Unraveling the Mechanisms, Clinical Impact, Comparisons, and Safety Profiles of Slow-Release Therapies in Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Extraocular Drug Delivery Platforms
4.1.1. Surface Devices/Topical Agents
4.1.2. Ocular Inserts
4.2. Periocular Drug Delivery Platforms
4.3. Intraocular Drug Delivery Platforms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayaram, H.; Kolko, M.; Friedman, D.S.; Gazzard, G. Glaucoma: Now and beyond. Lancet 2023, 402, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, Y.; Liu, Z.; Zhao, J. Global, regional and national burden of Glaucoma: An update analysis from the Global Burden of Disease Study 2019. Int. Ophthalmol. 2024, 44, 234. [Google Scholar] [CrossRef] [PubMed]
- Balas, M.; Mathew, D.J. Minimally Invasive Glaucoma Surgery: A Review of the Literature. Vision 2023, 7, 54. [Google Scholar] [CrossRef]
- Krauland, A.H.; Leitner, V.M.; Bernkop-Schnurch, A. Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. J. Pharm. Sci. 2003, 92, 1234–1241. [Google Scholar] [CrossRef]
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47–64. [Google Scholar] [CrossRef]
- Uusitalo, H.; Kahonen, M.; Ropo, A.; Maenpaa, J.; Bjarnhall, G.; Hedenstrom, H.; Turjanmaa, V. Improved systemic safety and risk-benefit ratio of topical 0.1% timolol hydrogel compared with 0.5% timolol aqueous solution in the treatment of glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 1491–1496. [Google Scholar] [CrossRef]
- Fedorchak, M.V.; Conner, I.P.; Schuman, J.S.; Cugini, A.; Little, S.R. Long Term Glaucoma Drug Delivery Using a Topically Retained Gel/Microsphere Eye Drop. Sci. Rep. 2017, 7, 8639. [Google Scholar] [CrossRef]
- Fedorchak, M.V.; Little, S.R.; Schuman, J.S. Thermoresponsive Hydrogel Containing Polymer Microparticles for Controlled Drug Delivery to the Ear. U.S. Patent 2021015770-A1, 1 November 2022. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-2021015770-A1 (accessed on 16 March 2025).
- Shafiee, A.; Bowman, L.M.; Hou, E.; Hosseini, K. Ocular pharmacokinetics of bimatoprost formulated in DuraSite compared to bimatoprost 0.03% ophthalmic solution in pigmented rabbit eyes. Clin. Ophthalmol. 2013, 7, 1549–1556. [Google Scholar] [CrossRef]
- Vaneev, A.; Tikhomirova, V.; Chesnokova, N.; Popova, E.; Beznos, O.; Kost, O.; Klyachko, N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int. J. Mol. Sci. 2021, 22, 12368. [Google Scholar] [CrossRef]
- Fea, A.M.; Novarese, C.; Caselgrandi, P.; Boscia, G. Glaucoma Treatment and Hydrogel: Current Insights and State of the Art. Gels 2022, 8, 510. [Google Scholar] [CrossRef]
- Omerović, N.; Vranić, E. Application of nanoparticles in ocular drug delivery systems. Health Technol. 2020, 10, 61–78. [Google Scholar] [CrossRef]
- Moisseiev, E.; Kurtz, S.; Lazar, M.; Shemesh, G. Intraocular pressure reduction using a fixed combination of timolol maleate 0.5% and brimonidine tartrate 0.2% administered three times daily. Clin. Ophthalmol. 2013, 7, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Zembala, J.; Forma, A.; Zembala, R.; Januszewski, J.; Zembala, P.; Adamowicz, D.; Teresiński, G.; Buszewicz, G.; Flieger, J.; Baj, J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J. Clin. Med. 2023, 12, 5798. [Google Scholar] [CrossRef]
- Jiang, G.; Jia, H.; Qiu, J.; Mo, Z.; Wen, Y.; Zhang, Y.; Wen, Y.; Xie, Q.; Ban, J.; Lu, Z.; et al. PLGA Nanoparticle Platform for Trans-Ocular Barrier to Enhance Drug Delivery: A Comparative Study Based on the Application of Oligosaccharides in the Outer Membrane of Carriers. Int. J. Nanomed. 2020, 15, 9373–9387. [Google Scholar] [CrossRef]
- Tsai, C.H.; Wang, P.Y.; Lin, I.C.; Huang, H.; Liu, G.S.; Tseng, C.L. Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application. Int. J. Mol. Sci. 2018, 19, 2830. [Google Scholar] [CrossRef]
- Salama, H.A.; Ghorab, M.; Mahmoud, A.A.; Hady, M.A. PLGA Nanoparticles as Subconjunctival Injection for Management of Glaucoma. AAPS PharmSciTech 2017, 18, 2517–2528. [Google Scholar] [CrossRef]
- Arafa, M.G.; Girgis, G.N.; El-Dahan, M.S. Chitosan-Coated PLGA Nanoparticles for Enhanced Ocular Anti-Inflammatory Efficacy of Atorvastatin Calcium. Int. J. Nanomed. 2020, 15, 1335–1347. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, A.; Wang, F.; Li, H.; Jin, Q.; Huang, L.; Fu, C.; Zeng, J.; Jin, Z.; Song, X. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chin. Chem. Lett. 2020, 31, 494–500. [Google Scholar] [CrossRef]
- Shrivastava, N.; Khan, S.; Baboota, S.; Ali, J. Fabrication and Characterization of Timolol Maleate and Brinzolamide Loaded Nanostructured Lipid Carrier System for Ocular Drug Delivery. Curr. Drug Deliv. 2018, 15, 829–839. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Singh, R.B.; Ichhpujani, P.; Thakur, S.; Jindal, S. Promising therapeutic drug delivery systems for glaucoma: A comprehensive review. Ther. Adv. Ophthalmol. 2020, 12, 2515841420905740. [Google Scholar] [CrossRef] [PubMed]
- Maulvi, F.A.; Soni, T.G.; Shah, D.O. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016, 23, 3017–3026. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.H.; Carbia, B.E.; Plummer, C.; Chauhan, A. Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. Eur. J. Pharm. Biopharm. 2015, 94, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Ciolino, J.B.; Stefanescu, C.F.; Ross, A.E.; Salvador-Culla, B.; Cortez, P.; Ford, E.M.; Wymbs, K.A.; Sprague, S.L.; Mascoop, D.R.; Rudina, S.S.; et al. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials 2014, 35, 432–439. [Google Scholar] [CrossRef]
- Levine, D.; Albini, T.A.; Fine, H.F.; Yeh, S. Emerging Drug Delivery Systems for Posterior Segment Disease. Ophthalmic Surg. Lasers Imaging Retin. 2020, 51, 132–135. [Google Scholar] [CrossRef]
- Guo, Y.; Johnson, M.A.; Mehrabian, Z.; Mishra, M.K.; Kannan, R.; Miller, N.R.; Bernstein, S.L. Dendrimers Target the Ischemic Lesion in Rodent and Primate Models of Nonarteritic Anterior Ischemic Optic Neuropathy. PLoS ONE 2016, 11, e0154437. [Google Scholar] [CrossRef]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5. [Google Scholar] [CrossRef]
- Pollack, I.P.; Quigley, H.A.; Harbin, T.S. The Ocusert pilocarpine system: Advantages and disadvantages. South. Med. J. 1976, 69, 1296–1298. [Google Scholar] [CrossRef]
- Brandt, J.D.; Sall, K.; DuBiner, H.; Benza, R.; Alster, Y.; Walker, G.; Semba, C.P. Six-Month Intraocular Pressure Reduction with a Topical Bimatoprost Ocular Insert: Results of a Phase II Randomized Controlled Study. Ophthalmology 2016, 123, 1685–1694. [Google Scholar] [CrossRef]
- Crawford, K.; Ellis, J.; Rulander, J.; Johnston, S.; Lai, F.; Ellis, E.; Leahy, C. Sustained Delivery of Prostaglandin from Drug-Containing Depots Using Ocular Rings in Beagles. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5073. [Google Scholar]
- Leahy, C.D.; Ellis, E.J.; Ellis, J.Y.; Crawford, K.S. Efficacy of a Topical Ocular Drug Delivery Device (TODDD) for the Treatment of Glaucoma by Telemetric Measurement of IOP in the Normal Rabbit. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5816. [Google Scholar]
- Perera, S.A.; Ting, D.S.; Nongpiur, M.E.; Chew, P.T.; Aquino, M.C.; Sng, C.C.; Ho, S.W.; Aung, T. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin. Ophthalmol. 2016, 10, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Vantipalli, S.; Sall, K.N.; Stein, E.; Schenker, H.; Mulaney, J.; Smyth-Medina, R.; Day, D.; Benza, R.; Dixon, E.-R.; Rissman, N.; et al. Evaluation of the safety and efficacy of OTX-TP, an intracanalicular travoprost insert, for the treatment of patients with open-angle glaucoma or ocular hypertension: A Phase 3 Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3488. [Google Scholar]
- Goldberg, D.F.; Williams, R. A Phase 2 Study Evaluating Safety and Efficacy of the Latanoprost Punctal Plug Delivery System (L-PPDS) in Subjects with Ocular Hypertension (OH) or Open-Angle Glaucoma (OAG). Investig. Ophthalmol. Vis. Sci. 2012, 53, 5095. [Google Scholar]
- Al-Qaysi, Z.K.; Beadham, I.G.; Schwikkard, S.L.; Bear, J.C.; Al-Kinani, A.A.; Alany, R.G. Sustained release ocular drug delivery systems for glaucoma therapy. Expert. Opin. Drug Deliv. 2023, 20, 905–919. [Google Scholar] [CrossRef]
- Amrite, A.C.; Ayalasomayajula, S.P.; Cheruvu, N.P.; Kompella, U.B. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1149–1160. [Google Scholar] [CrossRef]
- Amrite, A.C.; Kompella, U.B. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol. 2005, 57, 1555–1563. [Google Scholar] [CrossRef]
- American Academy of Ophthalmology. Subconjunctival Latanoprost Implant Shows Sustained IOP Reduction Through 3 Months. 2017. Available online: https://www.aao.org/education/headline/subconjunctival-latanaprost-implant-shows-sustaine (accessed on 16 March 2025).
- Kesav, N.P.; Young, C.E.C.; Ertel, M.K.; Seibold, L.K.; Kahook, M.Y. Sustained-release drug delivery systems for the treatment of glaucoma. Int. J. Ophthalmol. 2021, 14, 148–159. [Google Scholar] [CrossRef]
- Fu, J.; Sun, F.; Liu, W.; Liu, Y.; Gedam, M.; Hu, Q.; Fridley, C.; Quigley, H.A.; Hanes, J.; Pitha, I. Subconjunctival Delivery of Dorzolamide-Loaded Poly(ether-anhydride) Microparticles Produces Sustained Lowering of Intraocular Pressure in Rabbits. Mol. Pharm. 2016, 13, 2987–2995. [Google Scholar] [CrossRef]
- An Open-Label Comparison of the Safety and Efficacy of Subconjunctival Liposomal Latanoprost (POLAT-001) to Latanoprost Ophthalmic Solution in Patients with Ocular Hypertension and Primary Open Angle Glaucoma. ClinicalTrials.gov identifier: NCT02466399. 2020. Available online: https://clinicaltrials.gov/study/NCT02466399 (accessed on 16 March 2025).
- Jayanetti, V.; Sandhu, S.; Lusthaus, J.A. The Latest Drugs in Development That Reduce Intraocular Pressure in Ocular Hypertension and Glaucoma. J. Exp. Pharmacol. 2020, 12, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Hoang, B.; Crean, C.; Yang, M.; Anonuevo, A.; Peterson, W.; Cleland, J. An Injectable Depot Formulation of an Outflow Prodrug for Sustained Reduction of Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5710. [Google Scholar]
- Chiang, B.; Kim, Y.C.; Doty, A.C.; Grossniklaus, H.E.; Schwendeman, S.P.; Prausnitz, M.R. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J. Control. Release 2016, 228, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Kadam, R.S.; Kompella, U.B. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry. PLoS ONE 2012, 7, e48188. [Google Scholar] [CrossRef]
- So, Y.H.; Mishra, D.; Gite, S.; Sonawane, R.; Waite, D.; Shaikh, R.; Vora, L.K.; Thakur, R.R.S. Emerging trends in long-acting sustained drug delivery for glaucoma management. Drug Deliv. Transl. Res. 2025, 1–28. [Google Scholar] [CrossRef]
- Vagiakis, I.; Papadopoulou, E.P.; Amaxilati, E.; Tsiropoulos, G.N.; Konstas, A.G.; Panos, G.D. Bimatoprost Intracameral Implant (Durysta(R)): A New Era in Glaucoma Management Through Sustained-Release Innovation. Drug Des. Dev. Ther. 2025, 19, 703–714. [Google Scholar] [CrossRef]
- Shirley, M. Bimatoprost Implant: First Approval. Drugs Aging 2020, 37, 457–462. [Google Scholar] [CrossRef]
- Craven, E.R.; Walters, T.; Christie, W.C.; Day, D.G.; Lewis, R.A.; Goodkin, M.L.; Chen, M.; Wangsadipura, V.; Robinson, M.R.; Bejanian, M.; et al. 24-Month Phase I/II Clinical Trial of Bimatoprost Sustained-Release Implant (Bimatoprost SR) in Glaucoma Patients. Drugs 2020, 80, 167–179. [Google Scholar] [CrossRef]
- Lewis, R.A.; Christie, W.C.; Day, D.G.; Craven, E.R.; Walters, T.; Bejanian, M.; Lee, S.S.; Goodkin, M.L.; Zhang, J.; Whitcup, S.M.; et al. Bimatoprost Sustained-Release Implants for Glaucoma Therapy: 6-Month Results from a Phase I/II Clinical Trial. Am. J. Ophthalmol. 2017, 175, 137–147. [Google Scholar] [CrossRef]
- Stamer, W.D.; Perkumas, K.M.; Kang, M.H.; Dibas, M.; Robinson, M.R.; Rhee, D.J. Proposed Mechanism of Long-Term Intraocular Pressure Lowering with the Bimatoprost Implant. Investig. Ophthalmol. Vis. Sci. 2023, 64, 15. [Google Scholar] [CrossRef]
- Sirinek, P.E.; Lin, M.M. Intracameral sustained release bimatoprost implants (Durysta). Semin. Ophthalmol. 2022, 37, 385–390. [Google Scholar] [CrossRef]
- Seal, J.R.; Robinson, M.R.; Burke, J.; Bejanian, M.; Coote, M.; Attar, M. Intracameral Sustained-Release Bimatoprost Implant Delivers Bimatoprost to Target Tissues with Reduced Drug Exposure to Off-Target Tissues. J. Ocul. Pharmacol. Ther. 2019, 35, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Robinson, M.R.; Struble, C.; Attar, M. Nonclinical Pharmacokinetic and Pharmacodynamic Assessment of Bimatoprost Following a Single Intracameral Injection of Sustained-Release Implants. Transl. Vis. Sci. Technol. 2020, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Bacharach, J.; Brubaker, J.W.; Medeiros, F.A.; Bejanian, M.; Bernstein, P.; Robinson, M.R. Bimatoprost Implant Biodegradation in the Phase 3, Randomized, 20-Month ARTEMIS Studies. J. Ocul. Pharmacol. Ther. 2023, 39, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, F.A.; Walters, T.R.; Kolko, M.; Coote, M.; Bejanian, M.; Goodkin, M.L.; Guo, Q.; Zhang, J.; Robinson, M.R.; Weinreb, R.N.; et al. Phase 3, Randomized, 20-Month Study of Bimatoprost Implant in Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 1). Ophthalmology 2020, 127, 1627–1641. [Google Scholar] [CrossRef]
- Glaucoma Research Foundation. FDA Approves New Biodegradable Glaucoma Implant from Allergan. 2024. Available online: https://glaucoma.org/articles/fda-approves-new-biodegradable-glaucoma-implant-from-allergan (accessed on 16 March 2025).
- Glaukos. Glaukos Corporation’s iDoseTM Travoprost Achieves Sustained IOP Reduction and Favorable Safety Profile in 12-Month Interim Cohort. Available online: https://investors.glaukos.com/investors/news/news-details/2018/Glaukos-Corporations-iDose-Travoprost-Achieves-Sustained-IOP-Reduction-and-Favorable-Safety-Profile-in-12-Month-Interim-Cohort/default.aspx (accessed on 16 March 2025).
- Chan, L.; Moster, M.R.; Bicket, A.K.; Sheybani, A.; Sarkisian, S.R.; Samuelson, T.W.; Ahmed, I.I.K.; Miller-Ellis, E.; Smith, O.U.; Cui, Q.N. New Devices in Glaucoma. Ophthalmol. Ther. 2023, 12, 2381–2395. [Google Scholar] [CrossRef]
Keyword | Search String |
---|---|
Ocular | “ocular”[All Fields] OR “oculars”[All Fields] |
Release | “patient discharge”[MeSH Terms] OR (“patient”[All Fields] AND “discharge”[All Fields]) OR “patient discharge”[All Fields] OR “release”[All Fields] OR “released”[All Fields] OR “releases”[All Fields] OR “releasing”[All Fields] |
Therapies | “therapeutics”[MeSH Terms] OR “therapeutics”[All Fields] OR “therapies”[All Fields] OR “therapy”[Subheading] OR “therapy”[All Fields] OR “therapy”[All Fields] OR “therapy”[All Fields] |
Category | Details |
---|---|
Topical Agents | Hydrogel-based Gel-forming Drops: Promising for glaucoma treatment with prolonged drug release. Includes thermo-responsive hydrogels, gel–microsphere systems (SoliDrop), and DuraSite ISV-215. They offer sustained drug release, enhanced bioavailability, and improve patient compliance. |
Contact Lenses | Chemically cross-linked hydrophilic polymers for delivering anti-glaucoma drugs like timolol. Advanced methods like vitamin E-loaded lenses extend release times and improve IOP reduction. These are a promising alternative to conventional eye drops but require periodic replacement for sustained effect. |
Delivery Platform | Route of Administration | Active Agent | Duration of Action | Development Phase | Clinical Outcomes |
---|---|---|---|---|---|
Durysta™ | Intracameral (Intraocular) | Bimatoprost | 4–6 months | FDA Approved | Non-inferior to timolol; well tolerated |
OTX-TP | Intracanalicular (Periocular) | Travoprost | 90 days | Phase III | 3.27–5.72 mmHg IOP reduction; few side effects |
iDose | Intracameral (Intraocular) | Travoprost | Up to 12 months | Phase III | 93% medication-free at 12 months; safe profile |
Evolute PPDS | Punctal Plug (Periocular) | Latanoprost | 12 weeks | Phase II | 20% IOP reduction; high retention, minimal irritation |
POLAT-001 | Subconjunctival (Periocular) | Latanoprost | 3 months | Phase I | >20% IOP reduction; consistent across follow-ups |
IBI-60089 | Subconjunctival (Periocular) | Latanoprost | 6 months | Preclinical | 20% IOP reduction in rabbits for 60 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeppieri, M.; Gagliano, C.; Tognetto, D.; Musa, M.; Rossi, F.B.; Greggio, A.; Gualandi, G.; Galan, A.; Babighian, S. Unraveling the Mechanisms, Clinical Impact, Comparisons, and Safety Profiles of Slow-Release Therapies in Glaucoma. Pharmaceutics 2025, 17, 580. https://doi.org/10.3390/pharmaceutics17050580
Zeppieri M, Gagliano C, Tognetto D, Musa M, Rossi FB, Greggio A, Gualandi G, Galan A, Babighian S. Unraveling the Mechanisms, Clinical Impact, Comparisons, and Safety Profiles of Slow-Release Therapies in Glaucoma. Pharmaceutics. 2025; 17(5):580. https://doi.org/10.3390/pharmaceutics17050580
Chicago/Turabian StyleZeppieri, Marco, Caterina Gagliano, Daniele Tognetto, Mutali Musa, Federico Bernardo Rossi, Angelo Greggio, Giuliano Gualandi, Alessandro Galan, and Silvia Babighian. 2025. "Unraveling the Mechanisms, Clinical Impact, Comparisons, and Safety Profiles of Slow-Release Therapies in Glaucoma" Pharmaceutics 17, no. 5: 580. https://doi.org/10.3390/pharmaceutics17050580
APA StyleZeppieri, M., Gagliano, C., Tognetto, D., Musa, M., Rossi, F. B., Greggio, A., Gualandi, G., Galan, A., & Babighian, S. (2025). Unraveling the Mechanisms, Clinical Impact, Comparisons, and Safety Profiles of Slow-Release Therapies in Glaucoma. Pharmaceutics, 17(5), 580. https://doi.org/10.3390/pharmaceutics17050580