In Vitro Development of Local Antiviral Formulations with Potent Virucidal Activity Against SARS-CoV-2 and Influenza Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Investigation of Optimal Surfactants for Formulations Containing DLM
2.3. Formulation of Oral Solution Containing DLM, ML, CPC, and Cremophor RH40
2.4. Formulation of Nasal Solution Containing DLM, CPC, and Cremophor RH40
2.5. Stability Testing
2.6. Analysis of DLM Using Gas Chromatography–Mass Spectrometry (GC-MS)
2.6.1. Preparation of DLM Calibration Curve
2.6.2. Extraction of DLM Samples
2.6.3. GC-MS Analysis
2.7. Analysis of ML Using Gas Chromatography–Flame Ionization Detector (GC-FID)
2.7.1. Preparation of ML Calibration Curve
2.7.2. Extraction of ML Samples
2.7.3. GC-FID Analysis
2.8. Analysis of CPC Using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD)
2.8.1. Preparation of CPC Calibration Curve
2.8.2. Extraction of CPC Samples
2.8.3. HPLC-DAD Analysis
2.9. Percentage Transmittance and pH Measurements
2.10. Contamination
2.10.1. Heavy Metal Contamination
2.10.2. Microbial Contamination
2.11. In Vitro Antiviral Activity Assay
2.11.1. Anti-SARS-CoV-2 Activity Assays
2.11.2. Anti-Influenza Activity Assays
- D1 = the last dilution at which 100% of the wells show CPE,
- D2 = the first dilution at which 0% of the wells show CPE.
2.12. Statistical Analysis
3. Results
3.1. Evaluation and Selection of Suitable Surfactants for DLM Formulations
3.2. Development of Formulations Containing DLM, CPC, ML, and Cremophor RH40
3.3. Virucidal Activity and Cytotoxicity of Formulations Containing DLM, CPC, ML, and Cremophor RH40
3.4. Assessment of Heavy Metals and Microbial Contamination in Oral and Nasal Formulations Containing DLM, CPC, ML, and Cremophor RH40
3.5. An Evaluation of the Stability of Oral and Nasal Formulations Containing DLM, CPC, ML, and Cremophor RH40
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020, 382, 1177–1179. [Google Scholar] [CrossRef]
- Moghadami, M. A Narrative review of influenza: A seasonal and pandemic disease. Iran J. Med. Sci. 2017, 42, 2–13. [Google Scholar] [PubMed]
- Fadilah, N.Q.; Jittmittraphap, A.; Leaungwutiwong, P.; Pripdeevech, P.; Dhanushka, D.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Virucidal activity of essential oils from Citrus × aurantium L. against influenza A virus H1N1: Limonene as a potential household disinfectant against virus. Nat. Prod. Commun. 2022, 17, 1934578X211072713. [Google Scholar] [CrossRef]
- Lin, H.; Li, Z.; Sun, Y.; Zhang, Y.; Wang, S.; Zhang, Q.; Cai, T.; Xiang, W.; Zeng, C.; Tang, J. D-limonene: Promising and sustainable natural bioactive compound. Appl. Sci. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Gupta, A.; Jeyakumar, E.; Lawrence, R. Journey of limonene as an antimicrobial agent. J. Pure Appl. Microbiol. 2021, 15, 1094–1110. [Google Scholar] [CrossRef]
- Weerapol, Y.; Manmuan, S.; Limmatvapirat, S.; Limmatvapirat, C.; Sirirak, J.; Tamdee, P.; Tubtimsri, S. Enhancing the efficacy of monolaurin against SARS-CoV-2 and influenza A (H1N1) with a nanoemulsion formulation. OpenNano 2024, 17, 100207. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R. Bioactive monolaurin as an antimicrobial and its potential to improve the immune system and against COVID-19: A review. Food Res. 2020, 4, 2355–2365. [Google Scholar] [CrossRef]
- Subroto, E. Monoacylglycerols and diacylglycerols for fat-based food products: A review. Food Res. 2020, 4, 932–943. [Google Scholar] [CrossRef]
- Tarragó-Gil, R.; Gil-Mosteo, M.J.; Aza-Pascual-Salcedo, M.; Alvarez, M.J.L.; Ainaga, R.R.; Gimeno, N.L.; Viñuales, R.F.; Fernández, Y.M.; Marco, J.M.; Bolsa, E.A.; et al. Randomized clinical trial to assess the impact of oral intervention with cetylpyridinium chloride to reduce salivary SARS-CoV-2 viral load. J. Clin. Periodontol. 2023, 50, 288–294. [Google Scholar] [CrossRef]
- Popkin, D.L.; Zilka, S.; Dimaano, M.; Fujioka, H.; Rackley, C.; Salata, R.; Griffith, A.; Mukherjee, P.K.; Ghannoum, M.A.; Esper, F. Cetylpyridinium chloride (CPC) exhibits potent, rapid activity against influenza viruses in vitro and in vivo. Pathog. Immun. 2017, 2, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Bañó-Polo, M.; Martínez-Gil, L.; Sánchez del Pino, M.M.; Massoli, A.; Mingarro, I.; Léon, R.; Garcia-Murria, M.J. Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles. J. Oral Microbiol. 2022, 14, 2030094. [Google Scholar] [CrossRef]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Comparison of in vitro inactivation of SARS-CoV-2 with hydrogen peroxide and povidone-iodine oral antiseptic rinses. J. Prosthodont. 2020, 29, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Rius-Salvador, M.; García-Múrria, M.J.; Rusu, L.; Bañó-Polo, M.; León, R.; Geller, R.; Mingarro, I.; Martinez-Gil, L. Cetylpyridinium chloride and chlorhexidine show antiviral activity against influenza A virus and respiratory syncytial virus in vitro. PLoS ONE 2024, 19, e0297291. [Google Scholar] [CrossRef]
- Koch-Heier, J.; Hoffmann, H.; Schindler, M.; Lussi, A.; Planz, O. Inactivation of SARS-CoV-2 through treatment with the mouth rinsing solutions ViruProX® and BacterX® Pro. Microorganisms 2021, 9, 521. [Google Scholar] [CrossRef]
- Rodríguez-Casanovas, H.J.; la Rosa, M.D.; Bello-Lemus, Y.; Rasperini, G.; Acosta-Hoyos, A.J. Virucidal activity of different mouthwashes using a novel biochemical assay. Healthcare 2021, 10, 63. [Google Scholar] [CrossRef]
- Bernal, C.G.G.; Uribe, E.R.; Flores, J.S.; Hernández, J.J.V.; Gómez-Sandoval, J.R.; Salazar, S.Y.M.; Maldonado, A.F.G.; Aguilar Martínez, J.A.; Martínez, S.M.L. Oral antiseptics against SARS-CoV-2: A literature review. Int. J. Environ. Res. Public Health 2022, 19, 8768. [Google Scholar] [CrossRef]
- Toschi, E.M.; Mercado, L.W.; Henz, S.L. Antiviral effect of oral antiseptic solutions commonly used in dentistry practice: A scoping review. Dent. Rev. 2023, 3, 100064. [Google Scholar] [CrossRef]
- Parikh-Das, A.M.; Sharma, N.C.; Du, Q.; Charles, C.A. Superiority of essential oils versus 0.075% CPC-containing mouthrinse: A two-week randomized clinical trial. J. Clin. Dent. 2013, 24, 94–99. [Google Scholar]
- Camargo, F.P.; Sarti, A.; Alécio, A.C.; Sabatini, C.A.; Adorno, M.A.T.; Duarte, I.C.S.; Varesche, M.B.A. Limonene quantification by gas chromatography with mass spectrometry (GC-MS) and its effects on hydrogen and volatile fatty acids production in anaerobic reactors. Artigo Quím. Nova 2020, 43, 844–850. [Google Scholar] [CrossRef]
- Ponphaiboon, J.; Limmatvapirat, S.; Chaidedgumjorn, A.; Limmatvapirat, C. Optimization and comparison of GC-FID and HPLC-ELSD methods for determination of lauric acid, mono-, di-, and trilaurins in modified coconut oil. J. Chromatogr. B 2018, 1099, 110–116. [Google Scholar] [CrossRef]
- Belal, T.S.; Shaalan, R.; Haggag, R.S. Gradient HPLC-diode array detector stability-indicating determination of lidocaine hydrochloride and cetylpyridinium chloride in two combined oral gel dosage forms. J. AOAC Int. 2011, 94, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Ponphaiboon, J.; Limmatvapirat, S.; Limmatvapirat, C. Development and evaluation of a dry emulsion of ostrich oil as a dietary supplement. Foods 2024, 13, 2570. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeial Convention. <61> Microbiological Examination of Nonsterile Products: Microbial Enumeration Tests, in the United States Pharmacopeia 43 and the National Formulary 38; The United States Pharmacopeial Convention: Rockville, MD, USA, 2020. [Google Scholar]
- Maikhunthod, B.; Chaipayang, S.; Jittmittraphap, A.; Thippornchai, N.; Boonchuen, P.; Tittabutr, P.; Eumkeb, G.; Sabuakham, S.; Rungrotmongkol, T.; Mahalapbutr, P.; et al. Exploring the therapeutic potential of Thai medicinal plants: In vitro screening and in silico docking of phytoconstituents for novel antiSARS-CoV-2 agents. BMC Complement. Altern. Med. 2024, 24, 274. [Google Scholar] [CrossRef]
- ASTM E1053–20; Standard Practice to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/Standards/E1053.htm (accessed on 22 March 2022).
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the calculation of TCID50 for quantitation of virus infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Blanco, S.; González-Freire, L.; Dávila-Pousa, M.C.; Crespo-Diz, C. pH determination as a quality standard for the elaboration of oral liquid compounding formula. Farm. Hosp. 2018, 42, 221–227. [Google Scholar] [CrossRef]
- Salade, L.; Wauthoz, N.; Goole, J.; Amighi, K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int. J. Pharm. 2019, 561, 47–65. [Google Scholar] [CrossRef]
- Gorjian, H.; Mihankhah, P.; Khaligh, N.G. Influence of tween nature and type on physicochemical properties and stability of spearmint essential oil (Mentha spicata L.) stabilized with basil seed mucilage nanoemulsion. J. Mol. Liq. 2022, 359, 119379. [Google Scholar] [CrossRef]
- Coupland, J.N.; Hayes, J.E. Physical approaches to masking bitter taste: Lessons from food and pharmaceuticals. Pharm. Res. 2014, 31, 2921–2939. [Google Scholar] [CrossRef]
- Christiansen, A.; Backensfeld, T.; Weitschies, W. Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes. Eur. J. Pharm. Sci. 2010, 41, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Kiss, L.; Walter, F.R.; Bocsik, A.; Veszelka, S.; Ózsvári, B.; Puskás, L.G.; Szabó-Révész, P.; Deli, M.A. Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells. J. Pharm. Sci. 2013, 102, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Horvát, S.; Fehér, A.; Wolburg, H.; Sipos, P.; Veszelka, S.; Tóth, A.; Kis, L.; Kurunczi, A.; Balogh, G.; Kürti, L.; et al. Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. Eur. J. Pharm. Biopharm. 2009, 72, 252–259. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeial Convention. <232> Elemental Impurities—Limits, in the United States Pharmacopeia 43 and the National Formulary 38; The United States Pharmacopeial Convention: Rockville, MD, USA, 2020. [Google Scholar]
- The United States Pharmacopeial Convention. <1111> Microbiological Examination of Nonsterile Products: Acceptance Criteria for Pharmaceutical Preparations and Substances for Pharmaceutical Use, in the United States Pharmacopeia 43 and the National Formulary 38; The United States Pharmacopeial Convention: Rockville, MD, USA, 2020. [Google Scholar]
Ingredient | Concentration (% w/w) | Part |
---|---|---|
DLM | 0.3 | Oil part 1 |
ML | 0.2 | |
Cremophor RH40 | 0.5 | |
Menthol | 0.1 | Oil part 2 |
Peppermint oil | 0.1 | |
Cremophor RH40 | 1.0 | |
CPC | 0.05 | Aqueous part |
Glycerin | 25 | |
1% w/w Tartrazine (INS No. 102) aqueous solution | 1 | |
Distilled water | q.s. solution to 100 g |
Ingredient | Concentration (% w/w) | Part | |
---|---|---|---|
Before Dilution | After a 1:20 Dilution | ||
DLM | 4.20 | 0.20 | Oil part |
Cremophor RH40 | 15.75 | 0.75 | |
Menthol | 0.21 | 0.01 | |
CPC | 1.05 | 0.05 | Aqueous part |
Sterile 0.9% w/v sodium chloride solution | q.s. solution to 100 g | q.s. solution to 1050 g |
Surfactant | Ratio of DLM to Surfactant | % Transmittance | pH | ||
---|---|---|---|---|---|
1 Day | Temperature Cycling Test | 1 Day | Temperature Cycling Test | ||
Tween 20 | 1:5 | 0.10 ± 0.00 Z | 0.83 ± 0.01 X,Y | 6.40 ± 0.08 c | 5.98 ± 0.12 d,e |
1:6 | 0.30 ± 0.00 Y,Z | 0.77 ± 0.00 Y | 5.82 ± 0.12 d,e,f | 5.40 ± 0.09 g | |
1:7 | 1.63 ± 0.06 X | 1.13 ± 0.12 X | 5.83 ± 0.14 d,e,f | 5.39 ± 0.26 g,h | |
1:8 | 4.90 ± 0.36 V | 52.40 ± 0.33 P | 6.20 ± 0.02 c,d | 5.47 ± 0.22 g | |
1:9 | 94.63 ± 0.06 F | 81.10 ± 0.00 L | 5.90 ± 0.09 d,e | 5.41 ± 0.17 g | |
1:10 | 97.70 ± 0.00 B | 92.27 ± 0.05 G,H | 5.80 ± 0.10 d,e,f | 5.75 ± 0.07 e,f | |
Tween 60 | 1:2.5 | 31.10 ± 0.10 R,S | 25.23 ± 0.29 T | 5.63 ± 0.07 e,f,g | 4.98 ± 0.21 h |
1:5 | 65.50 ± 0.00 N | 60.90 ± 0.08 O | 5.14 ± 0.21 g,h | 5.02 ± 0.05 h | |
1:10 | 91.67 ± 0.06 H | 95.77 ± 0.05 D | 4.91 ± 0.11 h | 4.84 ± 0.09 h | |
1:15 | 98.13 ± 0.06 A | 98.60 ± 0.00 A | 4.92 ± 0.11 h | 4.64 ± 0.12 i | |
Tween 80 | 1:5 | 0.20 ± 0.00 Z | 0.57 ± 0.05 Y,Z | 6.53 ± 0.00 c | 6.08 ± 0.17 d,e |
1:10 | 20.20 ± 0.00 T,U | 14.90 ± 0.08 U | 6.23 ± 0.05 c,d | 6.18 ± 0.05 c,d | |
1:12.5 | 94.50 ± 0.00 F | 98.50 ± 0.00 A | 6.41 ± 0.12 c | 5.59 ± 0.21 f,g | |
1:15 | 98.23 ± 0.12 A | 96.80 ± 0.00 C | 6.04 ± 0.21 d,e | 5.96 ± 0.06 d,e | |
Cremophor RH40 | 1:1 | 10.47 ± 0.46 U | 10.30 ± 0.08 U | 6.46 ± 0.21 c | 6.01 ± 0.07 d,e |
1:2.5 | 90.30 ± 0.00 I | 90.23 ± 0.21 I | 5.98 ± 0.11 d,e | 5.73 ±0.11 e,f | |
1:5 | 96.90 ± 0.00 C | 94.20 ± 0.00 F | 6.05 ± 0.11 d,e | 5.98 ± 0.09 d,e | |
1:10 | 95.10 ± 0.00 E | 93.93 ± 0.12 G | 5.82 ± 0.12 d,e,f | 5.59 ± 0.16 f,g | |
Cremophor RH60 | 1:1 | 0.60 ± 0.00 Y,Z | 0.80 ± 0.08 X,Y | 6.40 ± 0.07 c | 6.17 ± 0.21 c,d |
1:2.5 | 42.12 ± 0.10 Q | 37.20 ± 0.16 R | 5.78 ± 0.08 e,f | 5.79 ± 0.12 e,f | |
1:5 | 95.90 ± 0.00 D | 97.57 ± 3.63 B | 6.16 ± 0.17 c,d | 5.95 ± 0.15 d,e | |
1:10 | 97.00 ± 0.00 C | 91.10 ± 0.00 H | 5.83 ± 0.12 d,e,f | 5.97 ± 0.07 d,e | |
Coco glucoside | 1:2.5 | 24.40 ± 0.00 T | 21.20 ± 0.00 T | 10.94 ± 0.04 b | 10.53 ± 0.17 b |
1:5 | 80.83 ± 0.06 L | 74.50 ± 0.08 M | 11.26 ± 0.14 a,b | 11.17 ± 0.05 a,b | |
1:7.5 | 88.10 ± 0.00 J | 81.97 ± 0.09 K,L | 11.40 ± 0.07 a | 11.18 ± 0.09 a,b | |
1:10 | 82.73 ± 0.06 K | 82.70 ± 0.08 K | 11.57 ± 0.06 a | 11.46 ± 0.05 a | |
Decyl glucoside | 1:2.5 | 6.60 ± 0.00 V | 4.20 ± 0.00 V | 10.85 ± 0.11 b | 10.70 ± 0.12 b |
1:5 | 30.20 ± 0.00 R,S | 28.83 ± 0.12 T | 11.14 ± 0.05 a,b | 11.01 ±0.06 a,b | |
1:7.5 | 94.83 ± 0.06 E,F | 95.80 ± 0.00 D | 11.23 ± 0.07 a,b | 11.10 ± 0.17 a,b | |
1:10 | 92.90 ± 0.00 G | 94.80 ± 0.00 E,F | 11.36 ± 0.03 a | 11.30 ± 0.07 a |
Formulations | Ingredients | Contact Time | Log Reduction | Statistical Results | % Efficacy | Statistical Results |
---|---|---|---|---|---|---|
A | 1% w/w DLM 1.5% w/w Cremophor RH40 | 30 s | 3.1875 ± 0.0722 | c | 99.93 ± 0.0108 | a |
1 min | 3.2708 ± 0.0722 | 99.95 ± 0.0089 | ||||
5 min | 3.6875 ± 0.1382 | 99.98 ± 0.0063 | ||||
10 min | 3.8125 ± 0.0722 | 99.98 ± 0.0026 | ||||
B | 0.5% w/w DLM 0.5% w/w ML 1.5% w/w Cremophor RH40 | 30 s | 2.9063 ± 0.0625 | bc | 99.87 ± 0.0167 | a |
1 min | 3.0625 ± 0.0722 | 99.91 ± 0.0144 | ||||
5 min | 3.2500 ± 0.1021 | 99.94 ± 0.0138 | ||||
10 min | 3.6042 ± 0.0722 | 99.97 ± 0.0041 | ||||
C | 0.3% w/w DLM 0.05% w/w CPC 1.5% w/w Cremophor RH40 | 30 s | 2.1875 ± 0.0722 | ab | 99.34 ± 0.1083 | a |
60 s | 2.7604 ± 0.0859 | 99.82 ± 0.0336 | ||||
90 s | 2.9375 ± 0.0722 | 99.88 ± 0.0193 | ||||
120 s | 3.0833 ± 0.1021 | 99.92 ± 0.019 | ||||
D | 0.3% w/w DLM 0.05% w/w CPC 0.2% w/w ML 1.5% w/w Cremophor RH40 Other excipients as shown in Table 3 | 30 s | 3.2083 ± 0.0589 | c | 99.94 ± 0.0088 | a |
60 s | 3.2708 ± 0.0722 | 99.95 ± 0.0089 | ||||
90 s | 3.6250 ± 0.1021 | 99.98 ± 0.0055 | ||||
120 s | 3.8750 ± 0.1021 | 99.99 ± 0.0032 | ||||
E | 0.2% w/w DLM 0.05% w/w CPC 0.75% w/w Cremophor RH40 Other excipients as shown in Table 4 | 30 s | 2.2708 ± 0.0722 | a | 99.46 ± 0.0894 | a |
60 s | 2.6042 ± 0.0722 | 99.75 ± 0.0415 | ||||
90 s | 2.7917 ± 0.1021 | 99.84 ± 0.0396 | ||||
120 s | 2.9063 ± 0.1197 | 99.87 ± 0.0369 |
Formulation | Concentration | Contact Time (s) | FluA(H1N1) | FluA(H3N2) | FluB | |||
---|---|---|---|---|---|---|---|---|
Efficacy * | Log Reduction * | Efficacy * | Log Reduction * | Efficacy * | Log Reduction * | |||
D | Conc | 30 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
Conc | 60 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
Conc | 90 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
Conc | 120 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
E | Conc | 30 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
Conc | 60 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
Conc | 90 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
Conc | 120 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | |
1:2 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:4 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:8 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:16 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 | ||
1:32 | >99.99% | >4.000 | >99.99% | >4.000 | >99.99% | >4.000 |
Storage Temperature | Storage Time | % Transmittance | pH | % Label Amount | Microbial Contamination | ||
---|---|---|---|---|---|---|---|
DLM | CPC | ML | |||||
Oral formulation D | |||||||
Fresh prepared | 71.37 ± 0.05 c | 6.05 ± 0.01 g | 96.95 ± 0.01 g | 102.06 ± 0.06 f | 87.54 ± 0.05 i | Conform | |
4 ± 1 °C | 1 month | 89.50 ± 0.08 h | 6.03 ± 0.01 g | 97.05 ± 0.12 g | 102.76 ± 0.12 g | 76.05 ± 0.04 h | Conform |
3 months | 89.53 ± 0.05 h | 6.01 ± 0.01 f | 96.98 ± 0.11 g | 102.89 ± 0.10 g | 74.91 ± 0.18 g | Conform | |
6 months | 74.27 ± 0.02 d | 5.96 ± 0.00 d | 95.32 ± 0.05 f | 101.96 ± 0.06 f | 68.04 ± 0.30 d | Conform | |
25 ± 1 °C | 1 month | 81.20 ± 0.05 g | 5.98 ± 0.01 e | 95.34 ± 0.19 f | 101.99 ± 0.29 f | 75.21 ± 0.01 g | Conform |
3 months | 81.20 ± 0.70 g | 5.93 ± 0.02 c | 94.12 ± 0.05 e | 98.89 ± 0.07 d | 74.21 ± 0.07 f | Conform | |
6 months | 76.10 ± 0.00 e | 5.91 ± 0.03 b | 89.14 ± 0.16 d | 95.94 ± 0.18 c | 66.40 ± 0.21 c | Conform | |
40 ± 1 °C | 1 month | 69.07 ± 0.10 b | 5.96 ± 0.01 d | 87.45 ± 0.25 c | 99.29 ± 0.11 e | 72.19 ± 0.45 e | Conform |
3 months | 79.30 ± 0.00 f | 5.90 ± 0.02 b | 78.95 ± 0.11 b | 95.59 ± 0.07 b | 60.02 ± 0.15 b | Conform | |
6 months | 63.87 ± 0.06 a | 5.85 ± 0.02 a | 66.87 ± 0.20 a | 93.06 ± 0.16 a | 57.67 ± 0.02 a | Conform | |
Nasal formulation E | |||||||
Freshly prepared | 88.53 ± 0.07 c | 4.78 ± 0.01 c | 97.57 ± 0.03 i | 102.12 ± 0.10 g | NA | Conform | |
4 ± 1 °C | 1 month | 90.23 ± 0.13 e | 4.76 ± 0.01 bc | 97.32 ± 0.11 hi | 102.09 ± 0.08 g | NA | Conform |
3 months | 90.43 ± 0.06 e | 4.75 ± 0.02 ab | 97.08 ± 0.13 gh | 102.10 ± 0.17 g | NA | Conform | |
6 months | 90.34 ± 0.12 e | 4.75 ± 0.01 ab | 96.56 ± 0.17 ef | 101.56 ± 0.09 f | NA | Conform | |
25 ± 1 °C | 1 month | 89.45 ± 0.10 d | 4.75 ± 0.01 ab | 96.77 ± 0.33 fg | 102.03 ± 0.14 g | NA | Conform |
3 months | 87.78 ± 0.10 b | 4.75 ± 0.01 ab | 96.19 ± 0.04 de | 100.04 ± 0.51 d | NA | Conform | |
6 months | 87.67 ± 0.40 b | 4.74 ± 0.02 ab | 95.86 ± 0.13 d | 98.05 ± 0.32 c | NA | Conform | |
40 ± 1 °C | 1 month | 80.09 ± 0.04 a | 4.75 ± 0.01 ab | 92.89 ± 0.13 c | 100.59 ± 0.03 e | NA | Conform |
3 months | 80.10 ± 0.22 a | 4.74 ± 0.01 ab | 85.99 ± 0.55 b | 96.08 ± 0.09 b | NA | Conform | |
6 months | 79.87 ± 0.52 a | 4.73 ± 0.02 a | 80.43 ± 0.13 a | 94.11 ± 0.22 a | NA | Conform |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponphaiboon, J.; Krongrawa, W.; Limmatvapirat, S.; Tubtimsri, S.; Jittmittraphap, A.; Leaungwutiwong, P.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P.; Limmatvapirat, C. In Vitro Development of Local Antiviral Formulations with Potent Virucidal Activity Against SARS-CoV-2 and Influenza Viruses. Pharmaceutics 2025, 17, 349. https://doi.org/10.3390/pharmaceutics17030349
Ponphaiboon J, Krongrawa W, Limmatvapirat S, Tubtimsri S, Jittmittraphap A, Leaungwutiwong P, Mahidol C, Ruchirawat S, Kittakoop P, Limmatvapirat C. In Vitro Development of Local Antiviral Formulations with Potent Virucidal Activity Against SARS-CoV-2 and Influenza Viruses. Pharmaceutics. 2025; 17(3):349. https://doi.org/10.3390/pharmaceutics17030349
Chicago/Turabian StylePonphaiboon, Juthaporn, Wantanwa Krongrawa, Sontaya Limmatvapirat, Sukannika Tubtimsri, Akanitt Jittmittraphap, Pornsawan Leaungwutiwong, Chulabhorn Mahidol, Somsak Ruchirawat, Prasat Kittakoop, and Chutima Limmatvapirat. 2025. "In Vitro Development of Local Antiviral Formulations with Potent Virucidal Activity Against SARS-CoV-2 and Influenza Viruses" Pharmaceutics 17, no. 3: 349. https://doi.org/10.3390/pharmaceutics17030349
APA StylePonphaiboon, J., Krongrawa, W., Limmatvapirat, S., Tubtimsri, S., Jittmittraphap, A., Leaungwutiwong, P., Mahidol, C., Ruchirawat, S., Kittakoop, P., & Limmatvapirat, C. (2025). In Vitro Development of Local Antiviral Formulations with Potent Virucidal Activity Against SARS-CoV-2 and Influenza Viruses. Pharmaceutics, 17(3), 349. https://doi.org/10.3390/pharmaceutics17030349