeef, A. Solubility of sparingly-soluble ionizable drugs. Adv. Drug Deliv. Rev. 2007, 59, 568–590. [Google Scholar] [CrossRef]
- Avdeef, A.; Berger, C.M. pH-metric solubility.: 3. Dissolution titration template method for solubility determination. Eur. J. Pharm. Sci. 2001, 14, 281–291. [Google Scholar] [CrossRef]
- Liu, L.-S.; Kim, J.-M.; Kim, W.-S. Simple and reliable quartz crystal microbalance technique for determination of solubility by cooling and heating solution. Anal. Chem. 2015, 87, 3329–3335. [Google Scholar] [CrossRef]
- Svanbäck, S.; Ehlers, H.; Antikainen, O.; Yliruusi, J. On-Chip optofluidic single-particle method for rapid microscale equilibrium solubility screening of biologically active substances. Anal. Chem. 2015, 87, 5041–5045. [Google Scholar] [CrossRef] [PubMed]
- Hokkala, E.; Strachan, C.J.; Agopov, M.; Järvinen, E.; Semjonov, K.; Heinämäki, J.; Yliruusi, J.; Svanbäck, S. Thermodynamic solubility measurement without chemical analysis. Int. J. Pharm. 2024, 653, 123890. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Chalykh, A.E. Diffusion and Viscosity of Polymers, Measurement Techniques; Khimia: Moscow, Russia, 1979. [Google Scholar]
- Chalykh, A.E.; Gerasimov, V.K.; Mikhailov, Y.M. Phase State Diagrams of Polymer Systems; Yanus-K: Moscow, Russia, 1998. [Google Scholar]
- Bairamov, D.F.; Chalykh, A.E.; Feldstein, M.M.; Siegel, R.A.; Platé, N.A. Dissolution and mutual diffusion of poly (N-vinyl pyrrolidone) in short-chain poly (ethylene glycol) as observed by optical wedge microinterferometry. J. Appl. Polym. Sci. 2002, 85, 1128–1136. [Google Scholar] [CrossRef]
- Bairamov, D.F.; Chalykh, A.E.; Feldstein, M.M.; Siegel, R.A. Impact of Molecular Weight on Miscibility and Interdiffusion between Poly(N-vinyl pyrrolidone) and Poly(ethylene glycol). Macromol. Chem. Phys. 2002, 203, 2674–2685. [Google Scholar] [CrossRef]
- Makarova, V.; Kulichikhin, V. Application of interferometry to analysis of polymer-polymer and polymer-solvent interactions. In Interferometry: Research and Applications in Science and Technology; Padron, I., Ed.; IntechOpen: London, UK, 2012; pp. 395–436. [Google Scholar]
- Makarova, V.V.; Gerasimov, V.K.; Tereshin, A.K.; Chalykh, A.E.; Kulichikhin, V.G. Diffusion and phase behavior of a hydroxypropylcellulose-poly(ethylene glycol) system. Polym. Sci. Ser. A 2007, 49, 433–441. [Google Scholar] [CrossRef]
- Kulichikhin, V.G.; Makarova, V.V.; Tolstykh, M.Y.; Vasil’ev, G.B. Phase equilibria in solutions of cellulose derivatives and the rheological properties of solutions in various phase states. Polym. Sci. Ser. A 2010, 52, 1196–1208. [Google Scholar] [CrossRef]
- Makarova, V.V.; Antonov, S.V.; Anokhina, T.A.; Volkov, V.V. Optical microinterferometry method for evaluation of phase state and diffusion in ternary systems: Phase separation in cellulose/N-Methylmorpholine-N-oxide/non-solvent mixtures. J. Phys. Conf. Ser. 2016, 751, 012045. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Makarova, V.V.; Anokhina, T.S.; Ignatenko, V.Y.; Brantseva, T.V.; Volkov, A.V.; Antonov, S.V. Diffusion and phase separation at the morphology formation of cellulose membranes by regeneration from N-methylmorpholine N-oxide solutions. Cellulose 2018, 25, 2515–2530. [Google Scholar] [CrossRef]
- Nikulova, U.V.; Chalykh, A.E. Phase Equilibrium and Interdiffusion in Blends of Polystyrene with Polyacrylates. Polymers 2021, 13, 2283. [Google Scholar] [CrossRef]
- Chalykh, A.E.; Nikulova, U.V.; Gerasimov, V.K. Simulation of binodal and spinodal curves of phase state diagrams for binary polymer systems. Polymers 2022, 14, 2524. [Google Scholar] [CrossRef]
- Sazaki, G.; Kurihara, K.; Nakada, T.; Miyashita, S.; Komatsu, H. A novel approach to the solubility measurement of protein crystals by two-beam interferometry. J. Cryst. Growth 1996, 169, 355–360. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sawada, T.; Miyashita, S.; Komatsu, H. In Situ measurements of the solubility of crystals under high pressure by an interferometric method. Rev. Sci. Instrum. 1998, 69, 2720–2724. [Google Scholar] [CrossRef]
- Sazaki, G.; Nagatoshi, Y.; Suzuki, Y.; Durbin, S.D.; Miyashita, S.; Nakada, T.; Komatsu, H. Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. J. Cryst. Growth 1999, 196, 204–209. [Google Scholar] [CrossRef]
- Nakazato, K.; Homma, T.; Tomo, T. Rapid solubility measurement of protein crystals as a function of precipitant concentration with micro-dialysis cell and two-beam interferometer. J. Synchrotron Radiat. 2004, 11, 34–37. [Google Scholar] [CrossRef]
- Agniswamy, J.; Kneller, D.W.; Ghosh, A.K.; Weber, I.T. Novel HIV PR inhibitors with C4-substituted bis-THF and bis-fluoro-benzyl target the two active site mutations of highly drug resistant mutant PRS17. Biochem. Biophys. Res. Commun. 2021, 566, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.C.R.; Darcy, D.M.; dos Reis Serra, C.H.; Salgado, H.R.N. Nunes Salgado, Darunavir: A critical review of its properties, use and drug interactions. Pharmacology 2012, 90, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Van Gyseghem, E.; Stokbroekx, S.; de Armas, H.N.; Dickens, J.; Vanstockem, M.; Baert, L.; Rosier, J.; Schueller, L.; Mooter, G.V.D. Solid state characterization of the anti-HIV drug TMC114: Interconversion of amorphous TMC114, TMC114 ethanolate and hydrate. Eur. J. Pharm. Sci. 2009, 38, 489–497. [Google Scholar] [CrossRef]
- Baroody, E.M. Calculation of diffusion coefficients by the Matano-Boltzmann method. JOM 1957, 9, 819–822. [Google Scholar] [CrossRef]
- Chalykh, A.E. Diffusion in Polymer Systems; Chemistry Publishing House: Moscow, Russia, 1987. [Google Scholar]
- Abbott, S.H.; Charles, M.; Yamamoto, H. Hansen Solubility Parameters in Practice: Complete with Software, Data and Examples. Hansen-Solubility.com. 2008. Available online: https://pirika.com/ENG/HSP/E-Book/index.html (accessed on 26 September 2024).
- Abbott, S.; Hansen, C.M.; Yamamoto, H. HSPiP, Hansen Solubility Parameters in Practice, Version 5.4.08. Available online: https://www.hansen-solubility.com (accessed on 30 May 2025).
- Marom, E. An Amorphous Form of Darunavir. European Patent EP2898776A1, 29 July 2015. [Google Scholar]
- Zolotov, S.A.; Dain, I.A.; Demina, N.B.; Zolotova, A.S.; Ponomarev, E.S. The effect of solvents and drying temperature on the physicochemical properties of darunavir and darunavir ethanolate substances. Drug Dev. Regist. 2021, 10, 67–73. [Google Scholar] [CrossRef]
- Yu, K.; Shen, J.; Liu, J.; Tang, G.; Hu, X. Stability and mechanical properties of Darunavir isostructural solvates: An experimental and computational study. Cryst. Growth Des. 2023, 23, 2905–2915. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 87th ed.; Taylor and Francis: Oxfordshire, UK, 2007. [Google Scholar]
- Sheskey, P.J.; Cook, W.G.; Cable, C.G. (Eds.) Handbook of Pharmaceutical Excipients, 8th ed.; Pharmaceutical Press: London, UK, 2017. [Google Scholar]
- Covestro. Solution Center. 2024. Arcol® PPG-425. Available online: https://solutions.covestro.com/en/products/arcol/arcol-ppg-425_000000000005494273 (accessed on 30 May 2025).
- Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm. 2011, 407, 63–71. [Google Scholar] [CrossRef] [PubMed]
Substance | n |
---|---|
Darunavir | 1.594 (extrapolation) |
Olive oil | 1.4685 |
Vaseline oil | 1.471 |
Distilled water | 1.3341 |
Glycerol | 1.4739 |
Methanol | 1.3285 |
Ethanol | 1.3631 |
Isopropanol | 1.3773 |
PG | 1.4305 |
PPG 425 | 1.4455 |
PEG-40 hydrogenated castor oil | 1.4695 |
PEG 400 | 1.465 |
Solvent Class | T, °C | Solvent | D, m2/s | η, mPa·s |
---|---|---|---|---|
Alcohols | 25 | Methanol | 2.6 × 10−11 | 0.544 [61] |
Ethanol | 6.4 × 10−12 | 1.074 [61] | ||
Isopropanol | 8.9 × 10−13 | 2.038 [61] | ||
Glycols | 25 | PG | 1.2 × 10−13 | 40.4 [61] |
PEG 400 | 3.0 × 10−14 | 101 [62] | ||
PPG 425 | 2.2 × 10−14 | 80 [63] | ||
60 | PEG 4000 | 1.2 × 10−12 | N/A | |
Polyethylene glycol ester of hydrogenated castor oil | 25 | PEG-40 HCO | 8.2 × 10−14 | N/A |
Substance | Solubility Parameter, (MJ/m3)0.5 | |||
---|---|---|---|---|
δd | δp | δh | δ | |
Darunavir | 18.9 | 11.3 | 8.7 | 23.7 |
Olive oil | 16 | 2.9 | 6.1 | 17.4 |
Vaseline oil | 15.8 | 0.1 | 0.1 | 15.8 |
Water | 15.5 | 16 | 42.3 | 47.8 |
Glycerol | 17.4 | 11.3 | 27.2 | 34.2 |
Methanol | 14.7 | 12.3 | 22.3 | 29.9 |
Ethanol | 15.8 | 8.8 | 19.4 | 25.0 |
Isopropanol | 15.8 | 6.1 | 16.4 | 21.3 |
PG | 16.8 | 10.4 | 21.3 | 29.1 |
PPG | 17.2 | 2.5 | 2.1 | 17.5 |
PEG | 17.9 | 3.4 | 2.6 | 18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarova, V.; Mandrik, M.; Antonov, S. Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example. Pharmaceutics 2025, 17, 875. https://doi.org/10.3390/pharmaceutics17070875
Makarova V, Mandrik M, Antonov S. Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example. Pharmaceutics. 2025; 17(7):875. https://doi.org/10.3390/pharmaceutics17070875
Chicago/Turabian StyleMakarova, Veronika, Mark Mandrik, and Sergey Antonov. 2025. "Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example" Pharmaceutics 17, no. 7: 875. https://doi.org/10.3390/pharmaceutics17070875
APA StyleMakarova, V., Mandrik, M., & Antonov, S. (2025). Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example. Pharmaceutics, 17(7), 875. https://doi.org/10.3390/pharmaceutics17070875