Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Extraction of Plant Samples
2.2. Determination of Antimicrobial Activity
2.2.1. Bacterial Strains Used and Culture Conditions
2.2.2. Broth Microdilution Test
2.3. In Vitro Enzyme Inhibition Tests
2.3.1. Hyaluronidase Inhibition
2.3.2. Collagenase Inhibition
2.3.3. XO Inhibition
2.3.4. LOX Inhibition
2.4. Statistical Analyses
2.5. LC-MS/MS Analyses
2.6. Preparation of Formulations
2.6.1. Preparation of NEs
2.6.2. Accelerated Stability Tests
2.6.3. Preparation of Chitosan/Hydroxypropyl Methylcellulose (CS/HPMC) Hydrogel
2.6.4. Preparation of NEGs
2.7. Characterization of NEs and NEGs
2.7.1. Droplet Size, Polydispersity Index and Zeta Potential
2.7.2. Transmission Electron Microscopy (TEM)
3. Results
3.1. Antimicrobial Activity
3.2. In Vitro Enzyme Inhibition Tests
3.3. LC-MS/MS Analyses
3.4. Characterization of the Formulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
BHIB | Brain heart infusion broth |
CLSI | Clinical and Laboratory Standards Institute |
CS | Chitosan |
FALGPA | N-(3-[2-furyl]acryloyl)-Leu-Gly-Pro-Ala |
HA | Hyaluronic acid |
HPMC | Hydroxypropyl methylcellulose |
LOX | Lipoxygenase |
MCT | Medium-chain triglyceride |
MIC | Minimum inhibitory concentration |
MMP | Matrix metalloproteinase |
NEGs | Nanoemulgels |
NEs | Nanoemulsions |
PDI | Polydispersity index |
TDDS | Transdermal drug delivery system |
TEM | Transmission electron microscopy |
UV | Ultraviolet |
XD | Xanthine dehydrogenase |
XO | Xanthine oxidase |
References
- Alajlan, A.; Al Turki, Y.A.; AlHazzani, Y.; Alhowaish, N.; Aleid, N.; Alhozaimi, Z.; Al Saleh, W.; Bin Yahya, A.; Alkriadees, Y.; Alsuwaidan, S. Prevalence, level of knowledge and lifestyle association with acne vulgaris among medical students. J. Dermatol. Dermatol. 2017, 21, 58–61. [Google Scholar] [CrossRef]
- Kum, Ö.; Erturan, İ.; Aktepe, E. Akneli ergenlerin benlik saygılarının, öfke düzeylerinin, arkadaş bağlılıklarının değerlendirilmesi: Olgu kontrol çalışması. Anatol. J. Psychiatry 2014, 15, 150–156. [Google Scholar] [CrossRef]
- Wolkenstein, P.; Machovcová, A.; Szepietowski, J.C.; Tennstedt, D.; Veraldi, S.; Delarue, A. Acne prevalence and associations with lifestyle: A cross-sectional online survey of adolescents/young adults in 7 European countries. J. Eur. Acad. Dermatol. 2018, 32, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.L.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol. 2015, 172, 3–12. [Google Scholar] [CrossRef]
- Lynn, D.D.; Umari, T.; Dunnick, C.A.; Dellavalle, R.P. The epidemiology of acne vulgaris in late adolescence. Adolesc. Health Med. Ther. 2016, 7, 13–25. [Google Scholar] [CrossRef]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. 2018, 32, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, N.; Malik, A.; Riaz, N.; Iqbal, K.; Tareen, R.B.; Khan, S.N.; Nawaz, S.A.; Siddiqui, J.; Choudhary, M.I. Pakistolides A and B, novel enzyme inhibitory and antioxidant dimeric 4-(glucosyloxy)benzoates from. Helv. Chim. Acta 2004, 87, 416–424. [Google Scholar] [CrossRef]
- Ottaviani, M.; Camera, E.; Picardo, M. Lipid mediators in acne. Mediat. Inflamm. 2010, 2010, 858176. [Google Scholar] [CrossRef]
- Zouboulis, C.C. Zileuton, a new efficient and safe systemic anti-acne drug. Dermato-Endocrinology 2009, 1, 188–192. [Google Scholar] [CrossRef]
- Akamatsu, H.; Niwa, Y.; Matsunaga, K. Effect of palmitic acid on neutrophil functions in vitro. Int. J. Dermatol. 2001, 40, 640–643. [Google Scholar] [CrossRef]
- Latha, B.; Babu, M. The involvement of free radicals in burn injury: A review. Burns 2001, 27, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Khobragade, C.N. In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract. Nat. Prod. Commun. 2011, 6, 1437–1440. [Google Scholar] [CrossRef]
- Sarici, G.; Cinar, S.; Armutcu, F.; Altinyazar, C.; Koca, R.; Tekin, N.S. Oxidative stress in acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 763–767. [Google Scholar] [CrossRef]
- Sin, B.Y.; Kim, H.P. Inhibition of collagenase by naturally-occurring flavonoids. Arch. Pharm. Res. 2005, 28, 1152–1155. [Google Scholar] [CrossRef] [PubMed]
- Apakkan Aksun, S.; Özmen, D.; Bayındır, O. Metalloproteinases, Their inhibitors and related physiological and pathological conditions. Turk. Klin. J. Med. Sci 2001, 21, 332–342. [Google Scholar]
- Gupta, S.P.; Kumaran, S. A quantitative structure-activity relationship study on Clostridium histolyticum collagenase inhibitors: Roles of electrotopological state indices. Bioorg. Med. Chem. 2003, 11, 3065–3071. [Google Scholar] [CrossRef]
- Bralley, E.; Greenspan, P.; Hargrove, J.L.; Hartle, D.K. Inhibition of hyaluronidase activity by Vitis rotundifolia. (Muscadine) berry seeds and skins. Pharm. Biol. 2007, 45, 667–673. [Google Scholar] [CrossRef]
- Girish, K.S.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B.S. Hyaluronidase inhibitors: A biological and therapeutic perspective. Curr. Med. Chem. 2009, 16, 2261–2288. [Google Scholar] [CrossRef] [PubMed]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crops Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Lewińska, A.; Domżał-Kędzia, M.; Maciejczyk, E.; Łukaszewicz, M.; Bazylińska, U. Design and engineering of “green” nanoemulsions for enhanced topical delivery of bakuchiol achieved in a sustainable manner: A novel eco-friendly approach to bioretinol. Int. J. Mol. Sci. 2021, 22, 10091. [Google Scholar] [CrossRef]
- Hanifah, M.; Jufri, M. Formulation and stability testing of nanoemulsion lotion containing Centella asiatica extract. J. Young Pharm. 2018, 10, 404–408. [Google Scholar] [CrossRef]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 7th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2007; pp. M11–A17. [Google Scholar]
- Tu, P.T.; Tawata, S. Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef]
- Widowati, W.; Rani, A.; Hamzah, R.; Arumwardana, S.; Afifah, E.; Kusuma, H.; Rihibiha, D.; Nufus, H.; Amalia, A. Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds. Nat. Prod. Sci. 2017, 23, 192–200. [Google Scholar] [CrossRef]
- Van Wart, H.E.; Steinbrink, D.R. A Continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal Biochem. 1981, 113, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Barrantes, E.; Guinea, M. Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Sci. 2003, 72, 843–850. [Google Scholar] [CrossRef]
- Khan, S.B.; Afza, N.; Malik, A.; Azhar Ul, H.; Perveen, S.; Ahmad, I.; Ejaz, A.; Choudhary, M.I. Xanthine oxidase inhibiting flavonol glycoside from Amberboa ramosa. Nat. Prod. Res. 2006, 20, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.Y.; Soo, W.K.; Chan, K.Y.; Mustafa, M.R.; Goh, S.H.; Imiyabir, Z. Lipoxygenase inhibiting activity of some Malaysian plants. Pharm. Biol. 2009, 47, 1142–1148. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Nemitz, M.C.; von Poser, G.L.; Teixeira, H.F. In vitro skin permeation/retention of daidzein, genistein and glycitein from a soybean isoflavone rich fraction-loaded nanoemulsions and derived hydrogels. J. Drug Deliv. Sci. Technol. 2019, 51, 63–69. [Google Scholar] [CrossRef]
- Yalcin, T.E.; Tuncel, E.; Yucel, C.; Tirnaksiz, F. Nanoemulsions containing megestrol acetate: Development, characterization, and stability evaluation. AAPS PharmSciTech 2022, 23, 142. [Google Scholar] [CrossRef]
- Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2020, 60, 104604. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Ajitha, M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur. J. Pharm. Sci. 2019, 136, 104956. [Google Scholar] [CrossRef]
- Md, S.; Gan, S.Y.; Haw, Y.H.; Ho, C.L.; Wong, S.; Choudhury, H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int. J. Biol. Macromol. 2018, 118, 1211–1219. [Google Scholar] [CrossRef]
- Maity, S.; Parshi, N.; Prodhan, C.; Chaudhuri, K.; Ganguly, J. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging. Carbohydr. Polym. 2018, 193, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Furtado, L.M.; Yee, M.; Fernandes, R.; Valera, T.S.; Itri, R.; Petri, D.F.S. Rheological and mechanical properties of hydroxypropyl methylcellulose-based hydrogels and cryogels controlled by AOT and SDS micelles. J. Colloid Interface Sci. 2023, 648, 604–615. [Google Scholar] [CrossRef]
- Yalcin, T.E.; Yetgin, C. Influence of formulation composition on the characteristic properties of 5-fluorouracil-loaded liposomes. Turk. J. Pharm. Sci. 2025, 21, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.; Kreutz, T.; Limberger, R.P.; Rossi, R.C.; de Lima, Á.A.N.; Veiga, V.F., Jr.; de Araújo, B.V.; Koester, L.S. Correlation between the skin permeation profile of the synthetic sesquiterpene compounds, beta-caryophyllene and caryophyllene oxide, and the antiedematogenic activity by topical application of nanoemulgels. Biomolecules 2022, 12, 1102. [Google Scholar] [CrossRef]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet 2012, 379, 361–372. [Google Scholar] [CrossRef]
- Bhate, K.; Williams, H.C. Epidemiology of acne vulgaris. Br. J. Dermatol. 2013, 168, 474–485. [Google Scholar] [CrossRef]
- Abozeid, D.; Fawzy, G.; Issa, M.; Abdeltawab, N.; Soliman, F. Medicinal plants and their constituents in the treatment of Acne vulgaris. Biointerface Res. Appl. Chem. 2023, 13, 189. [Google Scholar] [CrossRef]
- Taleb, M.H.; Abdeltawab, N.F.; Shamma, R.N.; Abdelgayed, S.S.; Mohamed, S.S.; Farag, M.A.; Ramadan, M.A. Origanum vulgare L. essential oil as a potential anti-acne topical nanoemulsion—In vitro and ın vivo study. Molecules 2018, 23, 2164. [Google Scholar] [CrossRef] [PubMed]
- Qadir, A.; Ullah, S.; Gupta, D.K.; Khan, N. Phytoconstituents-loaded nanomedicines for the management of acne. J. Cosmet. Dermatol. 2022, 21, 3240–3255. [Google Scholar] [CrossRef]
- Tuchayi, S.M.; Makrantonaki, E.; Ganceviciene, R.; Dessinioti, C.; Feldman, S.R.; Zouboulis, C.C. Acne vulgaris. Nat. Rev. Dis. Primers 2015, 1, 15029. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.K.; Barankin, B.; Lam, J.M.; Leong, K.F.; Hon, K.L. Dermatology: How to manage acne vulgaris. Drugs Context 2021, 10, 2021-8-6. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Saraf, P.S. Topical herbal therapies an alternative and complementary choice to combat acne. Res. J. Med. Plant 2011, 5, 650–669. [Google Scholar] [CrossRef]
- Nasri, H.; Bahmani, M.; Shahinfard, N.; Moradi Nafchi, A.; Saberianpour, S.; Rafieian Kopaei, M. Medicinal plants for the treatment of Acne vulgaris: A Review of recent evidences. Jundishapur J. Microbiol. 2015, 8, e25580. [Google Scholar] [CrossRef]
- Anti-Acne Cosmetics Market Size, Share and Trends 2024 to 2034. Available online: https://www.precedenceresearch.com/anti-acne-cosmetics-market#:~:text=Anti%2Dacne%20Cosmetics%20Market%20Size%2C%20Share%20and%20Trends%202024%20to,9.11%25%20from%202024%20to%202034 (accessed on 7 January 2025).
- Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules 2016, 21, 1063. [Google Scholar] [CrossRef]
- Yarnell, E.; Abascal, K. Herbal Medicine for Acne Vulgaris. Altern. Complement. Ther. 2006, 12, 303–309. [Google Scholar] [CrossRef]
- Karadag, A.S.; Aslan Kayıran, M.; Wu, C.Y.; Chen, W.; Parish, L.C. Antibiotic resistance in acne: Changes, consequences and concerns. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 73–78. [Google Scholar] [CrossRef]
- Baytop, T. Türkiye’de Bitkiler ile Tedavi: Geçmişte ve Bugün; Nobel Tıp Kitabevleri: Istanbul, Türkiye, 1999. [Google Scholar]
- Pljevljakušić, D.; Bigović, D.; Janković, T.; Jelačić, S.; Šavikin, K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front. Plant Sci. 2018, 9, 1123. [Google Scholar] [CrossRef]
- Akinfenwa, A.O.; Sagbo, I.J.; Makhaba, M.; Mabusela, W.T.; Hussein, A.A. Helichrysum genus and compound activities in the management of diabetes mellitus. Plants 2022, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Wagner, H.; Verpoorte, R.; Heinrich, M. Medicinal plants of the Russian Pharmacopoeia; their history and applications. J. Ethnopharmacol. 2014, 154, 481–536. [Google Scholar] [CrossRef] [PubMed]
- De Canha, M.N.; Komarnytsky, S.; Langhansova, L.; Lall, N. Exploring the anti-acne potential of impepho [Helichrysum odoratissimum (L.) Sweet] to combat Cutibacterium acnes virulence. Front. Pharmacol. 2019, 10, 1559. [Google Scholar] [CrossRef]
- Albayrak, S.; Aksoy, A.; Sagdic, O.; Budak, U. Phenolic compounds and antioxidant and antimicrobial properties of Helichrysum species collected from eastern Anatolia, Turkey. Turk. J. Biol. 2010, 34, 463–473. [Google Scholar] [CrossRef]
- Ozçelik, B.; Aslan, M.; Orhan, I.; Karaoglu, T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol. Res. 2005, 160, 159–164. [Google Scholar] [CrossRef]
- Bagheri, V.; Fathalizadeh, J.; Bahramabadi, R.; Ayoobi, F.; Assar, S.; Kazemi Arababadi, M. In Vitro antibacterial properties of pistachio (Pistacia vera L.) rosy hull phenolic extracts. Pist. Health J. 2019, 2, 17–29. [Google Scholar] [CrossRef]
- Ezer, N.; Abbasoǧlu, U. Antimicrobial activity of essential oils of some Sideritis species growing in Turkey. Fitoterapia 1996, 67, 474–475. [Google Scholar]
- Giweli, A.; Dzamic, A.; Soković, M.; Ristic, M.; Janackovic, P.; Marin, P. The chemical composition, antimicrobial and antioxidant activities of the essential oil of Salvia fruticosa growing wild in Libya. Arch. Biol. Sci. 2013, 65, 321–329. [Google Scholar] [CrossRef]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289. [Google Scholar] [CrossRef]
- Kulaksiz, B.; Er, S.; Üstündağ-Okur, N.; Saltan-Işcan, G. Investigation of antimicrobial activities of some herbs containing essential oils and their mouthwash formulations. Turk. J. Pharm. Sci. 2018, 15, 370–375. [Google Scholar] [CrossRef]
- Karadag, A.E.; İpekci, E.; Yağcılar, A.; Demirbolat, I.; Kartal, M.; Siafaka, P.; Üstündağ Okur, N. Antibacterial evaluation of Elettaria cardamomum (L.) Maton, Lavandula angustifolia Mill. and Salvia fruticosa Mill. essential oil combinations in mouthwash preparations. Nat. Volatiles Essent. Oils 2020, 7, 9–17. [Google Scholar]
- Bahadirli, N.P. Comparison of chemical composition and antimicrobial activity of Salvia fruticosa Mill. and S. aramiensis Rech. Fill. (Lamiaceae). J. Essent. Oil Bear. Plants 2022, 25, 716–727. [Google Scholar] [CrossRef]
- Chaul, L.; Alves, V.; de Sá, S.; Oliveira, L.; Fiuza, T.; Torres, I.; Conceição, E.; Paula, J. Antimicrobial activity an physicochemical characterization of extracts and fractions of Rosmarinus officinalis and Origanum vulgare. Front. J. Soc. Technol. Environ. Sci. 2022, 11, 8–30. [Google Scholar] [CrossRef]
- Moukhfi, F.; Dakir, M.; Nait Irahal, I.; Chninigue, J.; Outlioua, A.; JamalEddine, J.; Chadli, N. Antioxidant potential and ınhibitory effect of essential oil from the aerial parts of Origanum vulgare L. against Salmonella poultry in Morocco. J. Essent. Oil Bear. Plants 2022, 25, 456–467. [Google Scholar] [CrossRef]
- Kültür, Ş.; Bitiş, L. Anatomical and preliminary chemical studies on the leaves of Cotinus coggyria Scop. (Anacardiaceae). J. Pharm. Istanb. Univ. 2007, 39, 65–72. [Google Scholar]
- Aksoy, H.; Sancar, M.; Sen, A.; Okuyan, B.; Bitis, L.; Uras, F.; Akakin, D.; Cevik, O.; Kultur, S.; İzzettin, F.V. The effect of topical ethanol extract of Cotinus coggygria Scop. on cutaneous wound healing in rats. Nat. Prod. Res. 2016, 30, 452–455. [Google Scholar] [CrossRef]
- Savikin, K.; Zdunic, G.; Jankovic, T.; Stanojkovic, T.; Juranic, Z.; Menkovic, N. In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria. Nat. Prod. Res. 2009, 23, 1731–1739. [Google Scholar] [CrossRef]
- Stanić, S.; Matić, S.; Delić, G.; Mihailović, M.; Bogojević, D.; Solujić, S. Study of genotoxicity and antigenotoxicity of the Cotinus coggygria Scop. methanol extract by Drosophila melanogaster sex-linked recessive lethal test. Genetika 2011, 47, 874–878. [Google Scholar] [CrossRef]
- Tunc, K.; Hoş, A.; Güneş, B. Investigation of antibacterial properties of Cotinus coggygria from Turkey. Pol. J. Environ. Stud. 2013, 22, 1559–1561. [Google Scholar]
- Sen, A.; Birteksöz Tan, a.; Kültür, Ş.; Bitiş, L. Isolation and characterization of antimicrobial compounds from Cotinus coggygria Scop. ethyl acetate extract. J. Pharm. Istanb. Univ. 2020, 50, 26–30. [Google Scholar] [CrossRef]
- Marčetić, M.; Božić, D.; Milenković, M.; Malešević, N.; Radulović, S.; Kovačević, N. Antimicrobial, antioxidant and anti-inflammatory activity of young shoots of the smoke tree, Cotinus coggygria Scop. Phytother. Res. 2013, 27, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, G.F.; Roberto, L.; Catania, M.R.; Chiaviello, A.; De Natale, A.; Roscetto, E.; Pinto, G.; Pollio, A.; Ingenito, A.; Palumbo, G. Screening and scoring of antimicrobial and biological activities of Italian vulnerary plants against major oral pathogenic bacteria. Evid.-Based Complement. Altern. Med. 2013, 2013, 316280. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cai, Y.; Guan, T.; Zhang, Y.; Huang, K.; Zhang, Z.; Cao, W.; Guan, X. Quinic acid alleviates high-fat diet-induced neuroinflammation by inhibiting DR3/IKK/NF-κB signaling via gut microbial tryptophan metabolites. Gut Microbes 2024, 16, 2374608. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wu, Y.; Zhong, K.; Xiao, K.; Liu, L.; Huang, Y.; Wang, Z.; Gao, H. A Comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. J. Food Prot. 2018, 81, 1187–1192. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, Y.; Yi, G.; Li, M.; Liao, L.; Yang, C.; Cho, C.; Zhang, B.; Zhu, J.; Zou, K.; et al. Quinic acid: A potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa. Chin. Med. 2021, 16, 72. [Google Scholar] [CrossRef]
- Liew, S.N.; Utra, U.; Alias, A.K.; Tan, T.B.; Tan, C.P.; Yussof, N.S. Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. LWT 2020, 128, 109388. [Google Scholar] [CrossRef]
- Yao, M.; Li, Z.; Julian McClements, D.; Tang, Z.; Xiao, H. Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chem. 2020, 317, 126229. [Google Scholar] [CrossRef]
- Provenzano, R.; De Caro, C.; Vitiello, A.; Izzo, L.; Ritieni, A.; Ungaro, F.; Quaglia, F.; Russo, E.; Miro, A.; d’Angelo, I. Enhancing transmucosal delivery of CBD through nanoemulsion: In vitro and in vivo studies. Drug Deliv. Transl. Res. 2024, 14, 1648–1659. [Google Scholar] [CrossRef]
- Chin, L.Y.; Tan, J.Y.P.; Choudhury, H.; Pandey, M.; Sisinthy, S.P.; Gorain, B. Development and optimization of chitosan coated nanoemulgel of telmisartan for intranasal delivery: A comparative study. J. Drug Deliv. Sci. Technol. 2021, 62, 102341. [Google Scholar] [CrossRef]
- Ray, S.; Sinha, P.; Laha, B.; Maiti, S.; Bhattacharyya, U.K.; Nayak, A.K. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol. 2018, 48, 21–29. [Google Scholar] [CrossRef]
- Pinto, F.; Fonseca, L.P.; Souza, S.; Oliva, A.; de Barros, D.P.C. Topical distribution and efficiency of nanostructured lipid carriers on a 3D reconstructed human epidermis model. J. Drug Deliv. Sci. Technol. 2020, 57, 101616. [Google Scholar] [CrossRef]
- Baptista, S.; Pereira, J.R.; Gil, C.V.; Torres, C.A.V.; Reis, M.A.M.; Freitas, F. Development of olive oil and α-tocopherol containing emulsions stabilized by fucopol: Rheological and textural analyses. Polymers 2022, 14, 2349. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Severino, P.; Andreani, T.; Boonme, P.; Santini, A.; Silva, A.M.; Souto, E.B. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity. Saudi Pharm. J. 2017, 25, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Sahafi, S.M.; Goli, S.A.H.; Kadivar, M.; Varshosaz, J.; Shirvani, A. Pomegranate seed oil nanoemulsion enriched by α-tocopherol; the effect of environmental stresses and long-term storage on its physicochemical properties and oxidation stability. Food Chem. 2021, 345, 128759. [Google Scholar] [CrossRef]
- Dragulska, S.A.; Chen, Y.; Wlodarczyk, M.T.; Poursharifi, M.; Dottino, P.; Ulijn, R.V.; Martignetti, J.A.; Mieszawska, A.J. Tripeptide-Stabilized Oil-in-Water Nanoemulsion of an oleic acids-platinum(II) conjugate as an anticancer nanomedicine. Bioconjug. Chem. 2018, 29, 2514–2519. [Google Scholar] [CrossRef]
- Lai, C.W.; Foo, L.; Low, F.W.; Foong, M.; Bee, S.; Hamid, A. Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv. Polym. Technol. 2017, 37, 1712–1721. [Google Scholar] [CrossRef]
- Fachel, F.N.S.; Medeiros-Neves, B.; Dal Prá, M.; Schuh, R.S.; Veras, K.S.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery—In vitro studies. Carbohydr. Polym. 2018, 199, 572–582. [Google Scholar] [CrossRef]
- Hou, Y.; Yao, C.; Ling, L.; Du, Y.; He, R.; Ismail, M.; Zhang, Y.; Fu, Z.; Li, X. Novel dual VES phospholipid self-assembled liposomes with an extremely high drug loading efficiency. Colloids Surf. B Biointerfaces 2017, 156, 29–37. [Google Scholar] [CrossRef]
Species | Family | Plant Part | The Collection Sites and Dates in Türkiye | Yield % (w/w) |
---|---|---|---|---|
Alchemilla stricta Rothm. | Rosaceae | Leaves | Trabzon, May 2019 | 3.21 |
Allium schoenprasum L. | Amaryllidaceae | Leaves | Trabzon, June 2019 | 4.74 |
Artemisia dracunculus L. | Asteraceae | Leaves | Konya Medicinal and Endemic Plants Education and Research Farm, June 2020 | 7.67 |
Borago officinalis L. | Boraginaceae | Leaves | Konya Medicinal and Endemic Plants Education and Research Farm, June 2021 | 5.27 |
Calendula officinalis L. | Asteraceae | Flowers | Konya Medicinal and Endemic Plants Education and Research Farm, July 2020 | 9.82 |
Camellia sinensis (L.) Kuntze | Theaceae | Leaves | General Directorate of Tea Enterprises (ÇAYKUR), 2013 | 13.70 |
Cotinus coggygria Scop. | Anacardiaceae | Leaves | Ankara, November 2019 | 20.77 |
Crataegus monogyna Jacq. | Rosaceae | Leaves | Konya, May 2019 | 15.38 |
Hedera helix L. | Araliaceae | Leaves | Konya Medicinal and Endemic Plants Education and Research Farm, May 2021 | 5.57 |
Helichrysum arenarium (L.) Moench | Asteraceae | Flowers | Artvin, July 2019 | 15.09 |
Hippophae rhamnoides L. | Elaeagnaceae | Leaves | Bayburt, June 2019 | 11.06 |
Laurus nobilis L. | Lauraceae | Leaves | Samsun, May 2019 | 12.07 |
Lavandula angustifolia Mill. | Lamiaceae | Flowers | Konya Medicinal and Endemic Plants Education and Research Farm, May 2020 | 6.99 |
Lippia citriodora (Palau) Kunth (sin: Aloysia citriodora Palau) | Verbenaceae | Leaves | Ordu, June 2020 | 3.52 |
Maclura pomifera (Raf.) C. K. Schneid. | Moraceae | Leaves | Ankara Atatürk Forest Farm, October 2013 | 7.44 |
Origanum majorana L. | Lamiaceae | Aerial parts | Konya Medicinal and Endemic Plants Education and Research Farm, June 2019 | 11.32 |
Origanum onites L. | Lamiaceae | Aerial parts | Konya Medicinal and Endemic Plants Education and Research Farm, June 2019 | 13.21 |
Origanum vulgare L. | Lamiaceae | Aerial parts | Konya Medicinal and Endemic Plants Education and Research Farm, June 2019 | 14.53 |
Pistacia vera L. | Anacardiaceae | Outer shell | Gaziantep, 2019 | 11.20 |
Prunus laurocerasus L. | Rosaceae | Leaves | Konya, May 2021 | 13.10 |
Ruscus aculeatus L. | Asparagaceae | Leaves | Giresun, June 2021 | 7.27 |
Salvia fruticosa Mill. | Lamiaceae | Leaves | Konya Medicinal and Endemic Plants Education and Research Farm, June 2019 | 9.05 |
Sambucus nigra L. | Viburnaceae | Fruits | Konya Medicinal and Endemic Plants Education and Research Farm, June 2020 | 8.52 |
Satureja spicigera Boiss. | Lamiaceae | Aerial parts | Konya Medicinal and Endemic Plants Education and Research Farm, June 2020 | 3.62 |
Sideritis congesta P. H. Davis & Hub.-Mor. | Lamiaceae | Flowers | Konya Medicinal and Endemic Plants Education and Research Farm, July 2020 | 13.90 |
Sideritis stricta Jord. & Fourr. | Lamiaceae | Flowers | Konya Medicinal and Endemic Plants Education and Research Farm, July 2020 | 17.69 |
Thymus nummularius M. Bieb. | Lamiaceae | Aerial parts | Giresun, June 2020 | 10.51 |
Urtica dioica L. | Urticaceae | Leaves | Konya Medicinal and Endemic Plants Education and Research Farm, June 2020 | 2.38 |
Vaccinium arctostaphylos L. | Ericaceae | Leaves | Trabzon, April 2020 | 20.36 |
Vitis vinifera L. | Vitaceae | Seeds | Denizli, 2019 | 2.45 |
Components | |||
---|---|---|---|
Formulation Code | MCT (mg) | α-Tocopherol (mg) | Oleic Acid (mg) |
NE-1 | 1000 | - | - |
NE-2 | 1250 | - | - |
NE-3 | 1500 | - | - |
NE-4 | 1750 | - | - |
NE-5 | 2000 | - | - |
NE-6 | 2250 | - | - |
NE-7 | 2500 | - | - |
NE-8 | 2750 | - | - |
NE-9 | 3000 | - | - |
NE-10 | 2500 | 50 | - |
NE-11 | 2500 | 100 | - |
NE-12 | 2500 | 200 | - |
NE-13 | 2500 | 50 | 25 |
NE-14 | 2500 | 50 | 50 |
NE-15 | 2500 | 50 | 100 |
NE-16 | 2500 | 50 | 200 |
Species | Plant Parts | MIC (µg/mL) |
---|---|---|
Alchemilla stricta | Leaves | 625 |
Allium schoenprasum | Leaves | 625 |
Artemisia dracunculus | Leaves | 625 |
Borago officinalis | Leaves | 625 |
Calendula officinalis | Flowers | 312.5 |
Camellia sinensis | Leaves | 312.5 |
Cotinus coggygria | Leaves | 78 |
Crataegus monogyna | Leaves | >1250 * |
Hedera helix | Leaves | 625 |
Helichrysum arenarium | Flowers | 19.5 |
Hippophae rhamnoides | Leaves | 625 |
Laurus nobilis | Leaves | 625 |
Lavandula angustifolia | Flowers | 625 |
Lippia citriodora | Leaves | 312.5 |
Maclura pomifera | Leaves | >1250 |
Origanum majorana | Aerial parts | 312.5 |
Origanum onites | Aerial parts | 312.5 |
Origanum vulgare | Aerial parts | 78 |
Pistacia vera | Outer shell | 39 |
Prunus laurocerasus | Leaves | 625 |
Ruscus aculeatus | Leaves | >1250 |
Salvia fruticosa | Leaves | 78 |
Sambucus nigra | Fruits | >1250 |
Satureja spicigera | Aerial parts | 625 |
Sideritis congesta | Flowers | 78 |
Sideritis stricta | Flowers | 156 |
Thymus nummularius | Aerial parts | >1250 |
Urtica dioica | Leaves | 625 |
Vaccinium arctostaphylos | Leaves | >1250 |
Vitis vinifera | Seeds | >1250 |
Reference (Ampicilline) | 0.5 |
Strains | Cotinus coggygria (Leaves) | Helichrysum arenarium (Flowers) | Origanum vulgare (Aerial Parts) | Pistacia vera (Shell) | Salvia fruticosa (Leaves) | Sideritis congesta (Flowers) | AMP | |
---|---|---|---|---|---|---|---|---|
MIC (µg/mL) | ||||||||
1 | H1 | 625 | 156 | 312.5 | 78 | 312.5 | 625 | <0.5 |
2 | H2 | 1250 | 156 | 625 | 156 | 625 | 1250 | <0.5 |
3 | H3 | 1250 | 39 | 625 | 156 | 625 | 312.5 | <0.5 |
4 | H4 | 1250 | 78 | 625 | 156 | 625 | 625 | <0.5 |
5 | H5 | 1250 | 156 | 625 | 312.5 | 1250 | 1250 | <0.5 |
6 | H6 | 625 | 78 | 312.5 | 78 | 312.5 | 625 | <0.5 |
7 | H7 | 625 | 156 | 312.5 | 156 | 625 | 1250 | <0.5 |
8 | H9 | 1250 | 78 | 625 | 156 | 625 | 1250 | <0.5 |
9 | H10 | 1250 | 78 | 625 | 156 | 625 | 1250 | <0.5 |
10 | H11 | 625 | 156 | 312.5 | 78 | 625 | 1250 | <0.5 |
11 | H12 | 625 | 156 | 312.5 | 156 | 312.5 | 625 | <0.5 |
12 | H13 | 625 | 78 | 625 | 156 | 625 | 1250 | 0.5 |
13 | H15 | 625 | 156 | 625 | 312.5 | 1250 | 1250 | <0.5 |
14 | H16 | 1250 | 78 | 312.5 | 78 | 625 | 1250 | <0.5 |
15 | H17 | 625 | 78 | 625 | 156 | 1250 | 1250 | <0.5 |
16 | H18 | 625 | 78 | 625 | 156 | 625 | 1250 | <0.5 |
17 | H19 | 1250 | 78 | 312.5 | 156 | 625 | 625 | <0.5 |
18 | H21 | 1250 | 78 | 312.5 | 156 | 625 | 625 | <0.5 |
19 | H23 | 1250 | 156 | 625 | 156 | 1250 | 1250 | 0.5 |
20 | K4 | 625 | 156 | 625 | 156 | 312.5 | 1250 | 0.5 |
21 | K3 | 625 | 78 | 625 | 78 | 78 | 625 | 0.5 |
22 | K8 | 625 | 156 | 312.5 | 78 | 312.5 | 625 | 0.5 |
23 | K6 | 625 | 156 | 1250 | 78 | 78 | 1250 | 0.5 |
24 | K9 | 625 | 156 | 625 | 156 | 156 | 1250 | 0.5 |
25 | K10 | 625 | 156 | 625 | 156 | 156 | 1250 | 0.5 |
26 | K11 | 625 | 156 | 625 | 156 | 156 | 1250 | 0.5 |
27 | K2 | 625 | 156 | 625 | 78 | 78 | 625 | 0.5 |
28 | K6 | 625 | 156 | 1250 | 156 | 78 | 1250 | 0.5 |
29 | K5 | 625 | 156 | 625 | 156 | 156 | 625 | 0.5 |
30 | K7 | 625 | 156 | 625 | 78 | 156 | 625 | 0.5 |
31 | ATCC 11828 | 156 | 312.5 | 156 | 156 | 312.5 | 312.5 | 0.5 |
32 | ATCC 11827 | 625 | 625 | 1250 | 78 | 312. 5 | 1250 | 0.5 |
Extracts | MIC Range (µg/mL) | MIC50 (µg/mL) | MIC90 (µg/mL) |
---|---|---|---|
Cotinus coggygria | 156–1250 | 1250 | 1250 |
Helichrysum arenarium | 39–625 | 156 | 156 |
Origanum vulgare | 156–1250 | 625 | 625 |
Pistacia vera | 78–312.5 | 156 | 156 |
Salvia fruticosa | 78–1250 | 625 | 1250 |
Sideritis congesta | 312.5–1250 | 1250 | 1250 |
Hyaluronidase Inhibition (Inhibition% ± S.D. a) 2 mg/mL b | Collagenase Inhibition (Inhibition% ± S.D. a) 2 mg/mL | XO Inhibition (Inhibition% ± S.D. a) 2 mg/mL | LOX Inhibition (Inhibition% ± S.D. a) 2 mg/mL | |
---|---|---|---|---|
C. coggygria | 79.75 ± 1.76 | 52.52 ± 0.88 **** | 80.30 ± 0.61 **** | 14.63 ± 0.17 **** |
H. arenarium | - c | - | 82.51 ± 3.81 **** | 13.78 ± 2.67 **** |
O. vulgare | 7.68 ± 1.67 **** | 11.23 ± 2.51 **** | 41.93 ± 2.10 **** | 49.37 ± 0.51 **** |
P. vera | 17.24 ± 0.01 **** | - | 48.57 ± 2.67 **** | 24.44 ± 3.44 **** |
S. fruticosa | - | - | 36.72 ± 2.55 **** | 47.57 ± 0.87 **** |
S. congesta | - | 7.88 ± 0.26 **** | 19.77 ± 1.90 **** | 15.55 ± 1.91 **** |
References | 77.36 ± 3.34 d | 74.94 ± 3.98 e | 99.50 ± 0.45 f | 89.92 ± 5.51 g |
No | Analytes | RT a | M.I. (m/z) b | F.I. (m/z) c | Ion. Mode | Equation | r2 d | C. coggygria (mg Analyte/g Extract) | H. arenarium (mg Analyte/g Extract) |
---|---|---|---|---|---|---|---|---|---|
1 | Quinic acid | 3.0 | 190.8 | 93.0 | Neg | y = −0.0129989 + 2.97989× | 0.996 | 129.686 | 69.331 |
4 | Gallic acid | 4.4 | 168.8 | 79.0 | Neg | y = 0.0547697 + 20.8152× | 0.999 | 8.048 | 0.025 |
6 | Protocatechuic acid | 6.8 | 152.8 | 108.0 | Neg | y = 0.211373 + 12.8622× | 0.957 | 3.352 | 0.673 |
8 | Gentisic acid | 8.3 | 152.8 | 109.0 | Neg | y = −0.0238983 + 12.1494× | 0.997 | N.D. | 0.212 |
9 | Chlorogenic acid | 8.4 | 353.0 | 85.0 | Neg | y = 0.289983 + 36.3926× | 0.995 | N.D. | 4.481 |
10 | Protocatechuic aldehyde | 8.5 | 137.2 | 92.0 | Neg | y = 0.257085 + 25.4657× | 0.996 | 0.016 | 0.089 |
11 | Tannic acid | 9.2 | 182.8 | 78.0 | Neg | y = 0.0126307 + 26.9263× | 0.999 | 8.559 | N.D. |
14 | 4-OH Benzoic acid | 10.5 | 137,2 | 65.0 | Neg | y = −0.0240747 + 5.06492× | 0.999 | N.D. | 0.489 |
17 | Caffeic acid | 12.1 | 179.0 | 134.0 | Neg | y = 0.120319 + 95.4610× | 0.999 | N.D. | 2.054 |
24 | p-Coumaric acid | 17.8 | 163.0 | 93.0 | Neg | y = 0.0249034 + 18.5180× | 0.999 | 0.065 | 0.789 |
29 | Salicylic acid | 21.8 | 137.2 | 65.0 | Neg | y = 0.239287 + 153.659× | 0.999 | N.D. | 0.13 |
30 | Cyranoside | 23.7 | 447.0 | 284.0 | Neg | y = 0.280246 + 6.13360× | 0.997 | 0.11 | 18.93 |
31 | Miquelianin | 24.1 | 477.0 | 150.9 | Neg | y = −0.00991585 + 5.50334× | 0.999 | 0.355 | N.D. |
33 | Rutin | 25.6 | 608.9 | 301.0 | Neg | y = −0.0771907 + 2.89868× | 0.999 | 0.085 | N.D. |
34 | Isoquercitrin | 25.6 | 463.0 | 271.0 | Neg | y = −0.111120 + 4.10546× | 0.998 | 1.444 | 19.432 |
35 | Hesperidin | 25.8 | 611.2 | 449.0 | Poz | y = 0.139055 + 13.2785× | 0.999 | 0.079 | N.D. |
37 | Genistin | 26.3 | 431.0 | 239.0 | Neg | y = 1.65808 + 7.57459× | 0.991 | 0.622 | 52.518 |
40 | Cosmosiin | 28.2 | 431.0 | 269.0 | Neg | y = −0.708662 + 8.62498× | 0.998 | 0.457 | 39.644 |
41 | Quercitrin | 29.8 | 447.0 | 301.0 | Neg | y = −0.00153274 + 3.20368× | 0.999 | 6.143 | 0.013 |
42 | Astragalin | 30.4 | 447.0 | 255.0 | Neg | y = 0.00825333 + 3.51189× | 0.999 | 1.569 | 43.3 |
43 | Nicotiflorin | 30.6 | 592.9 | 255.0/284.0 | Neg | y = 0.00499333 + 2.62351× | 0.999 | 0.108 | 0.037 |
44 | Fisetin | 30.6 | 285.0 | 163.0 | Neg | y = 0.0365705 + 8.09472× | 0.999 | 0.013 | N.D. |
47 | Quercetin | 35.7 | 301.0 | 272.9 | Neg | y = +0.00597342 + 3.39417× | 0.999 | 0.269 | 1.19 |
48 | Naringenin | 35.9 | 270.9 | 119.0 | Neg | y = −0.00393403 + 14.6424× | 0.999 | 0.053 | 14.888 |
50 | Luteolin | 36.7 | 284.8 | 151.0/175.0 | Neg | y = −0.0541723 + 30.7422× | 0.999 | 0.037 | 9.487 |
51 | Genistein | 36.9 | 269.0 | 135.0 | Neg | y = −0.00507501 + 12.1933× | 0.999 | N.D. | 0.011 |
52 | Kaempferol | 37.9 | 285.0 | 239.0 | Neg | y = −0.00459557 + 3.13754× | 0.999 | 0.029 | 0.272 |
53 | Apigenin | 38.2 | 268.8 | 151.0/149.0 | Neg | y = 0.119018 + 34.8730× | 0.998 | 0.006 | 6.15 |
55 | Chrysin | 40.5 | 252.8 | 145.0/119.0 | Neg | y = −0.0777300 + 18.8873× | 0.999 | 0.04 | 0.015 |
56 | Acacetin | 40.7 | 283.0 | 239.0 | Neg | y = −0.559818 + 163.062× | 0.997 | 0.058 | 3.863 |
Formulation Code | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
NE-1 | 135.6 ± 1.0 | 0.126 ± 0.014 | −5.6 ± 0.5 |
NE-2 | 152.5 ± 1.3 | 0.127 ± 0.002 | −7.0 ± 1.3 |
NE-3 | 158.1 ± 5.8 | 0.121 ± 0.008 | −6.9 ± 1.3 |
NE-4 | 175.6 ± 3.9 | 0.109 ± 0.007 | −10.4 ± 1.2 |
NE-5 | 171.1 ± 1.3 | 0.129 ± 0.004 | −10.0 ± 0.6 |
NE-6 | 177.3 ± 3.3 | 0.145 ± 0.014 | −12.7 ± 1.4 |
NE-7 | 178.0 ± 3.3 | 0.179 ± 0.011 | −10.0 ± 1.3 |
NE-8 | 204.6 ± 2.4 | 0.195 ± 0.049 | −10.7 ± 2.4 |
NE-9 | 227.5 ± 1.6 | 0.245 ± 0.055 | −5.4 ± 0.2 |
NE-10 | 243.1 ± 9.5 | 0.223 ± 0.013 | −8.8 ± 0.8 |
NE-11 | 284.8 ± 25.2 | 0.276 ± 0.068 | −8.1 ± 0.6 |
NE-12 | 313.2 ± 25.1 | 0.238 ± 0.055 | −7.0 ± 0.4 |
NE-13 | 227.5 ± 7.0 | 0.159 ± 0.013 | −12.6 ± 2.3 |
NE-14 | 220.6 ± 5.2 | 0.195 ± 0.030 | −13.3 ± 1.6 |
NE-15 | 232.4 ± 5.3 | 0.202 ± 0.021 | −16.4 ± 1.3 |
NE-16 | 267.7 ± 27.4 | 0.417 ± 0.022 | −21.6 ± 0.4 |
Formulation Code | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
NE-14 | 220.6 ± 5.2 | 0.195 ± 0.030 | −13.3 ± 1.6 |
CC-NE | 249.1 ± 15.0 | 0.271 ± 0.031 | −11.2 ± 1.2 |
HA-NE | 239.4 ± 13.1 | 0.261 ± 0.037 | −14.7 ± 0.6 |
CC-NEG | 271.1 ± 3.6 | 0.237 ± 0.016 | 24.1 ± 4.3 |
HA-NEG | 277.4 ± 25.9 | 0.245 ± 0.014 | 26.1 ± 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deniz, F.S.S.; Oyardı, O.; Bozkurt Guzel, C.; Yalcın, T.E.; Yiğitkan, S.; Kan, Y.; Ulger Toprak, N.; Orhan, I.E. Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation. Pharmaceutics 2025, 17, 317. https://doi.org/10.3390/pharmaceutics17030317
Deniz FSS, Oyardı O, Bozkurt Guzel C, Yalcın TE, Yiğitkan S, Kan Y, Ulger Toprak N, Orhan IE. Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation. Pharmaceutics. 2025; 17(3):317. https://doi.org/10.3390/pharmaceutics17030317
Chicago/Turabian StyleDeniz, F. Sezer Senol, Ozlem Oyardı, Cagla Bozkurt Guzel, Tahir Emre Yalcın, Serkan Yiğitkan, Yuksel Kan, Nurver Ulger Toprak, and Ilkay Erdogan Orhan. 2025. "Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation" Pharmaceutics 17, no. 3: 317. https://doi.org/10.3390/pharmaceutics17030317
APA StyleDeniz, F. S. S., Oyardı, O., Bozkurt Guzel, C., Yalcın, T. E., Yiğitkan, S., Kan, Y., Ulger Toprak, N., & Orhan, I. E. (2025). Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation. Pharmaceutics, 17(3), 317. https://doi.org/10.3390/pharmaceutics17030317