Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Materials
2.2. Synthesis of Magnetic Nanoparticles Using the Hydrothermal Method
2.3. Structural Characterization of the Samples
2.4. Morphological Characterization of the Samples
2.5. Analysis of the Magnetic Behaviour and Thermal Efficiency of the Samples
2.6. Cytotoxicity Analysis of the Samples
3. Results and Discussion
3.1. Structural Characterization
X-Ray Diffraction Results
3.2. Morphological Characterization
3.3. Magnetic Characterization
3.4. Cytotoxicity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO 80004-1:2023; International Organization for Standardization Nanotechnologies—Vocabulary—Part 1: Core Vocabulary. ISO: Geneva, Switzerland, 2023.
- Kolhatkar, A.G.; Jamison, A.C.; Litvinov, D.; Willson, R.C.; Lee, T.R. Tuning the Magnetic Properties of Nanoparticles. Int. J. Mol. Sci. 2013, 14, 15977–16009. [Google Scholar] [CrossRef] [PubMed]
- Nwabunwanne, C.; Aisida, S.O.; Javed, R.; Akpomie, K.G.; Awada, C.; Alshoaibi, A.; Ezema, F. Magnetic Nanoparticles: Biosynthesis, Characterization, Surface Functionalization and Biomedical Applications. J. Indian Chem. Soc. 2025, 102, 101617. [Google Scholar] [CrossRef]
- Amorim, C.O. A Compendium of Magnetic Nanoparticle Essentials: A Comprehensive Guide for Beginners and Experts. Pharmaceutics 2025, 17, 137. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y.K. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- Balanov, V.A.; Kiseleva, A.P.; Krivoshapkina, E.F.; Kashtanov, E.; Gimaev, R.R.; Zverev, V.I.; Krivoshapkin, P.V. Synthesis of (Mn1−xZnx)Fe2O4 Nanoparticles for Magnetocaloric Applications. J. Sol-Gel Sci. Technol. 2020, 95, 795–800. [Google Scholar] [CrossRef]
- Torres-Gómez, N.; Nava, O.; Argueta-Figueroa, L.; García-Contreras, R.; Baeza-Barrera, A.; Vilchis-Nestor, A.R. Shape Tuning of Magnetite Nanoparticles Obtained by Hydrothermal Synthesis: Effect of Temperature. J. Nanomater. 2019, 2019, 7921273. [Google Scholar] [CrossRef]
- Daou, T.J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J.M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399–4404. [Google Scholar] [CrossRef]
- Cursaru, L.M.; Piticescu, R.M.; Dragut, D.V.; Morel, R.; Thébault, C.; Carrière, M.; Joisten, H.; Dieny, B. One-step Soft Chemical Synthesis of Magnetite Nanoparticles under Inert Gas Atmosphere. Magnetic Properties and in Vitro Study. Nanomaterials 2020, 10, 1500. [Google Scholar] [CrossRef]
- Cursaru, L.M.; Piticescu, R.M.; Dragut, D.V.; Tudor, I.A.; Kuncser, V.; Iacob, N.; Stoiciu, F. The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials. Nanomaterials 2020, 10, 85. [Google Scholar] [CrossRef]
- Silva, J.M.M.; Feuser, P.E.; Cercená, R.; Peterson, M.; Dal-Bó, A.G. Obtention of Magnetite Nanoparticles via the Hydrothermal Method and Effect of Synthesis Parameters. J. Magn. Magn. Mater. 2023, 580, 170925. [Google Scholar] [CrossRef]
- Marcelo, G.A.; Lodeiro, C.; Capelo, J.L.; Lorenzo, J.; Oliveira, E. Magnetic, Fluorescent and Hybrid Nanoparticles: From Synthesis to Application in Biosystems. Mater. Sci. Eng. C 2020, 106, 110104. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, R.K.; Medal, R.; Shorey, W.D.; Hanselman, R.C.; Parrot, J.C.; Taylor, C.B. Selective Inductive Heating of Lymph Nodes. Ann. Surg. 1957, 146, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Costa, B.; Carvalho, J.P.F.; Soares, P.I.P.; Vieira, T.; Henriques, C.; Valente, M.A.; Teixeira, S.S. Cobalt Ferrite Synthesized Using a Biogenic Sol–Gel Method for Biomedical Applications. Molecules 2023, 28, 7737. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Carvalho, J.; Gavinho, S.; Vieira, T.; Silva, J.C.; Soares, P.I.P.; Valente, M.A.; Soreto, S.; Graça, M. Preparation and Characterization of Zinc Ferrite and Gadolinium Iron Garnet Composite for Biomagnetic Applications. Materials 2024, 17, 2949. [Google Scholar] [CrossRef]
- Gordon, R.T.; Hines, J.R.; Gordon, D.; Estes, W. Intracellular Hyperthermia—A Biophysical Approach to Cancer Treatment via Intracellular Temperature and Biophysical Alterations. Med. Hypotheses 1979, 5, 83–102. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef]
- Nandhini, G.; Shobana, M.K. Role of Ferrite Nanoparticles in Hyperthermia Applications. J. Magn. Magn. Mater. 2022, 552, 169236. [Google Scholar] [CrossRef]
- Włodarczyk, A.; Gorgoń, S.; Radoń, A.; Bajdak-Rusinek, K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials 2022, 12, 1807. [Google Scholar] [CrossRef]
- Rafie, S.F.; Sayahi, H.; Abdollahi, H.; Abu-Zahra, N. Hydrothermal Synthesis of Fe3O4 Nanoparticles at Different PHs and Its Effect on Discoloration of Methylene Blue: Evaluation of Alternatives by TOPSIS Method. Mater. Today Commun. 2023, 37, 107589. [Google Scholar] [CrossRef]
- Sadhukha, T.; Wiedmann, T.S.; Panyam, J. Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy. Biomaterials 2013, 34, 5163–5171. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.; Wu, Q.; Hu, P.; Shi, J. Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. J. Am. Chem. Soc. 2021, 143, 8116–8128. [Google Scholar] [CrossRef]
- Attaluri, A.; Kandala, S.K.; Wabler, M.; Zhou, H.; Cornejo, C.; Armour, M.; Hedayati, M.; Zhang, Y.; DeWeese, T.L.; Herman, C.; et al. Magnetic Nanoparticle Hyperthermia Enhances Radiation Therapy: A Study in Mouse Models of Human Prostate Cancer. Int. J. Hyperth. 2015, 31, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Basel, M.T.; Balivada, S.; Wang, H.; Shrestha, T.B.; Seo, G.M.; Pyle, M.; Abayaweera, G.; Dani, R.; Koper, O.B.; Tamura, M.; et al. Cell-Delivered Magnetic Nanoparticles Caused Hyperthermia-Mediated Increased Survival in a Murine Pancreatic Cancer Model. Int. J. Nanomed. 2012, 7, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Tao, J.; Wei, J.; Gao, H.; Lv, Y.; Luo, M.; Qi, K.; Qin, H.; Wang, T.; Yang, C.; et al. Biomembrane-Coated Multifunctional “Core-Shell” Nanoparticles for Magnetic Hyperthermia Induced Immunotherapy. Mater. Des. 2025, 253, 113937. [Google Scholar] [CrossRef]
- Manescu, V.; Antoniac, I.; Paltanea, G.; Nemoianu, I.V.; Mohan, A.G.; Antoniac, A.; Rau, J.V.; Laptoiu, S.A.; Mihai, P.; Gavrila, H.; et al. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int. J. Mol. Sci. 2024, 25, 10065. [Google Scholar] [CrossRef]
- De Albuquerque Rego, G.N.; Mamani, J.B.; Souza, T.K.F.; Nucci, M.P.; da Silva, H.R.; Gamarra, L.F. Therapeutic Evaluation of Magnetic Hyperthermia Using Fe3O4-Aminosilane-Coated Iron Oxide Nanoparticles in Glioblastoma Animal Model. Einstein 2019, 17, eAO4786. [Google Scholar] [CrossRef]
- Vilas-Boas, V.; Carvalho, F.; Espiña, B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of in Vitro and in Vivo Studies. Molecules 2020, 25, 2874. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, Y.; Wang, R.; Chen, H.; Cai, X.; Lu, G.; Chu, L.; Xu, C.; Zhang, N.; Wang, Z.; et al. A Smart, Phase Transitional and Injectable DOX/PLGA-Fe Implant for Magnetic-Hyperthermia-Induced Synergistic Tumor Eradication. Acta Biomater. 2016, 29, 298–306. [Google Scholar] [CrossRef]
- Fatmawati, T.; Shiddiq, M.; Armynah, B.; Tahir, D. Synthesis Methods of Fe3O4 Nanoparticles for Biomedical Applications. Chem. Eng. Technol. 2023, 46, 2356–2366. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Jagal, J.; Al-Omari, I.A.; Khurshid, H.; Haider, M.; Obaidat, I.M.; Issa, B. Investigating Antitumor Therapeutic Efficacy Using Magnetic Hyperthermia of Fe3O4 nanoparticles. J. Phys. Conf. Ser. 2024, 2751, 012002. [Google Scholar] [CrossRef]
- Gupta, S.; Hegde, B. Comparison of Co-Precipitation and Hydrothermal Methods in the Preparation of Fe3O4@SiO2-Pro-Cu Nanocatalyst. J. Synth. Chem. 2024, 3, 287–300. [Google Scholar] [CrossRef]
- Haw, C.Y.; Mohamed, F.; Chia, C.H.; Radiman, S.; Zakaria, S.; Huang, N.M.; Lim, H.N. Hydrothermal Synthesis of Magnetite Nanoparticles as MRI Contrast Agents. Ceram. Int. 2010, 36, 1417–1422. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Zhu, Y. Fabrication of Complex of Fe3O4 Nanorods by Magnetic-Field-Assisted Solvothermal Process. Mater. Chem. Phys. 2007, 106, 1–4. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Tavares-Da-silva, E.; Pereira, E.; Pires, A.S.; Neves, A.R.; Braz-Guilherme, C.; Marques, I.A.; Abrantes, A.M.; Gonçalves, A.C.; Caramelo, F.; Silva-Teixeira, R.; et al. Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line. Biology 2021, 10, 41. [Google Scholar] [CrossRef]
- Pereira, G.F.L.; Costa, F.N.; Souza, J.A.; Haddad, P.S.; Ferreira, F.F. Parametric Rietveld Refinement and Magnetic Characterization of Superparamagnetic Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2018, 456, 108–117. [Google Scholar] [CrossRef]
- Hassanzadeh-Tabrizi, S.A. Precise Calculation of Crystallite Size of Nanomaterials: A Review. J. Alloys Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Lu, J.; Tsai, C.J. Hydrothermal Phase Transformation of Hematite to Magnetite. Nanoscale Res. Lett. 2014, 9, 230. [Google Scholar] [CrossRef]
- Diamandescu, L.; Mihaila-Tarabas, D.; Teodorescu, V.; Popescu-Pogrion, N. Hydrothermal Synthesis and Structural Characterization of Some Substituted Magnetites. Mater. Lett. 1998, 37, 340348. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Andrade, R.G.D.; Gomes, V.; Amorim, C.O.; Amaral, V.S.; Salgueiriño, V.; Coutinho, P.J.G.; Ferreira, P.M.T.; Correa-Duarte, M.A.; Castanheira, E.M.S. Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia. Int. J. Mol. Sci. 2022, 23, 14145. [Google Scholar] [CrossRef]
- Yin, S.; Wirth, R.; He, H.; Ma, C.; Pan, J.; Xing, J.; Xu, J.; Fu, J.; Zhang, X.N. Replacement of Magnetite by Hematite in Hydrothermal Systems: A Refined Redox-Independent Model. Earth Planet. Sci. Lett. 2022, 577, 117282. [Google Scholar] [CrossRef]
- Davis, B.; Rapp, G.; Walawender, M. Fabric and Structural Characteristics of the Martitization Process. Am. J. Sci. 1968, 266, 482–496. [Google Scholar] [CrossRef]
- Fernandes Araujo, A.; Henrique Sousa, G.; de Araujo, G.V.; dos Santos, I.C.; Rabelo Fernandes, L. Síntese de Nanopartículas de Magnetita Por Coprecipitação. In Proceedings of the 74° Congresso Anual da ABM—Internacional, São Paulo, Brazil, 1–3 October 2019; p. 7. [Google Scholar]
- Noh, J.; Osman, O.I.; Aziz, S.G.; Winget, P.; Brédas, J.L. A Density Functional Theory Investigation of the Electronic Structure and Spin Moments of Magnetite. Sci. Technol. Adv. Mater. 2014, 15, 044202. [Google Scholar] [CrossRef] [PubMed]
- Tolod, K.R.; Hernández, S.; Quadrelli, E.A.; Russo, N. Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries. In Studies in Surface Science and Catalysis; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 178, pp. 65–84. [Google Scholar]
- Coduri, M.; Masala, P.; Del Bianco, L.; Spizzo, F.; Ceresoli, D.; Castellano, C.; Cappelli, S.; Oliva, C.; Checchia, S.; Allieta, M.; et al. Local Structure and Magnetism of Fe2O3 Maghemite Nanocrystals: The Role of Crystal Dimension. Nanomaterials 2020, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Helendra; Istiqamah, N.I.; Sabarman, H.; Suharyadi, E. Synthesis of Varied Oleic Acid-Coated Fe3O4 Nanoparticles Using the Co-Precipitation Technique for Biosensor Applications. Sens. Int. 2024, 6, 100295. [Google Scholar] [CrossRef]
- Lähde, A.; Raula, J.; Kauppinen, E.I. Combined Synthesis and in Situ Coating of Nanoparticles in the Gas Phase. J. Nanopart. Res. 2008, 10, 121–130. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.P. Magnetic Nanoparticles in Nanomedicine: A Review of Recent Advances. Nanotechnology 2019, 30, 47. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef]
- Ahmadi, S.; Chia, C.H.; Zakaria, S.; Saeedfar, K.; Asim, N. Synthesis of Fe3O4 Nanocrystals Using Hydrothermal Approach. J. Magn. Magn. Mater. 2012, 324, 4147–4150. [Google Scholar] [CrossRef]
- Linderoth, S.; Hendriksen, P.V.; Bødker, F.; Wells, S.; Davies, K.; Charles, S.W.; Mørup, S. On Spin-Canting in Maghemite Particles. J. Appl. Phys. 1994, 75, 6583–6585. [Google Scholar] [CrossRef]
- Roca, A.G.; Morales, M.P.; O’Grady, K.; Serna, C.J. Structural and Magnetic Properties of Uniform Magnetite Nanoparticles Prepared by High Temperature Decomposition of Organic Precursors. Nanotechnology 2006, 17, 2783–2788. [Google Scholar] [CrossRef]
- Nee Koo, K.; Fauzi Ismail, A.; Hafiz Dzarfan Othman, M.; Rahman, M.A.; Zhong Sheng, T. Preparation and Characterization of Superparamagnetic Magnetite (Fe3O4) Nanoparticles: A Short Review. Alaysian J. Fundam. Appl. Sci. 2019, 15, 23–31. [Google Scholar]
- Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelakeris, M.; Iglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estradé, S.; Peiró, F.; et al. Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. Sci. Rep. 2013, 3, 1652. [Google Scholar] [CrossRef]
- De La Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M.P.; Rivero, G.; Hernando, A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles. J. Phys. Chem. C 2012, 116, 25602–25610. [Google Scholar] [CrossRef]
- Ganguly, S.; Margel, S. 3D Printed Magnetic Polymer Composite Hydrogels for Hyperthermia and Magnetic Field Driven Structural Manipulation. Prog. Polym. Sci. 2022, 131, 101574. [Google Scholar] [CrossRef]
- Lemine, O.M.; Omri, K.; Iglesias, M.; Velasco, V.; Crespo, P.; De La Presa, P.; El Mir, L.; Bouzid, H.; Yousif, A.; Al-Hajry, A. γ-Fe2O3 by Sol-Gel with Large Nanoparticles Size for Magnetic Hyperthermia Application. J. Alloys Compd. 2014, 607, 125–131. [Google Scholar] [CrossRef]
- Lemine, O.M.; Algessair, S.; Madkhali, N.; Al-Najar, B.; El-Boubbou, K. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field. Nanomaterials 2023, 13, 453. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N. Biomaterials Gadolinium Loaded Nanoparticles in Theranostic Magnetic Resonance Imaging. Biomaterials 2012, 33, 5363–5375. [Google Scholar] [CrossRef]
- Lei, W.; Liu, Y.; Si, X.; Xu, J.; Du, W.; Yang, J.; Zhou, T.; Lin, J. Synthesis and Magnetic Properties of Octahedral Fe3O4 via a One-Pot Hydrothermal Route. Phys. Lett. A 2017, 381, 314–318. [Google Scholar] [CrossRef]
- de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; Pérez, R. Magnetic Structures Synthesized by Controlled Oxidative Etching: Structural Characterization and Magnetic Behavior. Results Phys. 2017, 7, 1828–1832. [Google Scholar] [CrossRef]
- Oskoui, P.R.; Rezvani, M. Structure and Magnetic Properties of SiO2−FeO−CaO−Na2O Bioactive Glass-Ceramic System for Magnetic Fluid Hyperthermia Application. Heliyon 2023, 9, e18519. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.D.; Lounsbury, A.W.; Fishman, Z.S.; Coonrod, C.L.; Gallagher, M.J.; Villagran, D.; Zimmerman, J.B.; Pfefferle, L.D.; Wong, M.S. Nano-Structural Effects on Hematite (α-Fe2O3) Nanoparticle Radiofrequency Heating. Nano Converg. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Ounacer, M.; Essoumhi, A.; Sajieddine, M.; Razouk, A.; Costa, B.F.O.; Dubiel, S.M.; Sahlaoui, M. Structural and Magnetic Studies of Annealed Iron Oxide Nanoparticles. J. Supercond. Nov. Magn. 2020, 33, 3249–3261. [Google Scholar] [CrossRef]
- Jacob, J.; Abdul Khadar, M. VSM and Mössbauer Study of Nanostructured Hematite. J. Magn. Magn. Mater. 2010, 322, 614–621. [Google Scholar] [CrossRef]
- Jesus, J.; Regadas, J.; Costa, B.; Carvalho, J.; Pádua, A.; Henriques, C.; Soares, P.I.P.; Gavinho, S.; Valente, M.A.; Graça, M.P.F.; et al. Green Sol–Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. Pharmaceutics 2024, 16, 1578. [Google Scholar] [CrossRef]
- Khurshid, H.; Alonso, J.; Nemati, Z.; Phan, M.H.; Mukherjee, P.; Fdez-Gubieda, M.L.; Barandiarán, J.M.; Srikanth, H. Anisotropy Effects in Magnetic Hyperthermia: A Comparison between Spherical and Cubic Exchange-Coupled FeO/Fe3O4 Nanoparticles. J. Appl. Phys. 2015, 117, 17A337. [Google Scholar] [CrossRef]
- Abbasi, A.Z.; Gutiérrez, L.; Del Mercato, L.L.; Herranz, F.; Chubykalo-Fesenko, O.; Veintemillas-Verdaguer, S.; Parak, W.J.; Morales, M.P.; González, J.M.; Hernando, A.; et al. Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. J. Phys. Chem. C 2011, 115, 6257–6264. [Google Scholar] [CrossRef]
- Kandasamy, G.; Maity, D. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for in Vitro and in Vivo Cancer Nanotheranostics. Int. J. Pharm. 2015, 496, 191–218. [Google Scholar] [CrossRef]
- Vajrabhaya, L.; Korsuwannawong, S. Cytotoxicity Evaluation of a Thai Herb Using Tetrazolium (MTT) and Sulforhodamine B (SRB) Assays. J. Anal. Sci. Technol. 2018, 9, 15. [Google Scholar] [CrossRef]
Sample | Crystalline Phase | Composition | Crystal System | GoF |
---|---|---|---|---|
pH 9.06 | Fe3O4 | 82% | Cubic | 1.99 |
α-Fe2O3 | 18% | Hexagonal | ||
pH 10.09 | Fe3O4 | 52.7% | Cubic | 2.05 |
α-Fe2O3 | 46.3% | Hexagonal | ||
NaCl | 1% | Cubic | ||
pH 11.07 | γ-Fe2O3 | 94.1% | Cubic | 2.19 |
α-Fe2O3 | 5.3% | Hexagonal | ||
Fe2O3 | 0.6% | Tetragonal | ||
pH 12.12 | Fe3O4 | 65.6% | Cubic | 2.21 |
α-Fe2O3 | 32.3% | Hexagonal | ||
NaCl | 2.1% | Cubic | ||
pH 12.75 | Fe3O4 | 100% | Cubic | 2.45 |
Sample | Ms (emu.g−1) | Mr (emu.g−1) | Hc (mT) | |||
---|---|---|---|---|---|---|
300 K | 10 K | 300 K | 10 K | 300 K | 10 K | |
pH 9.06 | 39.46 | 44.32 | 3.71 | 14.38 | 7 | 46 |
pH 10.09 | 50.24 | 68.86 | 3.20 | 19.69 | 6 | 39 |
pH 11.07 | 49.79 | 56.22 | 3.20 | 16.81 | 6 | 44 |
pH 12.12 | 69.03 | 76.91 | 12.07 | 12.65 | 15 | 47 |
pH 12.75 | 70.43 | 74.90 | 5.68 | 11.14 | 9 | 23 |
Sample | SAR (W/g) | ΔT (°C) |
---|---|---|
pH 9.06 | 78.4 ± 0.8 | 25.5 ± 0.7 |
pH 11.07 | 85.2 ± 10.4 | 29.9 ± 4.6 |
pH 12.12 | 69.3 ± 8.0 | 21.9 ± 4.3 |
pH 12.75 | 92.7 ± 3.2 | 36.1 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, B.; Pereira, E.; Ferreira-Filho, V.C.; Pires, A.S.; Pereira, L.C.J.; Soares, P.I.P.; Botelho, M.F.; Mendes, F.; Graça, M.P.F.; Teixeira, S.S. Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis. Pharmaceutics 2025, 17, 844. https://doi.org/10.3390/pharmaceutics17070844
Costa B, Pereira E, Ferreira-Filho VC, Pires AS, Pereira LCJ, Soares PIP, Botelho MF, Mendes F, Graça MPF, Teixeira SS. Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis. Pharmaceutics. 2025; 17(7):844. https://doi.org/10.3390/pharmaceutics17070844
Chicago/Turabian StyleCosta, Bárbara, Eurico Pereira, Vital C. Ferreira-Filho, Ana Salomé Pires, Laura C. J. Pereira, Paula I. P. Soares, Maria Filomena Botelho, Fernando Mendes, Manuel P. F. Graça, and Sílvia Soreto Teixeira. 2025. "Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis" Pharmaceutics 17, no. 7: 844. https://doi.org/10.3390/pharmaceutics17070844
APA StyleCosta, B., Pereira, E., Ferreira-Filho, V. C., Pires, A. S., Pereira, L. C. J., Soares, P. I. P., Botelho, M. F., Mendes, F., Graça, M. P. F., & Teixeira, S. S. (2025). Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis. Pharmaceutics, 17(7), 844. https://doi.org/10.3390/pharmaceutics17070844