Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Design
2.2.2. Preparation of Blank and Atorvastatin-Loaded Liquid Crystalline Lipid Nanoparticles
2.2.3. Preparation of Chitosan-Coated Atorvastatin-Loaded Cubosomes
2.3. Characterization of the Uncoated Atorvastatin-Loaded Cubosomes and the Chitosan-Coated Atorvastatin-Loaded Cubosomes
- i.
- Physicochemical properties
- ii.
- Drug content and entrapment efficiency
- iii.
- Fourier transform infrared spectroscopy compatibility study
2.4. In Vitro Release of Atorvastatin from the Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Lipid Nanoparticles
2.5. Analytical Method Validation
- σ = the standard deviation of the response
- S = the slope of the calibration curve
2.6. Cell Lines and Cell Culture Conditions
- i.
- Sulforhodamine B Assay
- ii.
- Trypan blue cell viability assay
2.7. Stability Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Box–Behnken Experimental Design Results
- i.
- Particle size:
- ii.
- Particle size distribution analysis
- iii.
- Zeta potential
3.2. Chitosan-Coated Atorvastatin-Loaded Cubosomal Formulation
3.3. Physicochemical Characterization of the Uncoated and Coated Atorvastatin-Loaded Cubosomes
3.4. In Vitro Release and Kinetic Studies of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Lipid Nanoparticles
3.5. Validation of the Quantification Method
3.6. Sulforhodamine B and Trypan Blue Cell Viability Assays
3.7. Stability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ATR | Atorvastatin |
| CRC | Colorectal cancer |
| PDI | Polydispersity index |
| P407 | Poloxamer 407 |
| PVA | Polyvinyl alcohol |
| GMO | glyceryl monooleate |
| FTIR | Fourier transform infrared spectroscopy |
| GIT | Gastrointestinal tract |
| SGF | Simulated gastric fluid |
| SIF | Simulated intestinal fluid |
| SCF | Simulated colonic fluid |
| IC50 | Half-maximal inhibitory concentration |
| NPs | Nanoparticles |
| ANOVA | Analysis of variance |
| VIF | Variance inflation factor |
| SPSS | Statistical package for the social sciences |
| EE | Entrapment efficiency |
| R2 | Coefficient of determination |
| SRB | Sulforhodamine B |
| PLGA | Poly (lactic-co-glycolic acid) |
| ELISA | Enzyme-linked immunosorbent assay |
References
- Mneimneh, A.T.; Darwiche, N.; Mehanna, M.M. Investigating the Therapeutic Promise of Drug-Repurposed-Loaded Nanocarriers: A Pioneering Strategy in Advancing Colorectal Cancer Treatment. Int. J. Pharm. 2024, 629, 124473. [Google Scholar] [CrossRef] [PubMed]
- Al-Koussa, H.; Al-Haddad, M.; Abi-Habib, R.; El-Sibai, M. Human Recombinant Arginase i [HuArgI (Co)-PEG5000]-Induced Arginine Depletion Inhibits Colorectal Cancer Cell Migration and Invasion. Int. J. Mol. Sci. 2019, 20, 6018. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA. Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.; Agraval, H.; Srivastav, A.K.; Yadav, U.C.S.; Kumar, U. Physico-Chemical Characterization of Carvacrol Loaded Zein Nanoparticles for Enhanced Anticancer Activity and Investigation of Molecular Interactions between Them by Molecular Docking. Int. J. Pharm. 2020, 588, 119795. [Google Scholar] [CrossRef]
- Nasrallah, A.; El-Sibai, M. Colorectal Cancer Causes and Treatments: A Minireview. Open Color. Cancer J. 2014, 7, 1–4. [Google Scholar] [CrossRef]
- American Cancer Society. Treating Colorectal Cancer; American Cancer Society: Atlanta, GA, USA, 2020. [Google Scholar]
- Al-Dimassi, S.; Abou-Antoun, T.; El-Sibai, M. Cancer Cell Resistance Mechanisms: A Mini Review. Clin. Transl. Oncol. 2014, 16, 511–516. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming Cancer Therapeutic Bottleneck by Drug Repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Henaine, A.M.; Chahine, G.; Massoud, M.; Salameh, P.; Awada, S.; Lahoud, N.; Elias, E.; Salem, M.; Ballout, S.; Hartmann, D.; et al. Management of Patients with Metastatic Colorectal Cancer in Lebanese Hospitals and Associated Direct Cost: A Multicentre Cohort Study. East. Mediterr. Health J. 2019, 25, 481–494. [Google Scholar] [CrossRef]
- To, K.K.W.; Cho, W.C.S. Drug Repurposing for Cancer Therapy in the Era of Precision Medicine. Curr. Mol. Pharmacol. 2022, 15, 895–903. [Google Scholar] [CrossRef]
- Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Rica Capistrano, I.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.T.; Meheus, L.; Sukhatme, V.P.; et al. Redo_DB: The Repurposing Drugs in Oncology Database. Ecancermedicalscience 2018, 12, 886. [Google Scholar] [CrossRef]
- Younes, M.; El Hage, M.; Shebaby, W.; Al Toufaily, S.; Ismail, J.; Naim, H.Y.; Mroueh, M.; Rizk, S. The Molecular Anti-Metastatic Potential of CBD and THC from Lebanese Cannabis via Apoptosis Induction and Alterations in Autophagy. Sci. Rep. 2024, 14, 25642. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, H.E.; Daher, C.F.; Bodman-Smith, K.; Taleb, R.I.; Shebaby, W.N.; Boulos, J.; Dagher, C.; Mroueh, M.A.; El-Sibai, M. Antitumor Activity of β-2-Himachalen-6-Ol in Colon Cancer Is Mediated through Its Inhibition of the PI3K and MAPK Pathways. Chem. Biol. Interact. 2017, 275, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; Kubik, M.; et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults. JAMA 2022, 328, 746–753. [Google Scholar] [CrossRef]
- Longo, J.; van Leeuwen, J.E.; Elbaz, M.; Branchard, E.; Penn, L.Z. Statins as Anticancer Agents in the Era of Precision Medicine. Clin. Cancer Res. 2020, 26, 5791–5800. [Google Scholar] [CrossRef]
- Radišauskas, R.; Kuzmickiene, I.; Milinavičiene, E.; Everatt, R. Hypertension, Serum Lipids and Cancer Risk: A Review of Epidemiological Evidence. Medicina 2016, 52, 89–98. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A Repurposed Drug to Fight Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug Repurposing for Cancer Therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Gogoi, P.; Kaur, G.; Singh, N.K. Nanotechnology for Colorectal Cancer Detection and Treatment. World J. Gastroenterol. 2022, 28, 6497–6511. [Google Scholar] [CrossRef]
- Ginghină, O.; Hudiță, A.; Zaharia, C.; Tsatsakis, A.; Mezhuev, Y.; Costache, M.; Gălățeanu, B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. Materials 2021, 14, 2440. [Google Scholar] [CrossRef]
- Cai, S.; Gao, Z. Atorvastatin Inhibits Proliferation and Promotes Apoptosis of Colon Cancer Cells via COX-2/PGE2/β-Catenin Pathway. J. Buon 2021, 26, 1219–1225. [Google Scholar]
- Zhou, M.; Zheng, J.; Bi, J.; Wu, X.; Lyu, J.; Gao, K. Synergistic Inhibition of Colon Cancer Cell Growth by a Combination of Atorvastatin and Phloretin. Oncol. Lett. 2018, 15, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M.A. Dissolution and Bioavailability Enhancement of Atorvastatin: Gelucire Semi-Solid Binary System. J. Drug Deliv. Sci. Technol. 2018, 43, 178–184. [Google Scholar] [CrossRef]
- El-Marakby, E.M.; Fayez, H.; Motaleb, M.A.; Mansour, M. Atorvastatin-Loaded Cubosome: A Repurposed Targeted Delivery Systems for Enhanced Targeting against Breast Cancer. Pharm. Dev. Technol. 2024, 29, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Abla, K.K.; Mehanna, M.M. Lipid-Based Nanocarriers Challenging the Ocular Biological Barriers: Current Paradigm and Future Perspectives. J. Control. Release 2023, 362, 70–96. [Google Scholar] [CrossRef]
- Kaushik, N.; Borkar, S.B.; Nandanwar, S.K.; Panda, P.K.; Choi, E.H.; Kaushik, N.K. Nanocarrier Cancer Therapeutics with Functional Stimuli-Responsive Mechanisms. J. Nanobiotechnol. 2022, 20, 152. [Google Scholar] [CrossRef]
- Mneimneh, A.T.; Hayar, B.; Al Hadeethi, S.; Darwiche, N.; Mehanna, M.M. Application of Box-Behnken Design in the Optimization and Development of Albendazole-Loaded Zein Nanoparticles as a Drug Repurposing Approach for Colorectal Cancer Management. Int. J. Biol. Macromol. 2024, 281, 136437. [Google Scholar] [CrossRef]
- Gowda, B.H.J.; Ahmed, M.G.; Alshehri, S.A.; Wahab, S.; Vora, L.K.; Singh Thakur, R.R.; Kesharwani, P. The Cubosome-Based Nanoplatforms in Cancer Therapy: Seeking New Paradigms for Cancer Theranostics. Environ. Res. 2023, 237, 116894. [Google Scholar] [CrossRef]
- Ramalheiro, A.; Paris, J.L.; Silva, B.F.B.; Pires, L.R. Rapidly Dissolving Microneedles for the Delivery of Cubosome-like Liquid Crystalline Nanoparticles with Sustained Release of Rapamycin. Int. J. Pharm. 2020, 591, 119942. [Google Scholar] [CrossRef]
- Frigaard, J.; Jensen, J.L.; Galtung, H.K.; Hiorth, M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front. Pharmacol. 2022, 13, 880377. [Google Scholar] [CrossRef]
- Medina-Moreno, A.; El-Hammadi, M.M.; Arias, J.L. PH-Dependent, Extended Release and Enhanced in Vitro Efficiency against Colon Cancer of Tegafur Formulated Using Chitosan-Coated Poly(ε-Caprolactone) Nanoparticles. J. Drug Deliv. Sci. Technol. 2023, 86, 104594. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Sarieddine, R.; Alwattar, J.K.; Chouaib, R.; Gali-Muhtasib, H. Anticancer Activity of Thymoquinone Cubic Phase Nanoparticles against Human Breast Cancer: Formulation, Cytotoxicity and Subcellular Localization. Int. J. Nanomed. 2020, 15, 9557–9570. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Younes, H.; Abdel-Rashid, R.S. Formulation and Evaluation of Cubosomes Containing Colchicine for Transdermal Delivery. Drug Deliv. Transl. Res. 2020, 10, 1302–1313. [Google Scholar] [CrossRef] [PubMed]
- Said, M.; Aboelwafa, A.A.; Elshafeey, A.H.; Elsayed, I. Central Composite Optimization of Ocular Mucoadhesive Cubosomes for Enhanced Bioavailability and Controlled Delivery of Voriconazole. J. Drug Deliv. Sci. Technol. 2021, 61, 102075. [Google Scholar] [CrossRef]
- Abla, K.K.; Domiati, S.; El Majzoub, R.; Mehanna, M.M. Propranolol-Loaded Limonene-Based Microemulsion Thermo-Responsive Mucoadhesive Nasal Nanogel: Design, In Vitro Assessment, Ex Vivo Permeation, and Brain Biodistribution. Gels 2023, 9, 491. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T.; Domiati, S.; Allam, A.N. Tadalafil-Loaded Limonene-Based Orodispersible Tablets: Formulation, in Vitro Characterization and in Vivo Appraisal of Gastroprotective Activity. Int. J. Nanomed. 2020, 15, 10099–10112. [Google Scholar] [CrossRef]
- Eldeeb, A.E.; Salah, S.; Ghorab, M. Formulation and Evaluation of Cubosomes Drug Delivery System for Treatment of Glaucoma: Ex-Vivo Permeation and in-Vivo Pharmacodynamic Study. J. Drug Deliv. Sci. Technol. 2019, 52, 236–247. [Google Scholar] [CrossRef]
- Shaker, M.A.; Elbadawy, H.M.; Al Thagfan, S.S.; Shaker, M.A. Enhancement of Atorvastatin Oral Bioavailability via Encapsulation in Polymeric Nanoparticles. Int. J. Pharm. 2021, 592, 120077. [Google Scholar] [CrossRef]
- Abla, K.K.; Hijazi, S.M.; Mehanna, M.M. Augmented Efficiency of Azithromycin for MRSA Ocular Infections Management: Limonene-Based Nanostructured Lipid Carriers in-Situ Approach. J. Drug Deliv. Sci. Technol. 2023, 87, 104764. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K.; Domiati, S.; Elmaradny, H. Superiority of Microemulsion-Based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-Nociceptive Efficacy Study. Int. J. Pharm. 2022, 622, 121830. [Google Scholar] [CrossRef]
- Rodde, M.S.; Divase, G.T.; Devkar, T.B.; Tekade, A.R. Solubility and Bioavailability Enhancement of Poorly Aqueous Soluble Atorvastatin: In Vitro, Ex Vivo, and in Vivo Studies. Biomed Res. Int. 2014, 2014, 463895. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, S.W.; Lee, J.H.; Park, S.M.; Cho, S.J.; Maeng, H.J.; Cho, K.H. Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 Mg with Enhanced Solubility, Dissolution, and Physical Stability. Gels 2024, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jin, J.; Duan, H.; Liu, C.; Chen, L.; Huang, W.; Gao, Z.; Jin, M. Targeted Therapeutic Effects of Oral Inulin-Modified Double-Layered Nanoparticles Containing Chemotherapeutics on Orthotopic Colon Cancer. Biomaterials 2022, 283, 121440. [Google Scholar] [CrossRef]
- Elder, D. Validation of Analytical Procedures—ICH Q2(R2). Eur. Pharm. Rev. 2023, 29, 1–36. [Google Scholar]
- Marques, M.S.; Morisso, F.D.P.; Poletto, F.; Guerreiro, I.C.K. Development of Derivative Spectrophotometric Method for Simultaneous Determination of Pyrazinamide and Rifampicin in Cubosome Formulation. Drug Anal. Res. 2021, 5, 46–50. [Google Scholar] [CrossRef]
- Abdel-Samad, R.; Aouad, P.; Gali-Muhtasib, H.; Sweidan, Z.; Hmadi, R. Mechanism of Action of the Atypical Retinoid ST1926 in Colorectal Cancer: DNA Damage and DNA Polymerase α. Am. J. Cancer Res. 2018, 8, 39–55. [Google Scholar]
- Javed, B.; Mashwani, Z.U.R. Synergistic Effects of Physicochemical Parameters on Bio-Fabrication of Mint Silver Nanoparticles: Structural Evaluation and Action against HCT116 Colon Cancer Cells. Int. J. Nanomed. 2020, 15, 3621–3637. [Google Scholar] [CrossRef]
- Al Hadeethi, S.; El-Baba, C.; Araji, K.; Hayar, B.; El-Khoury, R.; Usta, J.; Darwiche, N. Mannose Inhibits the Pentose Phosphate Pathway in Colorectal Cancer and Enhances Sensitivity to 5-Fluorouracil Therapy. Cancers 2023, 15, 2268. [Google Scholar] [CrossRef]
- Solanki, R.; Patel, K.; Patel, S. Bovine Serum Albumin Nanoparticles for the Efficient Delivery of Berberine: Preparation, Characterization and In Vitro Biological Studies. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125501. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T.; Abed El Jalil, K. Levofloxacin-Loaded Naturally Occurring Monoterpene-Based Nanoemulgel: A Feasible Efficient System to Circumvent MRSA Ocular Infections. Drug Dev. Ind. Pharm. 2020, 46, 1787–1799. [Google Scholar] [CrossRef]
- Zhao, P.; Hou, X.; Yan, J.; Du, S.; Xue, Y.; Li, W.; Xiang, G.; Dong, Y. Long-Term Storage of Lipid-like Nanoparticles for MRNA Delivery. Bioact. Mater. 2020, 5, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Kafetzis, K.N.; Papalamprou, N.; McNulty, E.; Thong, K.X.; Sato, Y.; Mironov, A.; Purohit, A.; Welsby, P.J.; Harashima, H.; Yu-Wai-Man, C.; et al. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for MRNA and DNA Delivery. Adv. Healthc. Mater. 2023, 12, 2203022. [Google Scholar] [CrossRef] [PubMed]
- Zaki, R.M.; Alkharashi, L.A.; Sarhan, O.M.; Almurshedi, A.S.; Aldosari, B.N.; Said, M. Box Behnken Optimization of Cubosomes for Enhancing the Anticancer Activity of Metformin: Design, Characterization, and in-Vitro Cell Proliferation Assay on MDA-MB-231 Breast and LOVO Colon Cancer Cell Lines. Int. J. Pharm. X 2023, 6, 100208. [Google Scholar] [CrossRef] [PubMed]
- Abla, K.K.; Mneimneh, A.T.; Allam, A.N.; Mehanna, M.M. Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film. Pharmaceutics 2023, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, J.; Zheng, Y.; Gong, Y.; Fu, M.; Liu, C.; Xu, L.; Sun, C.C.; Gao, Y.; Qian, S. Cubosomes with Surface Cross-Linked Chitosan Exhibit Sustained Release and Bioavailability Enhancement for Vinpocetine. RSC Adv. 2019, 9, 6287–6298. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Hosny, K.M.; Rizg, W.Y.; Eshmawi, B.A.; Badr, M.Y.; Safhi, A.Y.; Murshid, S.S.A. Development and Optimization of Hyaluronic Acid-Poloxamer In-Situ Gel Loaded with Voriconazole Cubosomes for Enhancement of Activity against Ocular Fungal Infection. Gels 2022, 8, 241. [Google Scholar] [CrossRef]
- Badie, H.; Abbas, H. Novel Small Self-Assembled Resveratrol-Bearing Cubosomes and Hexosomes: Preparation, Charachterization, and Ex Vivo Permeation. Drug Dev. Ind. Pharm. 2018, 44, 2013–2025. [Google Scholar] [CrossRef]
- El-Enin, H.A.; AL-Shanbari, A.H. Nanostructured Liquid Crystalline Formulation as a Remarkable New Drug Delivery System of Anti-Epileptic Drugs for Treating Children Patients. Saudi Pharm. J. 2018, 26, 790–800. [Google Scholar] [CrossRef]
- Zewail, M.; Passent, P.M.; Ali, M.M.; Abbas, H. Lipidic Cubic-Phase Leflunomide Nanoparticles (Cubosomes) as a Potential Tool for Breast Cancer Management. Drug Deliv. 2022, 29, 1663–1674. [Google Scholar] [CrossRef]
- Shoman, N.A.; Gebreel, R.M.; El-Nabarawi, M.A.; Attia, A. Optimization of Hyaluronan-Enriched Cubosomes for Bromfenac Delivery Enhancing Corneal Permeation: Characterization, Ex Vivo, and in Vivo Evaluation. Drug Deliv. 2023, 30, 2162162. [Google Scholar] [CrossRef]
- Silva, S.S.; Rodrigues, L.C.; Fernandes, E.M.; Soares da Costa, D.; Villalva, D.G.; Loh, W.; Reis, R.L. Chitosan/Virgin-Coconut-Oil-Based System Enriched with Cubosomes: A 3D Drug-Delivery Approach. Mar. Drugs 2023, 21, 394. [Google Scholar] [CrossRef]
- Svensson, O.; Thuresson, K.; Arnebrant, T. Interactions between Chitosan-Modified Particles and Mucin-Coated Surfaces. J. Colloid Interface Sci. 2008, 325, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Elgindy, N.A.; Mehanna, M.M.; Mohyeldin, S.M. Self-Assembled Nano-Architecture Liquid Crystalline Particles as a Promising Carrier for Progesterone Transdermal Delivery. Int. J. Pharm. 2016, 501, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, J.A.; Almoshari, Y.; Alotaibi, H.F. Fabrication and Evaluation of Poloxamer Facilitated, Glyceryl Monooleate Based 5-Fluorouracil Cubosomes. Indian J. Pharm. Educ. Res. 2024, 58, 91–98. [Google Scholar] [CrossRef]
- Shahraeini, S.S.; Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Abootorabi, S.; Dehghanpoor, M.; Rostamkalaei, S.S.; Nokhodchi, A. Atorvastatin Solid Lipid Nanoparticles as a Promising Approach for Dermal Delivery and an Anti-Inflammatory Agent. AAPS PharmSciTech 2020, 21, 263. [Google Scholar] [CrossRef]
- Khatik, R.; Mishra, R.; Verma, A.; Dwivedi, P.; Kumar, V.; Gupta, V.; Paliwal, S.K.; Mishra, P.R.; Dwivedi, A.K. Colon-Specific Delivery of Curcumin by Exploiting Eudragit-Decorated Chitosan Nanoparticles in Vitro and in Vivo. J. Nanopart. Res. 2013, 15, 1893. [Google Scholar] [CrossRef]
- Alamoudi, J.A.; Almoshari, Y.; Alotaibi, H.F. Formulation and Evaluation of Pluronic F-127 Assisted Carboplatin Cubosomes. Indian J. Pharm. Educ. Res. 2023, 57, 1258–1264. [Google Scholar] [CrossRef]
- El-Shenawy, A.A.; Elsayed, M.M.A.; Atwa, G.M.K.; Abourehab, M.A.S.; Mohamed, M.S.; Ghoneim, M.M.; Mahmoud, R.A.; Sabry, S.A.; Anwar, W.; El-Sherbiny, M.; et al. Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer. Pharmaceutics 2023, 15, 680. [Google Scholar] [CrossRef]
- Azzazy, H.M.E.S.; Fahmy, S.A.; Mahdy, N.K.; Meselhy, M.R.; Bakowsky, U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum Harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. Nanomaterials 2021, 11, 2438. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug Release Study of the Chitosan-Based Nanoparticles. Heliyon 2022, 8, e08674. [Google Scholar] [CrossRef]
- Bayer, I.S. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023, 15, 1364. [Google Scholar] [CrossRef]
- Thai, H.; Thuy Nguyen, C.; Thi Thach, L.; Thi Tran, M.; Duc Mai, H.; Thi Thu Nguyen, T.; Duc Le, G.; Van Can, M.; Dai Tran, L.; Long Bach, G.; et al. Characterization of Chitosan/Alginate/Lovastatin Nanoparticles and Investigation of Their Toxic Effects in Vitro and in Vivo. Sci. Rep. 2020, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Butt, M.H.; Siddique, W.; Iqbal, M.O.; Nisar, N.; Mumtaz, A.; Nazeer, H.Y.; Alshammari, A.; Riaz, M.S. Fabrication of PEGylated Chitosan Nanoparticles Containing Tenofovir Alafenamide: Synthesis and Characterization. Molecules 2022, 27, 8401. [Google Scholar] [CrossRef] [PubMed]
- Ünal, S.; Varan, G.; Benito, J.M.; Aktaş, Y.; Bilensoy, E. Insight into Oral Amphiphilic Cyclodextrin Nanoparticles for Colorectal Cancer: Comprehensive Mathematical Model of Drug Release Kinetic Studies and Antitumoral Efficacy in 3D Spheroid Colon Tumors. Beilstein J. Org. Chem. 2023, 19, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Binesh, N.; Farhadian, N.; Mohammadzadeh, A. Enhanced Antibacterial Activity of Uniform and Stable Chitosan Nanoparticles Containing Metronidazole against Anaerobic Bacterium of Bacteroides Fragilis. Colloids Surf. B Biointerfaces 2021, 202, 111691. [Google Scholar] [CrossRef]
- Samy, M.; Abd El-Alim, S.H.; Rabia, A.E.G.; Amin, A.; Ayoub, M.M.H. Formulation, Characterization and in Vitro Release Study of 5-Fluorouracil Loaded Chitosan Nanoparticles. Int. J. Biol. Macromol. 2020, 156, 783–791. [Google Scholar] [CrossRef]
- Sivadasan, D.; Sultan, M.H.; Alqahtani, S.S.; Javed, S. Cubosomes in Drug Delivery—A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications. Biomedicines 2023, 11, 1114. [Google Scholar] [CrossRef]
- Varghese, R.; Salvi, S.; Sood, P.; Kulkarni, B.; Kumar, D. Cubosomes in Cancer Drug Delivery: A Review. Colloids Interface Sci. Commun. 2022, 46, 100561. [Google Scholar] [CrossRef]
- Li, L.; Cui, N.; Hao, T.; Zou, J.; Jiao, W.; Yi, K.; Yu, W. Statins Use and the Prognosis of Colorectal Cancer: A Meta-Analysis. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101588. [Google Scholar] [CrossRef]
- Nooshabadi, V.T.; Khanmohammadi, M.; Shafei, S.; Banafshe, H.R.; Malekshahi, Z.V.; Ebrahimi-Barough, S.; Ai, J. Impact of Atorvastatin Loaded Exosome as an Anti-Glioblastoma Carrier to Induce Apoptosis of U87 Cancer Cells in 3D Culture Model. Biochem. Biophys. Rep. 2020, 23, 100792. [Google Scholar] [CrossRef]
- Abolghasemi, R.; Ebrahimi-Barough, S.; Bahrami, N.; Aid, J. Atorvastatin Inhibits Viability and Migration of MCF7 Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2022, 23, 867–875. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, Q.; Lin, Y.; Reddy, B.S.; Yang, C.S. Combination of Atorvastatin and Celecoxib Synergistically Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. Int. J. Cancer 2008, 122, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Rao, U.S. Statins Decrease the Expression of C-Myc Protein in Cancer Cell Lines. Mol. Cell. Biochem. 2021, 476, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, H.E.; Yacout, G.A.; El Sadek, M.M. Cytotoxicity Influence of New Chitosan Composite on HEPG-2, HCT-116 and MCF-7 Carcinoma Cells. Int. J. Biol. Macromol. 2020, 158, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Mekhail, G.M.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D. Anticancer Effect of Atorvastatin Nanostructured Polymeric Micelles Based on Stearyl-Grafted Chitosan. Int. J. Biol. Macromol. 2012, 51, 351–363. [Google Scholar] [CrossRef]
- Saber, M.M.; Al-mahallawi, A.M.; Nassar, N.N.; Stork, B.; Shouman, S.A. Targeting Colorectal Cancer Cell Metabolism through Development of Cisplatin and Metformin Nano-Cubosomes. BMC Cancer 2018, 18, 822. [Google Scholar] [CrossRef]
- Nasr, M.; Ghorab, M.K.; Abdelazem, A. In Vitro and in Vivo Evaluation of Cubosomes Containing 5-Fluorouracil for Liver Targeting. Acta Pharm. Sin. B 2015, 5, 79–88. [Google Scholar] [CrossRef]
- Pushpa Ragini, S.; Dyett, B.P.; Sarkar, S.; Zhai, J.; White, J.F.; Banerjee, R.; Drummond, C.J.; Conn, C.E. A Systematic Study of the Effect of Lipid Architecture on Cytotoxicity and Cellular Uptake of Cationic Cubosomes. J. Colloid Interface Sci. 2024, 663, 82–93. [Google Scholar] [CrossRef]
- Hinton, T.M.; Grusche, F.; Acharya, D.; Shukla, R.; Bansal, V.; Waddington, L.J.; Monaghan, P.; Muir, B.W. Bicontinuous Cubic Phase Nanoparticle Lipid Chemistry Affects Toxicity in Cultured Cells. Toxicol. Res. 2014, 3, 11–22. [Google Scholar] [CrossRef]
- Cytryniak, A.; Nazaruk, E.; Bilewicz, R.; Górzyńska, E.; Żelechowska-Matysiak, K.; Walczak, R.; Mames, A.; Bilewicz, A.; Majkowska-Pilip, A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled With177 Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials 2020, 10, 2272. [Google Scholar] [CrossRef]
- Perrigue, P.M.; Murray, R.A.; Mielcarek, A.; Henschke, A.; Moya, S.E. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021, 13, 770. [Google Scholar] [CrossRef]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic Combinatorial Drug-Loaded Coated Cubosomes for Enhanced Targeting and Efficacy against Cancer Cells. Cell Death Dis. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.L.; Bajaj, P.; Whitehead, K.A. Achieving Long-Term Stability of Lipid Nanoparticles: Examining the Effect of PH, Temperature, and Lyophilization. Int. J. Nanomed. 2017, 12, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Ferreira, C.J.O.; Sousa, M.; Paris, J.L.; Gaspar, R.; Silva, B.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. A Versatile Nanocarrier—Cubosomes, Characterization, and Applications. Nanomaterials 2022, 12, 2224. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Li, T.; Liu, C.; Liu, W. Improved Physical and in Vitro Digestion Stability of a Polyelectrolyte Delivery System Based on Layer-by-Layer Self-Assembly Alginate-Chitosan-Coated Nanoliposomes. J. Agric. Food Chem. 2013, 61, 4133–4144. [Google Scholar] [CrossRef]









| Independent Variables | Coded Level | Actual Values | ||||
|---|---|---|---|---|---|---|
| P407 (mg) (A) | −1 | 0 | +1 | 200 | 300 | 400 |
| PVA * (% w/w) (B) | −1 | 0 | +1 | 0 | 2.5 | 5 |
| Dependent Variables | Goal | |||||
| Particle size (nm) (Y1) | Minimize | |||||
| PDI ** (Y2) | Minimize | |||||
| Zeta potential (mV) (Y3) | Optimize | |||||
| Media | pH | Resembling Fluid | Incubation Time |
|---|---|---|---|
| Hydrochloric acid | 1.2 | SGF | 0–2 h |
| Phosphate buffer | 4.5 | SGF + SIF | 2–4 h |
| Phosphate buffer | 7.4 | SIF | 4–6 h |
| Phosphate buffer | 6.8 | SCF | 6–8 h |
| Factor 1 | Factor 2 | Response 1 | Response 2 | Response 3 | |
|---|---|---|---|---|---|
| Run | P407 Weight (mg) | PVA ** Conc. (% w/w) | Size (nm) | PDI *** | Zeta Potential (mV) |
| 1 | 300 | 2.5 | 235.70 ± 11.35 | 0.280 ± 0.04 | −20.90 ± 2.41 |
| 2 | 300 | 0 | 248.11 ± 1.25 | 0.228 ± 0.05 | −24.60 ± 1.58 |
| 3 | 200 | 0 | 169.15 ± 4.14 | 0.310 ± 0.02 | −22.98 ± 0.82 |
| 4 | 300 | 2.5 | 235.40 ± 8.55 | 0.301 ± 0.05 | −21.50 ± 2.23 |
| 5 | 200 | 5 | 175.98 ± 1.24 | 0.352 ± 0.02 | −18.40 ± 2.70 |
| 6 | 300 | 5 | 242.56 ± 1.25 | 0.282 ± 0.02 | −18.60 ± 0.29 |
| 7 | 400 | 2.5 | 120.00 ± 1.66 | 0.136 ± 0.01 | −22.20 ± 1.05 |
| 8 | 400 | 5 | 130.15 ± 5.77 | 0.147 ± 0.07 | −19.70 ± 0.31 |
| 9 | 200 | 2.5 | 163.80 ± 1.25 | 0.320 ± 0.01 | −22.20 ± 0.85 |
| 10 | 300 | 2.5 | 240.85 ± 10.12 | 0.279 ± 0.08 | −20.40 ± 2.32 |
| 11 | 400 | 0 | 128.20 ± 0.01 | 0.149 ± 0.01 | −23.80 ± 0.36 |
| 12 | 300 | 2.5 | 238.70 ± 9.58 | 0.290 ± 0.05 | −21.20 ± 2.52 |
| Factors | Variables | Standard Error | VIF * | Ri2 ** |
|---|---|---|---|---|
| A | Poloxamer 407 (mg) | 0.4082 | 1 | 0.000 |
| B | Polyvinyl alcohol (% w/w) | 0.4082 | 1 | 0.000 |
| Response * | Model F-Value | Lack of Fit Value | p-Value | Predicted R2 | Adjusted R2 | Adequate Precision | Best-Fit Model |
|---|---|---|---|---|---|---|---|
| Y1 | 632.13 | 1.69 | <0.0001 | 0.9867 | 0.9965 | 59.0981 | Quadratic |
| Y2 | 34.74 | 5.29 | 0.0002 | 0.7783 | 0.9388 | 16.6558 | Quadratic |
| Y3 | 39.93 | 2.63 | <0.0001 | 0.8209 | 0.8762 | 16.5300 | Linear |
| Response | Predicted | Experimental |
|---|---|---|
| Particle size (nm) | 120.577 | 120.00 ± 1.655 |
| PDI * | 0.1513 | 0.136 ± 0.008 |
| Zeta potential (mV) | −21.5 | −22.2 ± 1.05 |
| Kinetic Model | Equation | R2 Value | Best-Fit Model |
|---|---|---|---|
| Zero Order | Qt = Q0 + k0t | 0.7569 | No |
| First Order | logQt = logQ0 − k1t/2.303 | 0.6387 | No |
| Hixson-Crowell | W01/3 − Wt1/3 = K | 0.3890 | No |
| Higuchi | Qt = kHt1/2 | 0.8059 | No |
| Korsmeyer–Peppas | Mt/M∞ = kKtn | 0.9546 | Yes |
| Time | Particle Size (nm) | PDI | Zeta Potential (mV) | |||
|---|---|---|---|---|---|---|
| 4 °C | −8 °C | 4 °C | −8 °C | 4 °C | −8 °C | |
| Day Zero | 120.00 ± 1.66 | 0.136 ± 0.01 | −22.2 ± 1.05 | |||
| First month | 122.15 ± 2.12 | 129.45 ± 1.58 | 0.138 ± 0.74 | 0.159 ± 0.12 | −20.8 ± 1.32 | −21.45 ± 1.45 |
| Second month | 125.56 ± 1.35 | 133.14 ± 2.65 | 0.142 ± 0.55 | 0.178 ± 0.22 | −20.05 ± 0.45 | −21.18 ± 1.36 |
| Third month | 127.05 ± 1.23 | 135.85 ± 1.94 | 0.147 ± 0.33 | 0.183 ± 0.72 | −21.62 ± 1.37 | −22.9 ± 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mneimneh, A.T.; Hayar, B.; Al Hadeethi, S.; Darwiche, N.; Mehanna, M.M. Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management. Pharmaceutics 2025, 17, 698. https://doi.org/10.3390/pharmaceutics17060698
Mneimneh AT, Hayar B, Al Hadeethi S, Darwiche N, Mehanna MM. Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management. Pharmaceutics. 2025; 17(6):698. https://doi.org/10.3390/pharmaceutics17060698
Chicago/Turabian StyleMneimneh, Amina T., Berthe Hayar, Sadaf Al Hadeethi, Nadine Darwiche, and Mohammed M. Mehanna. 2025. "Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management" Pharmaceutics 17, no. 6: 698. https://doi.org/10.3390/pharmaceutics17060698
APA StyleMneimneh, A. T., Hayar, B., Al Hadeethi, S., Darwiche, N., & Mehanna, M. M. (2025). Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management. Pharmaceutics, 17(6), 698. https://doi.org/10.3390/pharmaceutics17060698

