Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Design
2.2.2. Preparation of Blank and Atorvastatin-Loaded Liquid Crystalline Lipid Nanoparticles
2.2.3. Preparation of Chitosan-Coated Atorvastatin-Loaded Cubosomes
2.3. Characterization of the Uncoated Atorvastatin-Loaded Cubosomes and the Chitosan-Coated Atorvastatin-Loaded Cubosomes
- i.
- Physicochemical properties
- ii.
- Drug content and entrapment efficiency
- iii.
- Fourier transform infrared spectroscopy compatibility study
2.4. In Vitro Release of Atorvastatin from the Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Lipid Nanoparticles
2.5. Analytical Method Validation
- σ = the standard deviation of the response
- S = the slope of the calibration curve
2.6. Cell Lines and Cell Culture Conditions
- i.
- Sulforhodamine B Assay
- ii.
- Trypan blue cell viability assay
2.7. Stability Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Box–Behnken Experimental Design Results
- i.
- Particle size:
- ii.
- Particle size distribution analysis
- iii.
- Zeta potential
3.2. Chitosan-Coated Atorvastatin-Loaded Cubosomal Formulation
3.3. Physicochemical Characterization of the Uncoated and Coated Atorvastatin-Loaded Cubosomes
3.4. In Vitro Release and Kinetic Studies of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Lipid Nanoparticles
3.5. Validation of the Quantification Method
3.6. Sulforhodamine B and Trypan Blue Cell Viability Assays
3.7. Stability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATR | Atorvastatin |
CRC | Colorectal cancer |
PDI | Polydispersity index |
P407 | Poloxamer 407 |
PVA | Polyvinyl alcohol |
GMO | glyceryl monooleate |
FTIR | Fourier transform infrared spectroscopy |
GIT | Gastrointestinal tract |
SGF | Simulated gastric fluid |
SIF | Simulated intestinal fluid |
SCF | Simulated colonic fluid |
IC50 | Half-maximal inhibitory concentration |
NPs | Nanoparticles |
ANOVA | Analysis of variance |
VIF | Variance inflation factor |
SPSS | Statistical package for the social sciences |
EE | Entrapment efficiency |
R2 | Coefficient of determination |
SRB | Sulforhodamine B |
PLGA | Poly (lactic-co-glycolic acid) |
ELISA | Enzyme-linked immunosorbent assay |
References
- Mneimneh, A.T.; Darwiche, N.; Mehanna, M.M. Investigating the Therapeutic Promise of Drug-Repurposed-Loaded Nanocarriers: A Pioneering Strategy in Advancing Colorectal Cancer Treatment. Int. J. Pharm. 2024, 629, 124473. [Google Scholar] [CrossRef] [PubMed]
- Al-Koussa, H.; Al-Haddad, M.; Abi-Habib, R.; El-Sibai, M. Human Recombinant Arginase i [HuArgI (Co)-PEG5000]-Induced Arginine Depletion Inhibits Colorectal Cancer Cell Migration and Invasion. Int. J. Mol. Sci. 2019, 20, 6018. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA. Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.; Agraval, H.; Srivastav, A.K.; Yadav, U.C.S.; Kumar, U. Physico-Chemical Characterization of Carvacrol Loaded Zein Nanoparticles for Enhanced Anticancer Activity and Investigation of Molecular Interactions between Them by Molecular Docking. Int. J. Pharm. 2020, 588, 119795. [Google Scholar] [CrossRef]
- Nasrallah, A.; El-Sibai, M. Colorectal Cancer Causes and Treatments: A Minireview. Open Color. Cancer J. 2014, 7, 1–4. [Google Scholar] [CrossRef]
- American Cancer Society. Treating Colorectal Cancer; American Cancer Society: Atlanta, GA, USA, 2020. [Google Scholar]
- Al-Dimassi, S.; Abou-Antoun, T.; El-Sibai, M. Cancer Cell Resistance Mechanisms: A Mini Review. Clin. Transl. Oncol. 2014, 16, 511–516. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming Cancer Therapeutic Bottleneck by Drug Repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Henaine, A.M.; Chahine, G.; Massoud, M.; Salameh, P.; Awada, S.; Lahoud, N.; Elias, E.; Salem, M.; Ballout, S.; Hartmann, D.; et al. Management of Patients with Metastatic Colorectal Cancer in Lebanese Hospitals and Associated Direct Cost: A Multicentre Cohort Study. East. Mediterr. Health J. 2019, 25, 481–494. [Google Scholar] [CrossRef]
- To, K.K.W.; Cho, W.C.S. Drug Repurposing for Cancer Therapy in the Era of Precision Medicine. Curr. Mol. Pharmacol. 2022, 15, 895–903. [Google Scholar] [CrossRef]
- Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Rica Capistrano, I.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.T.; Meheus, L.; Sukhatme, V.P.; et al. Redo_DB: The Repurposing Drugs in Oncology Database. Ecancermedicalscience 2018, 12, 886. [Google Scholar] [CrossRef]
- Younes, M.; El Hage, M.; Shebaby, W.; Al Toufaily, S.; Ismail, J.; Naim, H.Y.; Mroueh, M.; Rizk, S. The Molecular Anti-Metastatic Potential of CBD and THC from Lebanese Cannabis via Apoptosis Induction and Alterations in Autophagy. Sci. Rep. 2024, 14, 25642. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, H.E.; Daher, C.F.; Bodman-Smith, K.; Taleb, R.I.; Shebaby, W.N.; Boulos, J.; Dagher, C.; Mroueh, M.A.; El-Sibai, M. Antitumor Activity of β-2-Himachalen-6-Ol in Colon Cancer Is Mediated through Its Inhibition of the PI3K and MAPK Pathways. Chem. Biol. Interact. 2017, 275, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; Kubik, M.; et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults. JAMA 2022, 328, 746–753. [Google Scholar] [CrossRef]
- Longo, J.; van Leeuwen, J.E.; Elbaz, M.; Branchard, E.; Penn, L.Z. Statins as Anticancer Agents in the Era of Precision Medicine. Clin. Cancer Res. 2020, 26, 5791–5800. [Google Scholar] [CrossRef]
- Radišauskas, R.; Kuzmickiene, I.; Milinavičiene, E.; Everatt, R. Hypertension, Serum Lipids and Cancer Risk: A Review of Epidemiological Evidence. Medicina 2016, 52, 89–98. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A Repurposed Drug to Fight Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug Repurposing for Cancer Therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Gogoi, P.; Kaur, G.; Singh, N.K. Nanotechnology for Colorectal Cancer Detection and Treatment. World J. Gastroenterol. 2022, 28, 6497–6511. [Google Scholar] [CrossRef]
- Ginghină, O.; Hudiță, A.; Zaharia, C.; Tsatsakis, A.; Mezhuev, Y.; Costache, M.; Gălățeanu, B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. Materials 2021, 14, 2440. [Google Scholar] [CrossRef]
- Cai, S.; Gao, Z. Atorvastatin Inhibits Proliferation and Promotes Apoptosis of Colon Cancer Cells via COX-2/PGE2/β-Catenin Pathway. J. Buon 2021, 26, 1219–1225. [Google Scholar]
- Zhou, M.; Zheng, J.; Bi, J.; Wu, X.; Lyu, J.; Gao, K. Synergistic Inhibition of Colon Cancer Cell Growth by a Combination of Atorvastatin and Phloretin. Oncol. Lett. 2018, 15, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M.A. Dissolution and Bioavailability Enhancement of Atorvastatin: Gelucire Semi-Solid Binary System. J. Drug Deliv. Sci. Technol. 2018, 43, 178–184. [Google Scholar] [CrossRef]
- El-Marakby, E.M.; Fayez, H.; Motaleb, M.A.; Mansour, M. Atorvastatin-Loaded Cubosome: A Repurposed Targeted Delivery Systems for Enhanced Targeting against Breast Cancer. Pharm. Dev. Technol. 2024, 29, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Abla, K.K.; Mehanna, M.M. Lipid-Based Nanocarriers Challenging the Ocular Biological Barriers: Current Paradigm and Future Perspectives. J. Control. Release 2023, 362, 70–96. [Google Scholar] [CrossRef]
- Kaushik, N.; Borkar, S.B.; Nandanwar, S.K.; Panda, P.K.; Choi, E.H.; Kaushik, N.K. Nanocarrier Cancer Therapeutics with Functional Stimuli-Responsive Mechanisms. J. Nanobiotechnol. 2022, 20, 152. [Google Scholar] [CrossRef]
- Mneimneh, A.T.; Hayar, B.; Al Hadeethi, S.; Darwiche, N.; Mehanna, M.M. Application of Box-Behnken Design in the Optimization and Development of Albendazole-Loaded Zein Nanoparticles as a Drug Repurposing Approach for Colorectal Cancer Management. Int. J. Biol. Macromol. 2024, 281, 136437. [Google Scholar] [CrossRef]
- Gowda, B.H.J.; Ahmed, M.G.; Alshehri, S.A.; Wahab, S.; Vora, L.K.; Singh Thakur, R.R.; Kesharwani, P. The Cubosome-Based Nanoplatforms in Cancer Therapy: Seeking New Paradigms for Cancer Theranostics. Environ. Res. 2023, 237, 116894. [Google Scholar] [CrossRef]
- Ramalheiro, A.; Paris, J.L.; Silva, B.F.B.; Pires, L.R. Rapidly Dissolving Microneedles for the Delivery of Cubosome-like Liquid Crystalline Nanoparticles with Sustained Release of Rapamycin. Int. J. Pharm. 2020, 591, 119942. [Google Scholar] [CrossRef]
- Frigaard, J.; Jensen, J.L.; Galtung, H.K.; Hiorth, M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front. Pharmacol. 2022, 13, 880377. [Google Scholar] [CrossRef]
- Medina-Moreno, A.; El-Hammadi, M.M.; Arias, J.L. PH-Dependent, Extended Release and Enhanced in Vitro Efficiency against Colon Cancer of Tegafur Formulated Using Chitosan-Coated Poly(ε-Caprolactone) Nanoparticles. J. Drug Deliv. Sci. Technol. 2023, 86, 104594. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Sarieddine, R.; Alwattar, J.K.; Chouaib, R.; Gali-Muhtasib, H. Anticancer Activity of Thymoquinone Cubic Phase Nanoparticles against Human Breast Cancer: Formulation, Cytotoxicity and Subcellular Localization. Int. J. Nanomed. 2020, 15, 9557–9570. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Younes, H.; Abdel-Rashid, R.S. Formulation and Evaluation of Cubosomes Containing Colchicine for Transdermal Delivery. Drug Deliv. Transl. Res. 2020, 10, 1302–1313. [Google Scholar] [CrossRef] [PubMed]
- Said, M.; Aboelwafa, A.A.; Elshafeey, A.H.; Elsayed, I. Central Composite Optimization of Ocular Mucoadhesive Cubosomes for Enhanced Bioavailability and Controlled Delivery of Voriconazole. J. Drug Deliv. Sci. Technol. 2021, 61, 102075. [Google Scholar] [CrossRef]
- Abla, K.K.; Domiati, S.; El Majzoub, R.; Mehanna, M.M. Propranolol-Loaded Limonene-Based Microemulsion Thermo-Responsive Mucoadhesive Nasal Nanogel: Design, In Vitro Assessment, Ex Vivo Permeation, and Brain Biodistribution. Gels 2023, 9, 491. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T.; Domiati, S.; Allam, A.N. Tadalafil-Loaded Limonene-Based Orodispersible Tablets: Formulation, in Vitro Characterization and in Vivo Appraisal of Gastroprotective Activity. Int. J. Nanomed. 2020, 15, 10099–10112. [Google Scholar] [CrossRef]
- Eldeeb, A.E.; Salah, S.; Ghorab, M. Formulation and Evaluation of Cubosomes Drug Delivery System for Treatment of Glaucoma: Ex-Vivo Permeation and in-Vivo Pharmacodynamic Study. J. Drug Deliv. Sci. Technol. 2019, 52, 236–247. [Google Scholar] [CrossRef]
- Shaker, M.A.; Elbadawy, H.M.; Al Thagfan, S.S.; Shaker, M.A. Enhancement of Atorvastatin Oral Bioavailability via Encapsulation in Polymeric Nanoparticles. Int. J. Pharm. 2021, 592, 120077. [Google Scholar] [CrossRef]
- Abla, K.K.; Hijazi, S.M.; Mehanna, M.M. Augmented Efficiency of Azithromycin for MRSA Ocular Infections Management: Limonene-Based Nanostructured Lipid Carriers in-Situ Approach. J. Drug Deliv. Sci. Technol. 2023, 87, 104764. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K.; Domiati, S.; Elmaradny, H. Superiority of Microemulsion-Based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-Nociceptive Efficacy Study. Int. J. Pharm. 2022, 622, 121830. [Google Scholar] [CrossRef]
- Rodde, M.S.; Divase, G.T.; Devkar, T.B.; Tekade, A.R. Solubility and Bioavailability Enhancement of Poorly Aqueous Soluble Atorvastatin: In Vitro, Ex Vivo, and in Vivo Studies. Biomed Res. Int. 2014, 2014, 463895. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, S.W.; Lee, J.H.; Park, S.M.; Cho, S.J.; Maeng, H.J.; Cho, K.H. Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 Mg with Enhanced Solubility, Dissolution, and Physical Stability. Gels 2024, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jin, J.; Duan, H.; Liu, C.; Chen, L.; Huang, W.; Gao, Z.; Jin, M. Targeted Therapeutic Effects of Oral Inulin-Modified Double-Layered Nanoparticles Containing Chemotherapeutics on Orthotopic Colon Cancer. Biomaterials 2022, 283, 121440. [Google Scholar] [CrossRef]
- Elder, D. Validation of Analytical Procedures—ICH Q2(R2). Eur. Pharm. Rev. 2023, 29, 1–36. [Google Scholar]
- Marques, M.S.; Morisso, F.D.P.; Poletto, F.; Guerreiro, I.C.K. Development of Derivative Spectrophotometric Method for Simultaneous Determination of Pyrazinamide and Rifampicin in Cubosome Formulation. Drug Anal. Res. 2021, 5, 46–50. [Google Scholar] [CrossRef]
- Abdel-Samad, R.; Aouad, P.; Gali-Muhtasib, H.; Sweidan, Z.; Hmadi, R. Mechanism of Action of the Atypical Retinoid ST1926 in Colorectal Cancer: DNA Damage and DNA Polymerase α. Am. J. Cancer Res. 2018, 8, 39–55. [Google Scholar]
- Javed, B.; Mashwani, Z.U.R. Synergistic Effects of Physicochemical Parameters on Bio-Fabrication of Mint Silver Nanoparticles: Structural Evaluation and Action against HCT116 Colon Cancer Cells. Int. J. Nanomed. 2020, 15, 3621–3637. [Google Scholar] [CrossRef]
- Al Hadeethi, S.; El-Baba, C.; Araji, K.; Hayar, B.; El-Khoury, R.; Usta, J.; Darwiche, N. Mannose Inhibits the Pentose Phosphate Pathway in Colorectal Cancer and Enhances Sensitivity to 5-Fluorouracil Therapy. Cancers 2023, 15, 2268. [Google Scholar] [CrossRef]
- Solanki, R.; Patel, K.; Patel, S. Bovine Serum Albumin Nanoparticles for the Efficient Delivery of Berberine: Preparation, Characterization and In Vitro Biological Studies. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125501. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T.; Abed El Jalil, K. Levofloxacin-Loaded Naturally Occurring Monoterpene-Based Nanoemulgel: A Feasible Efficient System to Circumvent MRSA Ocular Infections. Drug Dev. Ind. Pharm. 2020, 46, 1787–1799. [Google Scholar] [CrossRef]
- Zhao, P.; Hou, X.; Yan, J.; Du, S.; Xue, Y.; Li, W.; Xiang, G.; Dong, Y. Long-Term Storage of Lipid-like Nanoparticles for MRNA Delivery. Bioact. Mater. 2020, 5, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Kafetzis, K.N.; Papalamprou, N.; McNulty, E.; Thong, K.X.; Sato, Y.; Mironov, A.; Purohit, A.; Welsby, P.J.; Harashima, H.; Yu-Wai-Man, C.; et al. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for MRNA and DNA Delivery. Adv. Healthc. Mater. 2023, 12, 2203022. [Google Scholar] [CrossRef] [PubMed]
- Zaki, R.M.; Alkharashi, L.A.; Sarhan, O.M.; Almurshedi, A.S.; Aldosari, B.N.; Said, M. Box Behnken Optimization of Cubosomes for Enhancing the Anticancer Activity of Metformin: Design, Characterization, and in-Vitro Cell Proliferation Assay on MDA-MB-231 Breast and LOVO Colon Cancer Cell Lines. Int. J. Pharm. X 2023, 6, 100208. [Google Scholar] [CrossRef] [PubMed]
- Abla, K.K.; Mneimneh, A.T.; Allam, A.N.; Mehanna, M.M. Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film. Pharmaceutics 2023, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, J.; Zheng, Y.; Gong, Y.; Fu, M.; Liu, C.; Xu, L.; Sun, C.C.; Gao, Y.; Qian, S. Cubosomes with Surface Cross-Linked Chitosan Exhibit Sustained Release and Bioavailability Enhancement for Vinpocetine. RSC Adv. 2019, 9, 6287–6298. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Hosny, K.M.; Rizg, W.Y.; Eshmawi, B.A.; Badr, M.Y.; Safhi, A.Y.; Murshid, S.S.A. Development and Optimization of Hyaluronic Acid-Poloxamer In-Situ Gel Loaded with Voriconazole Cubosomes for Enhancement of Activity against Ocular Fungal Infection. Gels 2022, 8, 241. [Google Scholar] [CrossRef]
- Badie, H.; Abbas, H. Novel Small Self-Assembled Resveratrol-Bearing Cubosomes and Hexosomes: Preparation, Charachterization, and Ex Vivo Permeation. Drug Dev. Ind. Pharm. 2018, 44, 2013–2025. [Google Scholar] [CrossRef]
- El-Enin, H.A.; AL-Shanbari, A.H. Nanostructured Liquid Crystalline Formulation as a Remarkable New Drug Delivery System of Anti-Epileptic Drugs for Treating Children Patients. Saudi Pharm. J. 2018, 26, 790–800. [Google Scholar] [CrossRef]
- Zewail, M.; Passent, P.M.; Ali, M.M.; Abbas, H. Lipidic Cubic-Phase Leflunomide Nanoparticles (Cubosomes) as a Potential Tool for Breast Cancer Management. Drug Deliv. 2022, 29, 1663–1674. [Google Scholar] [CrossRef]
- Shoman, N.A.; Gebreel, R.M.; El-Nabarawi, M.A.; Attia, A. Optimization of Hyaluronan-Enriched Cubosomes for Bromfenac Delivery Enhancing Corneal Permeation: Characterization, Ex Vivo, and in Vivo Evaluation. Drug Deliv. 2023, 30, 2162162. [Google Scholar] [CrossRef]
- Silva, S.S.; Rodrigues, L.C.; Fernandes, E.M.; Soares da Costa, D.; Villalva, D.G.; Loh, W.; Reis, R.L. Chitosan/Virgin-Coconut-Oil-Based System Enriched with Cubosomes: A 3D Drug-Delivery Approach. Mar. Drugs 2023, 21, 394. [Google Scholar] [CrossRef]
- Svensson, O.; Thuresson, K.; Arnebrant, T. Interactions between Chitosan-Modified Particles and Mucin-Coated Surfaces. J. Colloid Interface Sci. 2008, 325, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Elgindy, N.A.; Mehanna, M.M.; Mohyeldin, S.M. Self-Assembled Nano-Architecture Liquid Crystalline Particles as a Promising Carrier for Progesterone Transdermal Delivery. Int. J. Pharm. 2016, 501, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, J.A.; Almoshari, Y.; Alotaibi, H.F. Fabrication and Evaluation of Poloxamer Facilitated, Glyceryl Monooleate Based 5-Fluorouracil Cubosomes. Indian J. Pharm. Educ. Res. 2024, 58, 91–98. [Google Scholar] [CrossRef]
- Shahraeini, S.S.; Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Abootorabi, S.; Dehghanpoor, M.; Rostamkalaei, S.S.; Nokhodchi, A. Atorvastatin Solid Lipid Nanoparticles as a Promising Approach for Dermal Delivery and an Anti-Inflammatory Agent. AAPS PharmSciTech 2020, 21, 263. [Google Scholar] [CrossRef]
- Khatik, R.; Mishra, R.; Verma, A.; Dwivedi, P.; Kumar, V.; Gupta, V.; Paliwal, S.K.; Mishra, P.R.; Dwivedi, A.K. Colon-Specific Delivery of Curcumin by Exploiting Eudragit-Decorated Chitosan Nanoparticles in Vitro and in Vivo. J. Nanopart. Res. 2013, 15, 1893. [Google Scholar] [CrossRef]
- Alamoudi, J.A.; Almoshari, Y.; Alotaibi, H.F. Formulation and Evaluation of Pluronic F-127 Assisted Carboplatin Cubosomes. Indian J. Pharm. Educ. Res. 2023, 57, 1258–1264. [Google Scholar] [CrossRef]
- El-Shenawy, A.A.; Elsayed, M.M.A.; Atwa, G.M.K.; Abourehab, M.A.S.; Mohamed, M.S.; Ghoneim, M.M.; Mahmoud, R.A.; Sabry, S.A.; Anwar, W.; El-Sherbiny, M.; et al. Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer. Pharmaceutics 2023, 15, 680. [Google Scholar] [CrossRef]
- Azzazy, H.M.E.S.; Fahmy, S.A.; Mahdy, N.K.; Meselhy, M.R.; Bakowsky, U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum Harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. Nanomaterials 2021, 11, 2438. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug Release Study of the Chitosan-Based Nanoparticles. Heliyon 2022, 8, e08674. [Google Scholar] [CrossRef]
- Bayer, I.S. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023, 15, 1364. [Google Scholar] [CrossRef]
- Thai, H.; Thuy Nguyen, C.; Thi Thach, L.; Thi Tran, M.; Duc Mai, H.; Thi Thu Nguyen, T.; Duc Le, G.; Van Can, M.; Dai Tran, L.; Long Bach, G.; et al. Characterization of Chitosan/Alginate/Lovastatin Nanoparticles and Investigation of Their Toxic Effects in Vitro and in Vivo. Sci. Rep. 2020, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Butt, M.H.; Siddique, W.; Iqbal, M.O.; Nisar, N.; Mumtaz, A.; Nazeer, H.Y.; Alshammari, A.; Riaz, M.S. Fabrication of PEGylated Chitosan Nanoparticles Containing Tenofovir Alafenamide: Synthesis and Characterization. Molecules 2022, 27, 8401. [Google Scholar] [CrossRef] [PubMed]
- Ünal, S.; Varan, G.; Benito, J.M.; Aktaş, Y.; Bilensoy, E. Insight into Oral Amphiphilic Cyclodextrin Nanoparticles for Colorectal Cancer: Comprehensive Mathematical Model of Drug Release Kinetic Studies and Antitumoral Efficacy in 3D Spheroid Colon Tumors. Beilstein J. Org. Chem. 2023, 19, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Binesh, N.; Farhadian, N.; Mohammadzadeh, A. Enhanced Antibacterial Activity of Uniform and Stable Chitosan Nanoparticles Containing Metronidazole against Anaerobic Bacterium of Bacteroides Fragilis. Colloids Surf. B Biointerfaces 2021, 202, 111691. [Google Scholar] [CrossRef]
- Samy, M.; Abd El-Alim, S.H.; Rabia, A.E.G.; Amin, A.; Ayoub, M.M.H. Formulation, Characterization and in Vitro Release Study of 5-Fluorouracil Loaded Chitosan Nanoparticles. Int. J. Biol. Macromol. 2020, 156, 783–791. [Google Scholar] [CrossRef]
- Sivadasan, D.; Sultan, M.H.; Alqahtani, S.S.; Javed, S. Cubosomes in Drug Delivery—A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications. Biomedicines 2023, 11, 1114. [Google Scholar] [CrossRef]
- Varghese, R.; Salvi, S.; Sood, P.; Kulkarni, B.; Kumar, D. Cubosomes in Cancer Drug Delivery: A Review. Colloids Interface Sci. Commun. 2022, 46, 100561. [Google Scholar] [CrossRef]
- Li, L.; Cui, N.; Hao, T.; Zou, J.; Jiao, W.; Yi, K.; Yu, W. Statins Use and the Prognosis of Colorectal Cancer: A Meta-Analysis. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101588. [Google Scholar] [CrossRef]
- Nooshabadi, V.T.; Khanmohammadi, M.; Shafei, S.; Banafshe, H.R.; Malekshahi, Z.V.; Ebrahimi-Barough, S.; Ai, J. Impact of Atorvastatin Loaded Exosome as an Anti-Glioblastoma Carrier to Induce Apoptosis of U87 Cancer Cells in 3D Culture Model. Biochem. Biophys. Rep. 2020, 23, 100792. [Google Scholar] [CrossRef]
- Abolghasemi, R.; Ebrahimi-Barough, S.; Bahrami, N.; Aid, J. Atorvastatin Inhibits Viability and Migration of MCF7 Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2022, 23, 867–875. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, Q.; Lin, Y.; Reddy, B.S.; Yang, C.S. Combination of Atorvastatin and Celecoxib Synergistically Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. Int. J. Cancer 2008, 122, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Rao, U.S. Statins Decrease the Expression of C-Myc Protein in Cancer Cell Lines. Mol. Cell. Biochem. 2021, 476, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, H.E.; Yacout, G.A.; El Sadek, M.M. Cytotoxicity Influence of New Chitosan Composite on HEPG-2, HCT-116 and MCF-7 Carcinoma Cells. Int. J. Biol. Macromol. 2020, 158, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Mekhail, G.M.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D. Anticancer Effect of Atorvastatin Nanostructured Polymeric Micelles Based on Stearyl-Grafted Chitosan. Int. J. Biol. Macromol. 2012, 51, 351–363. [Google Scholar] [CrossRef]
- Saber, M.M.; Al-mahallawi, A.M.; Nassar, N.N.; Stork, B.; Shouman, S.A. Targeting Colorectal Cancer Cell Metabolism through Development of Cisplatin and Metformin Nano-Cubosomes. BMC Cancer 2018, 18, 822. [Google Scholar] [CrossRef]
- Nasr, M.; Ghorab, M.K.; Abdelazem, A. In Vitro and in Vivo Evaluation of Cubosomes Containing 5-Fluorouracil for Liver Targeting. Acta Pharm. Sin. B 2015, 5, 79–88. [Google Scholar] [CrossRef]
- Pushpa Ragini, S.; Dyett, B.P.; Sarkar, S.; Zhai, J.; White, J.F.; Banerjee, R.; Drummond, C.J.; Conn, C.E. A Systematic Study of the Effect of Lipid Architecture on Cytotoxicity and Cellular Uptake of Cationic Cubosomes. J. Colloid Interface Sci. 2024, 663, 82–93. [Google Scholar] [CrossRef]
- Hinton, T.M.; Grusche, F.; Acharya, D.; Shukla, R.; Bansal, V.; Waddington, L.J.; Monaghan, P.; Muir, B.W. Bicontinuous Cubic Phase Nanoparticle Lipid Chemistry Affects Toxicity in Cultured Cells. Toxicol. Res. 2014, 3, 11–22. [Google Scholar] [CrossRef]
- Cytryniak, A.; Nazaruk, E.; Bilewicz, R.; Górzyńska, E.; Żelechowska-Matysiak, K.; Walczak, R.; Mames, A.; Bilewicz, A.; Majkowska-Pilip, A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled With177 Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials 2020, 10, 2272. [Google Scholar] [CrossRef]
- Perrigue, P.M.; Murray, R.A.; Mielcarek, A.; Henschke, A.; Moya, S.E. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021, 13, 770. [Google Scholar] [CrossRef]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic Combinatorial Drug-Loaded Coated Cubosomes for Enhanced Targeting and Efficacy against Cancer Cells. Cell Death Dis. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.L.; Bajaj, P.; Whitehead, K.A. Achieving Long-Term Stability of Lipid Nanoparticles: Examining the Effect of PH, Temperature, and Lyophilization. Int. J. Nanomed. 2017, 12, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Ferreira, C.J.O.; Sousa, M.; Paris, J.L.; Gaspar, R.; Silva, B.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. A Versatile Nanocarrier—Cubosomes, Characterization, and Applications. Nanomaterials 2022, 12, 2224. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Li, T.; Liu, C.; Liu, W. Improved Physical and in Vitro Digestion Stability of a Polyelectrolyte Delivery System Based on Layer-by-Layer Self-Assembly Alginate-Chitosan-Coated Nanoliposomes. J. Agric. Food Chem. 2013, 61, 4133–4144. [Google Scholar] [CrossRef]
Independent Variables | Coded Level | Actual Values | ||||
---|---|---|---|---|---|---|
P407 (mg) (A) | −1 | 0 | +1 | 200 | 300 | 400 |
PVA * (% w/w) (B) | −1 | 0 | +1 | 0 | 2.5 | 5 |
Dependent Variables | Goal | |||||
Particle size (nm) (Y1) | Minimize | |||||
PDI ** (Y2) | Minimize | |||||
Zeta potential (mV) (Y3) | Optimize |
Media | pH | Resembling Fluid | Incubation Time |
---|---|---|---|
Hydrochloric acid | 1.2 | SGF | 0–2 h |
Phosphate buffer | 4.5 | SGF + SIF | 2–4 h |
Phosphate buffer | 7.4 | SIF | 4–6 h |
Phosphate buffer | 6.8 | SCF | 6–8 h |
Factor 1 | Factor 2 | Response 1 | Response 2 | Response 3 | |
---|---|---|---|---|---|
Run | P407 Weight (mg) | PVA ** Conc. (% w/w) | Size (nm) | PDI *** | Zeta Potential (mV) |
1 | 300 | 2.5 | 235.70 ± 11.35 | 0.280 ± 0.04 | −20.90 ± 2.41 |
2 | 300 | 0 | 248.11 ± 1.25 | 0.228 ± 0.05 | −24.60 ± 1.58 |
3 | 200 | 0 | 169.15 ± 4.14 | 0.310 ± 0.02 | −22.98 ± 0.82 |
4 | 300 | 2.5 | 235.40 ± 8.55 | 0.301 ± 0.05 | −21.50 ± 2.23 |
5 | 200 | 5 | 175.98 ± 1.24 | 0.352 ± 0.02 | −18.40 ± 2.70 |
6 | 300 | 5 | 242.56 ± 1.25 | 0.282 ± 0.02 | −18.60 ± 0.29 |
7 | 400 | 2.5 | 120.00 ± 1.66 | 0.136 ± 0.01 | −22.20 ± 1.05 |
8 | 400 | 5 | 130.15 ± 5.77 | 0.147 ± 0.07 | −19.70 ± 0.31 |
9 | 200 | 2.5 | 163.80 ± 1.25 | 0.320 ± 0.01 | −22.20 ± 0.85 |
10 | 300 | 2.5 | 240.85 ± 10.12 | 0.279 ± 0.08 | −20.40 ± 2.32 |
11 | 400 | 0 | 128.20 ± 0.01 | 0.149 ± 0.01 | −23.80 ± 0.36 |
12 | 300 | 2.5 | 238.70 ± 9.58 | 0.290 ± 0.05 | −21.20 ± 2.52 |
Factors | Variables | Standard Error | VIF * | Ri2 ** |
---|---|---|---|---|
A | Poloxamer 407 (mg) | 0.4082 | 1 | 0.000 |
B | Polyvinyl alcohol (% w/w) | 0.4082 | 1 | 0.000 |
Response * | Model F-Value | Lack of Fit Value | p-Value | Predicted R2 | Adjusted R2 | Adequate Precision | Best-Fit Model |
---|---|---|---|---|---|---|---|
Y1 | 632.13 | 1.69 | <0.0001 | 0.9867 | 0.9965 | 59.0981 | Quadratic |
Y2 | 34.74 | 5.29 | 0.0002 | 0.7783 | 0.9388 | 16.6558 | Quadratic |
Y3 | 39.93 | 2.63 | <0.0001 | 0.8209 | 0.8762 | 16.5300 | Linear |
Response | Predicted | Experimental |
---|---|---|
Particle size (nm) | 120.577 | 120.00 ± 1.655 |
PDI * | 0.1513 | 0.136 ± 0.008 |
Zeta potential (mV) | −21.5 | −22.2 ± 1.05 |
Kinetic Model | Equation | R2 Value | Best-Fit Model |
---|---|---|---|
Zero Order | Qt = Q0 + k0t | 0.7569 | No |
First Order | logQt = logQ0 − k1t/2.303 | 0.6387 | No |
Hixson-Crowell | W01/3 − Wt1/3 = K | 0.3890 | No |
Higuchi | Qt = kHt1/2 | 0.8059 | No |
Korsmeyer–Peppas | Mt/M∞ = kKtn | 0.9546 | Yes |
Time | Particle Size (nm) | PDI | Zeta Potential (mV) | |||
---|---|---|---|---|---|---|
4 °C | −8 °C | 4 °C | −8 °C | 4 °C | −8 °C | |
Day Zero | 120.00 ± 1.66 | 0.136 ± 0.01 | −22.2 ± 1.05 | |||
First month | 122.15 ± 2.12 | 129.45 ± 1.58 | 0.138 ± 0.74 | 0.159 ± 0.12 | −20.8 ± 1.32 | −21.45 ± 1.45 |
Second month | 125.56 ± 1.35 | 133.14 ± 2.65 | 0.142 ± 0.55 | 0.178 ± 0.22 | −20.05 ± 0.45 | −21.18 ± 1.36 |
Third month | 127.05 ± 1.23 | 135.85 ± 1.94 | 0.147 ± 0.33 | 0.183 ± 0.72 | −21.62 ± 1.37 | −22.9 ± 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mneimneh, A.T.; Hayar, B.; Al Hadeethi, S.; Darwiche, N.; Mehanna, M.M. Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management. Pharmaceutics 2025, 17, 698. https://doi.org/10.3390/pharmaceutics17060698
Mneimneh AT, Hayar B, Al Hadeethi S, Darwiche N, Mehanna MM. Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management. Pharmaceutics. 2025; 17(6):698. https://doi.org/10.3390/pharmaceutics17060698
Chicago/Turabian StyleMneimneh, Amina T., Berthe Hayar, Sadaf Al Hadeethi, Nadine Darwiche, and Mohammed M. Mehanna. 2025. "Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management" Pharmaceutics 17, no. 6: 698. https://doi.org/10.3390/pharmaceutics17060698
APA StyleMneimneh, A. T., Hayar, B., Al Hadeethi, S., Darwiche, N., & Mehanna, M. M. (2025). Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management. Pharmaceutics, 17(6), 698. https://doi.org/10.3390/pharmaceutics17060698