Assessment of the Anti-Inflammatory Effectiveness of Diclofenac Encapsulated in Chitosan-Coated Lipid Microvesicles in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of DCF-m
2.1.1. Substances
2.1.2. Obtaining of DCF-m
2.2. In Vivo Experimental Researches
2.2.1. Ethics of the Research
2.2.2. Animals
2.2.3. Inflammatory Granuloma Test
2.2.4. Blood Analysis
2.2.5. Histopathological Evaluation
2.2.6. Data Analysis
3. Results
3.1. Changes in Animal Weight and Granuloma Mass
3.2. Blood Parameters
3.3. Histopathological Findings
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release 2012, 61, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017, 108, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol. 2015, 6, 219. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef]
- Wang, Y.; Pi, C.; Feng, X.; Hou, Y.; Zhao, L.; Wei, Y. The influence of nanoparticle properties on oral bioavailability of drugs. Int. J. Nanomed. 2020, 15, 6295–6310. [Google Scholar] [CrossRef]
- Anwekar, H.; Patel, S.; Singhai, A.K. Liposome as drug carriers. Int. J. Pharm. Life Sci. 2011, 2, 945–951. [Google Scholar]
- Alving, C.R.; Rao, M.; Steers, N.J.; Matyas, G.R.; Mayorov, A.V. Liposomes containing lipid A: An effective, safe, generic adjuvant system for synthetic vaccines. Expert. Rev. Vaccines 2012, 11, 733–744. [Google Scholar] [CrossRef]
- Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Musacchio, T.; Torchilin, V.P. Recent developments in lipid-based pharmaceutical nanocarriers. Front. Biosci. 2011, 16, 1388–1412. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Altman, R.; Bosch, B.; Brune, K.; Patrignani, P.; Young, C. Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology. Drugs 2015, 75, 859–877. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J. Diclofenac: An update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 2010, 26, 1715–1731. [Google Scholar] [CrossRef] [PubMed]
- Al-Lawati, H.; Binkhathlan, Z.; Lavasanifar, A. Nanomedicine for the effective and safe delivery of non-steroidal anti-inflammatory drugs: A review of preclinical research. Eur. J. Pharm. Biopharm. 2019, 142, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Gambaro, F.M.; Ummarino, A.; Torres Andón, F.; Ronzoni, F.; Di Matteo, B.; Kon, E. Drug delivery systems for the treatment of knee osteoarthritis: A systematic review of in vivo studies. Int. J. Mol. Sci. 2021, 22, 9137. [Google Scholar] [CrossRef]
- Boarescu, I.; Boarescu, P.-M.; Pop, R.M.; Bocșan, I.C.; Gheban, D.; Râjnoveanu, R.-M.; Râjnoveanu, A.; Bulboacă, A.E.; Buzoianu, A.D.; Bolboacă, S.D. Curcumin Nanoparticles Enhance Antioxidant Efficacy of Diclofenac Sodium in Experimental Acute Inflammation. Biomedicines 2022, 10, 61. [Google Scholar] [CrossRef]
- Păuna, A.M.R.; Mititelu Tartau, L.; Bogdan, M.; Meca, A.-D.; Popa, G.E.; Pelin, A.M.; Drochioi, C.I.; Pricop, D.A.; Pavel, L.L. Synthesis, characterization and biocompatibility evaluation of novel chitosan lipid micro-systems for modified release of diclofenac sodium. Biomedicines 2023, 11, 453. [Google Scholar] [CrossRef]
- Available online: https://legislatie.just.ro/Public/DetaliiDocument/52457 (accessed on 21 March 2025).
- Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 21 March 2025).
- Marquardt, N.; Feja, M.; Hünigen, H.; Plendl, J.; Menken, L.; Fink, H.; Bert, B. Euthanasia of laboratory mice: Are isoflurane and sevoflurane real alternatives to carbon dioxide? PLoS ONE 2018, 13, e0203793. [Google Scholar] [CrossRef]
- Ashok, P.; Koti, B.C.; Thippeswamy, A.H.; Tikare, V.P.; Dabadi, P.; Viswanathaswamy, A.H. Evaluation of antiinflammatory activity of Centratherum anthelminticum (L) Kuntze Seed. Indian. J. Pharm. Sci. 2010, 72, 697–703. [Google Scholar]
- Garcia, E.R.; Grimm, K.A.; Lamont, L.A.; Tranquilli, W.J.; Greene, S.A.; Robertson, S.A. Chapter 17: Local anesthetics. In Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and Jones; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 332–354. [Google Scholar]
- Diehl, K.H.; Hull, R.; Morton, D.; Pfister, R.; Rabemampianina, Y.; Smith, D.; Vidal, J.; Van De Vorstenbosch, C. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 2001, 21, 15–23. [Google Scholar] [CrossRef]
- Toft, K.G.; Uran, S.L.K.; Normann, P.T.; Hals, P.-A.; Toft, K.G.; Skotland, T. A respiration-metabolism chamber system and a GC-MS method developed for studying exhalation of perfluorobutane in rats after intravenous injection of the ultrasound contrast agent Sonazoid. J. Pharm. Biomed. Anal. 2005, 39, 746–751. [Google Scholar]
- Lindstrom, N.M.; Moore, D.M.; Zimmerman, K.; Smith, S.A. Hematologic assessment in pet rats, mice, hamsters, and gerbils: Blood sample collection and blood cell identification. Vet. Clin. N. Am. Exot. Anim. Pract. 2015, 18, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Veskoukis, A.S.; Margaritelis, N.V.; Kyparos, A.; Paschalis, V.; Nikolaidis, M.G. Spectrophotometric assays for measuring redox biomarkers in blood and tissues: The NADPH network. Redox Rep. 2018, 23, 47–56. [Google Scholar] [CrossRef]
- Gholami, A.; Golbabaei, F.; Teimori, G.; Kianmehr, M.; Yaseri, M. Investigation of blood and urine malondialdehyde levels in mice exposed to silica dust. Open Biochem. J. 2019, 13, 32–36. [Google Scholar] [CrossRef]
- Kaneko, K.; Osman, N.; Carini, V.; Scagnetti, G.; Saleem, I. Overview of the advantages and disadvantages of different mucosal sites for the delivery of nanoparticles. In Mucosal Delivery of Drugs and Biologics in Nanoparticles; Muttil, P., Kunda, N., Eds.; AAPS Advances in the Pharmaceutical Sciences Series; Springer: Cham, Switzerland, 2020; Volume 41. [Google Scholar]
- Rahmani Del Bakhshayesh, A.; Akbarzadeh, A.; Alihemmati, A.; Tayefi Nasrabadi, H.; Montaseri, A.; Davaran, S.; Abedelahi, A. Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nanoparticles for sustained NSAID delivery. Drug Deliv. 2020, 27, 269–282. [Google Scholar] [CrossRef]
- Espinosa-Cano, E.; Aguilar, M.R.; Portilla, Y.; Barber, D.F.; San Román, J. Anti-inflammatory polymeric nanoparticles based on ketoprofen and dexamethasone. Pharmaceutics 2020, 12, 723. [Google Scholar] [CrossRef]
- Al-Khoury, H.; Espinosa-Cano, E.; Aguilar, M.; Román, J.S.; Syrowatka, F.; Schmidt, G.; Groth, T. Anti-inflammatory surface coatings based on polyelectrolyte multilayers of heparin and polycationic nanoparticles of naproxen bearing polymeric drugs. Biomacromolecules 2019, 20, 4015–4025. [Google Scholar] [CrossRef]
- Kuskov, A.; Nikitovic, D.; Berdiaki, A.; Shtilman, M.; Tsatsakis, A. Amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for nonsteroidal anti-inflammatory drugs: Pharmacokinetic, anti-inflammatory, and ulcerogenic activity study. Pharmaceutics 2022, 14, 925. [Google Scholar] [CrossRef]
- Nasra, S.; Bhatia, D.; Kumar, A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv. 2022, 4, 3479–3494. [Google Scholar] [CrossRef]
- Babaie, S.; Taghvimi, A.; Charkhpour, M.; Zarebkohan, A.; Keyhanvar, P.; Hamishehkar, H. Optimization of influential variables in the development of buprenorphine and bupivacaine loaded invasome for dermal delivery. Adv. Pharm. Bull. 2021, 11, 522–529. [Google Scholar] [CrossRef]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 164, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Andra, V.V.S.N.L.; Pammi, S.V.N.; Bhatraju, L.V.K.P.; Ruddaraju, L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. BioNanoSci 2022, 12, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Hani, U.; Choudhary, V.T.; Ghazwani, M.; Alghazwani, Y.; Osmani, R.A.M.; Kulkarni, G.S.; Shivakumar, H.G.; Wani, S.U.D.; Paranthaman, S. Nanocarriers for delivery of anticancer drugs: Current developments, challenges, and perspectives. Pharmaceutics 2024, 16, 1527. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug. Deliv. Transl. Res. 2021, 11, 471–497. [Google Scholar] [CrossRef]
- Dreve, S.; Kacso, I.; Bratu, I.; Indrea, E. Chitosan-based delivery systems for diclofenac delivery: Preparation and characterization. J. Phys. Conf. Ser. 2009, 182, 012065. [Google Scholar] [CrossRef]
- Silvestre, F.; Santos, C.; Silva, V.; Ombredane, A.; Pinheiro, W.; Andrade, L.; Garcia, M.; Pacheco, T.; Joanitti, G.; Luz, G.; et al. Pharmacokinetics of Curcumin Delivered by Nanoparticles and the Relationship with Antitumor Efficacy: A Systematic Review. Pharmaceuticals 2023, 16, 943. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, M.; Zou, Y.; Yang, D.; Deng, Y.; Lin, S.; Song, Y.; Li, R.; Zheng, Y. Development of nanoparticle-based drug delivery system for inflammation treatment and diagnosis. MedComm Biomater. Appl. 2023, 2, e65. [Google Scholar] [CrossRef]
- Afkhami, A.; Atousa, B.; Tayyebeh, M. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. 2016, C59, 168–176. [Google Scholar] [CrossRef]
- Schmidt, M.; Sørensen, H.T.; Pedersen, L. Diclofenac use and cardiovascular risks: Series of nationwide cohort studies. BMJ 2018, 362, 426. [Google Scholar] [CrossRef]
- Mayuri, K.; Mohan Chinnala, K. Preparation, optimization and evaluation of liposomes encapsulating diclofenac sodium and charge inducers to enhance stability using lipid hydration method. IJPPR 2016, 6, 181–191. [Google Scholar]
- Lopes, L.B.; Scarpa, M.V.; Pereira, N.L.; de Oliveira, L.C.; Oliveira, A.G. Interaction of sodium diclofenac with freeze-dried soya phosphatidylcholine and unilamellar liposomes. Rev. Bras. Cienc. Farm. 2006, 42, 8. [Google Scholar] [CrossRef]
- Yamauchi, K.; Samanya, M.; Seki, K.; Ijiri, N.; Thongwittaya, N. Influence of dietary sesame meal level on histological alterations of the intestinal mucosa and growth performance of chickens. J. Appl. Poultry Res. 2006, 15, 266–273. [Google Scholar] [CrossRef]
- Cooper, D.L.; Harirforoosh, S. Effect of formulation variables on preparation of celecoxib loaded polylactide-co-glycolide nanoparticles. PLoS ONE 2014, 9, e113558. [Google Scholar] [CrossRef] [PubMed]
- Al-Kahtani Ahmed, A.; Bhojya Naik, H.S.; Sherigara, B.S. Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr. Res. 2009, 344, 699–706. [Google Scholar] [CrossRef]
- Pereira-Leite, C.; Jamal, S.K.; Almeida, J.P.; Coutinho, A.; Prieto, M.; Cuccovia, I.M.; Nunes, C.; Reis, S. Neutral diclofenac causes remarkable changes in phosphatidylcholine bilayers: Relevance for gastric toxicity mechanisms. Mol. Pharmacol. 2020, 97, 295–303. [Google Scholar] [CrossRef]
- Zafar, A.; Alruwaili, N.K.; Imam, S.S.; Yasir, M.; Alsaidan, O.A.; Alquraini, A.; Rawaf, A.; Alsuwayt, B.; Anwer, M.K.; Alshehri, S.; et al. Development and optimization of nanolipid-based formulation of diclofenac sodium: In vitro characterization and preclinical evaluation. Pharmaceutics 2022, 14, 507. [Google Scholar] [CrossRef]
- Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm. (Cairo) 2014, 2014, 801820. [Google Scholar] [CrossRef]
- Rasel, M.A.T.; Hasan, M. Formulation and evaluation of floating alginate beads of diclofenac sodium. Dhaka Univ. J. Pharm. Sci. 2012, 11, 29–35. [Google Scholar] [CrossRef]
- Bhattacharya, S. Preparation and evaluation of diclofenac sodium niosomes using round bottom flask method. AJP 2020, 14, 188–194. [Google Scholar]
- Sabeti, B.; Ibrahim, M.; Javar, H.A.; Davoudi, E.; Kadivar, A. Characterization of diclofenac liposomes formulated with palm oil fractions. Biomed. Res. Int. 2014, 2014, 25–29. [Google Scholar] [CrossRef]
- Fan, Y.; Marioli, M.; Zhang, K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021, 192, 113642. [Google Scholar] [CrossRef] [PubMed]
- Jithan, A.V.; Swathi, M. Development of topical diclofenac sodium liposomal gel for better antiinflammatory activity. Int. J. Pharm. Sci. Nanotechnol. 2010, 3, 986–993. [Google Scholar] [CrossRef]
- Goh, J.Z.; Tang, S.N.; Zurain, A.; Zakaria, Z.A.; Kadir, A.A.; Chiong, H.S.; Fauzee, M.S.O.; Haklm, M.N. Enhanced anti-inflammatory effects of DCF liposomes. Mol. Pharm. 2013, 10, 2486–2497. [Google Scholar]
System | Size (nm) | Zeta Potential (mV) |
---|---|---|
DCF (solution) | 3210 ± 21.45 | −1.62 ± 0.05 |
uncoated DCF lipid vesicles | 120 ± 8.15 | −31.7 ± 1.03 |
DCF-m | 562 ± 13.37 | +45 ± 1.67 |
Group | Mean Changes in the Animal Weight (g) After 7 Days | Dry Granuloma Mass (mg) at Baseline | Dry Granuloma Mass (mg) After 7 Days |
---|---|---|---|
Control | +7.3 ± 1.1 ## | 62 | 112.8 ± 5.5 ## |
DCF | +2.5 ± 0.7 ** | 62 | 69.3 ± 1.9 ** |
DCF-m | +2.2 ± 0.5 ** | 62 | 67.5 ± 3.7 ** |
White Blood Count (%) | ||||||
---|---|---|---|---|---|---|
PMN | Ly | E | M | B | ||
Negative control | baseline | 17.67 ± 3.19 | 76.36 ± 8.41 | 2.37 ± 0.11 | 3.41 ± 0.09 | 0.19 ± 0.01 |
7 days | 17.83 ± 3.21 ** | 76.50 ± 7.93 ** | 2.19 ± 0.15 | 3.33 ± 0.13 | 0.15 ± 0.01 | |
Control | baseline | 17.45 ± 3.43 | 76.92 ± 8.55 | 2.21 ± 0.21 | 3.29 ± 0.15 | 0.13 ± 0.03 |
7 days | 35.33 ± 4.45 ## | 58.79 ± 8.29 ## | 2.42 ± 0.17 | 3.25 ± 0.21 | 0.21 ± 0.03 | |
DCF | baseline | 17.49 ± 3.67 | 76.84 ± 7.85 | 2.13 ± 0.13 | 3.37 ± 0.17 | 0.17 ± 0.01 |
72 h | 22.83 ± 4.51 * | 71.32 ± 8.29 * | 2.45 ± 0.21 | 3.21 ± 0.25 | 0.19 ± 0.05 | |
DCF-m | baseline | 17.31 ± 3.55 | 77.02 ± 8.19 | 2.33 ± 0.27 | 3.17 ± 0.33 | 0.17 ± 0.03 |
7 days | 22.55 ± 5.13 * | 71.70 ± 8.67 * | 2.15 ± 0.15 | 3.45 ± 0.27 | 0.15 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauna, A.-M.R.; Tartau, L.M.; Vasilescu, A.M.; Abu Koush, A.; Stan, R.T.; Moraru, M.C.; Popa, C.G.; Gavril, L.C.; Florentina Gavril, R.; Crauciuc, D.V.; et al. Assessment of the Anti-Inflammatory Effectiveness of Diclofenac Encapsulated in Chitosan-Coated Lipid Microvesicles in Rats. Pharmaceutics 2025, 17, 607. https://doi.org/10.3390/pharmaceutics17050607
Pauna A-MR, Tartau LM, Vasilescu AM, Abu Koush A, Stan RT, Moraru MC, Popa CG, Gavril LC, Florentina Gavril R, Crauciuc DV, et al. Assessment of the Anti-Inflammatory Effectiveness of Diclofenac Encapsulated in Chitosan-Coated Lipid Microvesicles in Rats. Pharmaceutics. 2025; 17(5):607. https://doi.org/10.3390/pharmaceutics17050607
Chicago/Turabian StylePauna, Ana-Maria Raluca, Liliana Mititelu Tartau, Alin Mihai Vasilescu, Angy Abu Koush, Ruxandra Teodora Stan, Marius Constatin Moraru, Cosmin Gabriel Popa, Liviu Ciprian Gavril, Roxana Florentina Gavril, Dragos Valentin Crauciuc, and et al. 2025. "Assessment of the Anti-Inflammatory Effectiveness of Diclofenac Encapsulated in Chitosan-Coated Lipid Microvesicles in Rats" Pharmaceutics 17, no. 5: 607. https://doi.org/10.3390/pharmaceutics17050607
APA StylePauna, A.-M. R., Tartau, L. M., Vasilescu, A. M., Abu Koush, A., Stan, R. T., Moraru, M. C., Popa, C. G., Gavril, L. C., Florentina Gavril, R., Crauciuc, D. V., Radulescu, A. M., & Stan, C. I. (2025). Assessment of the Anti-Inflammatory Effectiveness of Diclofenac Encapsulated in Chitosan-Coated Lipid Microvesicles in Rats. Pharmaceutics, 17(5), 607. https://doi.org/10.3390/pharmaceutics17050607