Unveiling Pharmacological Mechanisms of Bombyx mori (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. 3D Structure Modeling and MM2 Energy Minimization
2.3. Network Pharmacology and Target Receptor Identification
2.4. Molecular Docking Simulation
2.5. Molecular Dynamics (MD) Simulation
2.6. Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) Calculations
2.7. Pharmacophore Modeling and In Silico Toxicity Assessment
3. Results
3.1. Identification of Drug–Target Interactions and Determination of Target Receptor
3.2. Analysis of Molecular Interactions Through Molecular Docking Simulations
3.3. Evaluation of Molecular Dynamics: Stability, Interactions, and Binding Affinity
3.4. Pharmacophore Modeling and Toxicity Profile Assessment
4. Discussion
5. Limitations, Clinical Implications, and Future Works
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADORA2A | Adenosine A2A receptor |
ACE2 | Angiotensin-converting enzyme 2 |
BC | Betweenness centrality |
CASTp | Computed atlas of surface topography of proteins |
CC | Closeness centrality |
COX2 | Cyclooxygenase 2 |
CVDs | Cardiovascular diseases |
DC | Degree centrality |
DL | Drug-likeness |
EC | Eigenvector centrality |
GAFF2 | General amber force field |
HADDOCK | High ambiguity driven protein–protein docking |
HBA | Hydrogen bond acceptor |
HBD | Hydrogen bond donor |
ICs | Intermolecular contacts |
IHD | Ischemic heart disease |
ITC | Isothermal titration calorimetry |
MD | Molecular dynamics |
MM/PBSA | Molecular mechanics/Poisson–Boltzmann surface area |
MMP9 | Matrix metalloproteinase 9 |
MST | Microscale thermophoresis |
MTP | Multiple-trajectory protocol |
NIS | Non-interacting surface areas |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
NPT | Number of particles, pressure, and temperature |
NVT | Number of particles, volume, and temperature |
OB | Oral bioavailability |
OPLS-AA/L | Optimized potentials for liquid simulations |
PME | Particle mesh Ewald |
PPIs | Protein–protein interactions |
PTM | Post-translational modifications |
REMD | Replica exchange molecular dynamics |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
RoG | Radius of gyration |
SASA | Solvent-accessible surface area |
SEA | Similarity ensemble approach |
SMILES | Simplified molecular input line entry system |
SPCE | Single point charge extended |
SPR | Surface plasmon resonance |
STP | Single-trajectory protocol |
TC | Tanimoto coefficient |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016, 113, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Kumar, M.; Majdoubi, J.; Rahimi-Gorji, M.; Srivastav, V.K. A review study on blood in human coronary artery: Numerical approach. Comput. Methods Programs Biomed. 2020, 187, 105243. [Google Scholar] [CrossRef] [PubMed]
- Mortada, E.M. Evidence-Based Complementary and Alternative Medicine in Current Medical Practice. Cureus 2024, 16, e52041. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef]
- Rizvi, S.A.A.; Einstein, G.P.; Tulp, O.L.; Sainvil, F.; Branly, R. Introduction to Traditional Medicine and Their Role in Prevention and Treatment of Emerging and Re-Emerging Diseases. Biomolecules 2022, 12, 1442. [Google Scholar] [CrossRef]
- Ahmed, R.; Ahmed, M.; Meena, R.P.; Khan, A.; Ansari, S. Bombyx mori Cocoon (Abresham): A potent Unani drug. Int. J. Unani Integr. Med. 2022, 6, 33–36. [Google Scholar] [CrossRef]
- Ali, M.M.; Arumugam, S.B. Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis. J. Ayurveda Integr. Med. 2011, 2, 72–78. [Google Scholar]
- Goyal, S.; Siddiqui, M.K.; Siddiqui, K.M.; Arora, S.; Mittal, R.; Joshi, S.; Arya, D.S. Cardioprotective effect of ‘Khamira Abresham Hakim Arshad Wala’ a unani formulation in isoproterenol-induced myocardial necrosis in rats. Exp. Toxicol. Pathol. 2010, 62, 61–74. [Google Scholar] [CrossRef]
- Nazmi, A.; Ahmad, S.; Rashikh, M.; Akhtar, M.; Pillai, K.; Najmi, A. Protective effects of ‘Khamira Abresham Hakim Arshad Wala’, a unani formulation against doxorubicin-induced cardiotoxicity and nephrotoxicity. Toxicol. Mech. Methods 2010, 21, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Biganeh, H.; Kabiri, M.; Zeynalpourfattahi, Y.; Costa Brancalhão, R.M.; Karimi, M.; Shams Ardekani, M.R.; Rahimi, R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022, 8, e10496. [Google Scholar] [CrossRef] [PubMed]
- Kunz, R.I.; Brancalhão, R.M.; Ribeiro, L.F.; Natali, M.R. Silkworm Sericin: Properties and Biomedical Applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, T.; Jayaram, H.; Aurade, R.; Shunmugam, M.M.; Shinde, V.S.; Baragi Venkatesharao, S.R.; Azhiyakathu, M.J. Profiling of nutrients and bioactive compounds in the pupae of silkworm, Bombyx mori. Food Chem. Adv. 2023, 3, 100382. [Google Scholar] [CrossRef]
- Zafar, M.; Al Samadani, K. Potential use of natural silk for bio-dental applications. J. Taibah Univ. Med. Sci. 2014, 9, 171–177. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, H.; Zhang, X.; Cheung, W.W.; Hu, Y.; Hong, A.; Guo, J.; Xu, Y.; He, J.; Lu, J.; et al. Untargeted screening and differential analysis of bioactive compounds in male and female silkworm (Bombyx mori) pupae through Orbitrap Exploris mass spectrometry. Food Chem. 2025, 469, 142584. [Google Scholar] [CrossRef]
- Saini, R.S.; Binduhayyim, R.I.H.; Gurumurthy, V.; Alshadidi, A.A.F.; Aldosari, L.I.N.; Okshah, A.; Kuruniyan, M.S.; Dermawan, D.; Avetisyan, A.; Mosaddad, S.A.; et al. Dental biomaterials redefined: Molecular docking and dynamics-driven dental resin composite optimization. BMC Oral Health 2024, 24, 557. [Google Scholar] [CrossRef]
- Saini, R.S.; Binduhayyim, R.I.H.; Gurumurthy, V.; Alshadidi, A.A.F.; Bavabeedu, S.S.; Vyas, R.; Dermawan, D.; Naseef, P.P.; Mosaddad, S.A.; Heboyan, A. In silico assessment of biocompatibility and toxicity: Molecular docking and dynamics simulation of PMMA-based dental materials for interim prosthetic restorations. J. Mater. Sci. Mater. Med. 2024, 35, 28. [Google Scholar] [CrossRef]
- Chen, S.; Fan, G.; Li, J. Improving completeness and accuracy of 3D point clouds by using deep learning for applications of digital twins to civil structures. Adv. Eng. Inform. 2023, 58, 102196. [Google Scholar] [CrossRef]
- Davis, E.M.; Sun, Y.; Liu, Y.; Kolekar, P.; Shao, Y.; Szlachta, K.; Mulder, H.L.; Ren, D.; Rice, S.V.; Wang, Z.; et al. SequencErr: Measuring and suppressing sequencer errors in next-generation sequencing data. Genome Biol. 2021, 22, 37. [Google Scholar] [CrossRef]
- Alotaiq, N.; Dermawan, D. Evaluation of Structure Prediction and Molecular Docking Tools for Therapeutic Peptides in Clinical Use and Trials Targeting Coronary Artery Disease. Int. J. Mol. Sci. 2025, 26, 462. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Tian, W.; Wang, B.; Liang, J. CASTpFold: Computed Atlas of Surface Topography of the universe of protein Folds. Nucleic Acids Res. 2024, 52, W194–W199. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef]
- Sun, T.; Quan, W.; Peng, S.; Yang, D.; Liu, J.; He, C.; Chen, Y.; Hu, B.; Tuo, Q. Network Pharmacology-Based Strategy Combined with Molecular Docking and in vitro Validation Study to Explore the Underlying Mechanism of Huo Luo Xiao Ling Dan in Treating Atherosclerosis. Drug Des. Dev. Ther. 2022, 16, 1621–1645. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Amin, A.; Khan, M.; Yu, Z.; Liang, C. Network Pharmacology Analysis of Bioactive Components and Mechanisms of Action of Qi Wei Wan Formula for Treating Non-Small Cell Lung Carcinoma. Nat. Prod. Commun. 2022, 17, 1934578X2211202. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Molsoft. ICM: Integrated Computational Microscope (ICM); Molsoft LLC: La Jolla, CA, USA, 2024. [Google Scholar]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef]
- Vilar, S.; Quezada, E.; Uriarte, E.; Costanzi, S.; Borges, F.; Viña, D.; Hripcsak, G. Computational Drug Target Screening through Protein Interaction Profiles. Sci. Rep. 2016, 6, 36969. [Google Scholar] [CrossRef]
- Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 1998, 14, 656–664. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Darwish, M.M.; Ibrahim, R.S.; Metwally, A.M.; Mahrous, R.S.R. In-depth in silico and in vitro screening of selected edible plants for identification of selective C-domain ACE-1 inhibitor and its synergistic effect with captopril. Food Biosci. 2024, 59, 104115. [Google Scholar] [CrossRef]
- Huang, L.; Sexton, D.J.; Skogerson, K.; Devlin, M.; Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu, Q.L.; et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 2003, 278, 15532–15540. [Google Scholar] [CrossRef]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef]
- Van Zundert, G.C.P.; Rodrigues, J.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; de Vries, S.J.; Bonvin, A. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. [Google Scholar] [CrossRef]
- Vangone, A.; Bonvin, A. PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes. Bio-Protocol 2017, 7, e2124. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.J.; Tirado-Rives, J.; Jorgensen, W.L. Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field. J. Chem. Theory Comput. 2015, 11, 3499–3509. [Google Scholar] [CrossRef] [PubMed]
- Yuet, P.; Blankschtein, D. Molecular Dynamics Simulation Study of Water Surfaces: Comparison of Flexible Water Models. J. Phys. Chem. B 2010, 114, 13786–13795. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger. The PyMOL Molecular Graphics System, Version 2.4; Schrödinger, Inc.: New York, NY, USA, 2020.
- BIOVIA Discovery Studio, Version 2024; Dassault Systèmes: San Diego, CA, USA, 2024.
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Alotaiq, N.; Dermawan, D.; Elwali, N.E. Leveraging Therapeutic Proteins and Peptides from Lumbricus Earthworms: Targeting SOCS2 E3 Ligase for Cardiovascular Therapy through Molecular Dynamics Simulations. Int. J. Mol. Sci. 2024, 25, 10818. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.; Valdés-Tresanco, M.; Valiente, P.; Moreno Frias, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Sandoo, A.; van Zanten, J.J.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef]
- Virdis, A.; Colucci, R.; Fornai, M.; Blandizzi, C.; Duranti, E.; Pinto, S.; Bernardini, N.; Segnani, C.; Antonioli, L.; Taddei, S.; et al. Cyclooxygenase-2 Inhibition Improves Vascular Endothelial Dysfunction in a Rat Model of Endotoxic Shock: Role of Inducible Nitric-Oxide Synthase and Oxidative Stress. J. Pharmacol. Exp. Ther. 2005, 312, 945–953. [Google Scholar] [CrossRef]
- Mustafa, S.J.; Morrison, R.R.; Teng, B.; Pelleg, A. Adenosine receptors and the heart: Role in regulation of coronary blood flow and cardiac electrophysiology. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 161–188. [Google Scholar]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar] [PubMed]
- García-Llorca, A.; Carta, F.; Supuran, C.T.; Eysteinsson, T. Carbonic anhydrase, its inhibitors and vascular function. Front. Mol. Biosci. 2024, 11, 1338528. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, J.; Montezano, A.C.; Touyz, R.M. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: Vasoprotection to COVID-19-associated vascular disease. Clin. Sci. 2021, 135, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediat. Inflamm. 2020, 2020, 3872367. [Google Scholar] [CrossRef] [PubMed]
- Khayat, M.T.; Nayeem, M.A. The Role of Adenosine A(2A) Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone. BioMed Res. Int. 2017, 2017, 1720920. [Google Scholar] [CrossRef]
- Yacouba Moukeila, M.B.; Thokerunga, E.; He, F.; Bongolo, C.C.; Xia, Y.; Wang, F.; Gado, A.F.; Mamoudou, H.; Khan, S.; Ousseina, B.; et al. Adenosine 2 receptor regulates autophagy and apoptosis to alleviate ischemia reperfusion injury in type 2 diabetes via IRE-1 signaling. BMC Cardiovasc. Disord. 2023, 23, 154. [Google Scholar] [CrossRef]
- De Chaves, E.P.; Narayanaswami, V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol. 2008, 3, 505–530. [Google Scholar] [CrossRef]
- Kalmijn, S.; Feskens, E.J.; Launer, L.J.; Kromhout, D. Cerebrovascular disease, the apolipoprotein e4 allele, and cognitive decline in a community-based study of elderly men. Stroke 1996, 27, 2230–2235. [Google Scholar] [CrossRef]
- Van Langendonckt, A.; Casanas-Roux, F.; Donnez, J. Oxidative stress and peritoneal endometriosis. Fertil. Steril. 2002, 77, 861–870. [Google Scholar] [CrossRef]
- Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: In Physiology and in Disease States. Am. J. Biomed. Sci. Res. 2022, 15, 153–177. [Google Scholar]
- Kumar, G.; Dey, S.K.; Kundu, S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci. 2020, 259, 118377. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Raghuvanshi, R.; Ceylan, F.D.; Bolling, B.W. Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity. J. Agric. Food Chem. 2020, 68, 13982–13989. [Google Scholar] [CrossRef] [PubMed]
- Upreti, S.; Prusty, J.S.; Pandey, S.C.; Kumar, A.; Samant, M. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol. Divers. 2021, 25, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, D.; Alsenani, F.; Elwali, N.E.; Alotaiq, N. Therapeutic Potential of Earthworm-Derived Proteins: Targeting NEDD4 for Cardiovascular Disease Intervention. J. Appl. Pharm. Sci. 2024, 15, 216–232. [Google Scholar] [CrossRef]
- Lazniewski, M.; Dermawan, D.; Hidayat, S.; Muchtaridi, M.; Dawson, W.K.; Plewczynski, D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods 2022, 203, 498–510. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Y.; Yan, F.; Dong, M.; Ren, Y. Research progress of quercetin in cardiovascular disease. Front. Cardiovasc. Med. 2023, 10, 1203713. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Velidakis, N.; Khattab, E.; Valsami, G.; Korakianitis, I.; Kadoglou, N.P. Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals 2022, 15, 1019. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Ho, W.Y.; Shen, Z.H.; Chen, Y.; Chen, T.H.; Lu, X.; Fu, Y.S. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024, 10, e30080. [Google Scholar] [CrossRef]
- Häckl, L.; Cuttle, G.; Dovichi, S.; Landman, M.; Nicolau, M. Inhibition of Angiotensin-Converting Enzyme by Quercetin Alters the Vascular Response to Bradykinin and Angiotensin I. Pharmacology 2002, 65, 182–186. [Google Scholar] [CrossRef]
- Kim, D.W.; Hwang, H.S.; Kim, D.S.; Sheen, S.H.; Heo, D.H.; Hwang, G.; Kang, S.H.; Kweon, H.; Jo, Y.Y.; Kang, S.W.; et al. Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model. BMB Rep. 2011, 44, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, Y.; Waterson, H.; Mizoguchi, A. Bombyxin (Bombyx Insulin-Like Peptide) Increases the Respiration Rate Through Facilitation of Carbohydrate Catabolism in Bombyx mori. Front. Endocrinol. 2019, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Cermeño, M.; Bascón, C.; Amigo-Benavent, M.; Felix, M.; FitzGerald, R.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. J. Funct. Foods 2022, 92, 105052. [Google Scholar] [CrossRef]
- Thiemermann, C.; Al-Damluji, S.; Hecker, M.; Vane, J.R. FMRF-amide and L-Arg-L-Phe increase blood pressure and heart rate in the anaesthetised rat by central stimulation of the sympathetic nervous system. Biochem. Biophys. Res. Commun. 1991, 175, 318–324. [Google Scholar] [CrossRef]
- Nichols, R.; Demers, L.A.; Larsen, B.M.; Robinson, D.; Converso, K.; Russell, M.W.; Westfall, M.V. Human RFamide-related peptide-1 diminishes cellular and integrated cardiac contractile performance. Peptides 2010, 31, 2067–2074. [Google Scholar] [CrossRef]
- Dagher, O.; Mury, P.; Thorin-Trescases, N.; Noly, P.E.; Thorin, E.; Carrier, M. Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases. Front. Cardiovasc. Med. 2021, 8, 658400. [Google Scholar] [CrossRef]
- Berenyiova, A.; Bernatova, I.; Zemancikova, A.; Drobna, M.; Cebova, M.; Golas, S.; Balis, P.; Liskova, S.; Valaskova, Z.; Krskova, K.; et al. Vascular Effects of Low-Dose ACE2 Inhibitor MLN-4760-Benefit or Detriment in Essential Hypertension? Biomedicines 2021, 10, 38. [Google Scholar] [CrossRef]
Complex | HADDOCK Score (a.u.) | Binding Energy (kcal/mol) | Van der Waals Energy | Electrostatic Energy | Desolvation Energy | RMSD |
---|---|---|---|---|---|---|
Captopril_ACE2 (standard inhibitor) | −11.2 ± 1.8 | −6.25 | −12.6 ± 0.4 | −40.5 ± 7.3 | −1.5 ± 0.5 | 0.5 ± 0.0 |
Menaquinone-7_ACE2 | −42.0 ± 3.0 | −10.09 | −24.1 ± 2.3 | −88.3 ± 4.0 | −9.4 ± 1.2 | 0.4 ± 0.0 |
Quercetin_ACE2 | −20.9 ± 0.2 | −8.75 | −18.0 ± 0.2 | −37.2 ± 2.2 | 0.7 ± 0.3 | 0.6 ± 0.0 |
Behenic acid_ACE2 | −25.6 ± 1.7 | −8.47 | −14.2 ± 2.5 | −94.2 ± 10.7 | −6.4 ± 0.8 | 0.2 ± 0.0 |
Stearic acid_ACE2 | −24.5 ± 3.3 | −8.19 | −13.7 ± 0.7 | −88.2 ± 13.8 | −5.0 ± 0.4 | 0.2 ± 0.0 |
Phytonadione_ACE2 | −31.6 ± 1.2 | −8.10 | −24.6 ± 0.1 | −43.3 ± 4.4 | −3.6 ± 0.8 | 0.5 ± 0.0 |
Rutin_ACE2 | −31.8 ± 0.1 | −7.94 | −26.1 ± 0.4 | −22.6 ± 10.9 | −3.4 ± 0.9 | 0.6 ± 0.0 |
Tocopherol_ACE2 | −33.7 ± 1.4 | −7.87 | −26.1 ± 0.3 | 5.6 ± 0.2 | −9.1 ± 0.3 | 0.1 ± 0.0 |
Eicosenoic acid_ACE2 | −26.0 ± 3.5 | −7.85 | −17.1 ± 1.9 | −99.1 ± 17.7 | −2.4 ± 1.0 | 0.8 ± 0.0 |
Luteolin_ACE2 | −19.5 ± 0.5 | −7.71 | −16.8 ± 0.4 | −26.2 ± 2.3 | −0.1 ± 0.3 | 0.9 ± 0.0 |
Palmitic acid_ACE2 | −25.7 ± 0.7 | −7.65 | −18.4 ± 0.3 | −61.6 ± 5.5 | −5.8 ± 0.1 | 0.6 ± 0.0 |
Complex | HADDOCK Score (a.u.) | Binding Energy (kcal/mol) | Van der Waals Energy | Electrostatic Energy | Desolvation Energy | RMSD |
---|---|---|---|---|---|---|
DX600 peptide_ACE2 (standard inhibitor) | −76.8 ± 0.9 | −8.6 | −38.7 ± 2.9 | −79.0 ± 28.3 | −26.1 ± 4.2 | 1.4 ± 0.2 |
Chorion class high-cysteine HCB protein 13_ACE2 | −71.4 ± 18.1 | −15.0 | −58.4 ± 12.0 | −178.2 ± 42.5 | 0.2 ± 3.5 | 2.0 ± 0.5 |
Chorion class B protein M1768_ACE2 | −89.6 ± 9.1 | −14.5 | −68.4 ± 6.3 | −111.0 ± 21.3 | −14.5 ± 2.2 | 2.1 ± 0.1 |
Putative defense protein_ACE2 | −110.2 ± 6.6 | −13.9 | −61.7 ± 8.4 | −344.6 ± 15.9 | 10.9 ± 1.4 | 0.8 ± 0.6 |
NADH dehydrogenase 1 beta subunit 10_ACE2 | −81.3 ± 12.3 | −13.6 | −37.5 ± 12.5 | −290.1 ± 20.3 | −5.0 ± 2.8 | 2.3 ± 0.2 |
Bombyxin A-5_ACE2 | −113.2 ± 10.0 | −13.4 | −63.7 ± 4.4 | −185.9 ± 32.4 | −26.3 ± 3.6 | 0.9 ± 0.9 |
Diuretic hormone 45_ACE2 | −98.9 ± 14.7 | −13.0 | −61.0 ± 8.8 | −130.7 ± 54.8 | −27.8 ± 4.3 | 1.1 ± 0.7 |
Fungal protease inhibitor F_ACE2 | −82.0 ± 12.0 | −12.9 | −44.4 ± 12.0 | −169.1 ± 14.3 | −7.4 ± 2.8 | 2.4 ± 0.3 |
FMRFamide-related peptides_ACE2 | −65.3 ± 12.9 | −12.8 | −60.0 ± 7.5 | −120.4 ± 50.1 | −9.1 ± 2.5 | 1.3 ± 0.8 |
Chorion class B protein L12_ACE2 | −95.1 ± 4.4 | −12.7 | −67.6 ± 6.2 | −194.7 ± 16.4 | −12.2 ± 1.5 | 1.2 ± 0.1 |
Chorion class CA protein ERA.5_ACE2 | −70.2 ± 5.6 | −12.7 | −56.9 ± 3.6 | −134.4 ± 41.3 | −6.7 ± 1.8 | 1.9 ± 0.3 |
Complex | ICs Charged-Charged | ICs Charged-Polar | ICs Charged-Apolar | ICs Polar-Polar | ICs Polar-Apolar | ICs Apolar-Apolar | NIS Charged | NIS Apolar |
---|---|---|---|---|---|---|---|---|
DX600 peptide_ACE2 (standard inhibitor) | 3 | 3 | 14 | 0 | 5 | 6 | 27.88 | 33.63 |
Chorion class high-cysteine HCB protein 13_ACE2 | 6 | 18 | 26 | 5 | 32 | 13 | 22.20 | 39.23 |
Chorion class B protein M1768_ACE2 | 2 | 6 | 36 | 1 | 26 | 19 | 23.96 | 40.83 |
Putative defense protein_ACE2 | 17 | 13 | 16 | 8 | 30 | 9 | 26.80 | 36.51 |
NADH dehydrogenase 1 beta subunit 10_ACE2 | 13 | 13 | 25 | 2 | 21 | 12 | 28.84 | 34.81 |
Bombyxin A-5_ACE2 | 3 | 6 | 25 | 0 | 22 | 18 | 26.73 | 35.25 |
Diuretic hormone 45_ACE2 | 3 | 2 | 25 | 3 | 25 | 17 | 26.23 | 38.20 |
Fungal protease inhibitor F_ACE2 | 8 | 10 | 24 | 1 | 19 | 5 | 26.31 | 35.54 |
FMRFamide-related peptides_ACE2 | 9 | 10 | 27 | 2 | 19 | 14 | 28.45 | 35.61 |
Chorion class B protein L12_ACE2 | 3 | 8 | 31 | 1 | 21 | 10 | 22.47 | 43.22 |
Chorion class CA protein ERA.5_ACE2 | 2 | 11 | 27 | 4 | 24 | 13 | 22.63 | 41.19 |
Complex | Average RMSD (Å) | Average RMSF (Å) | Average RoG (Å) | Number of Hydrogen Bonds Between the Ligand–Receptor |
---|---|---|---|---|
Chemical compounds | ||||
Captopril_ACE2 (standard inhibitor) | 1.250 | 0.746 | 2.185 | 4 |
Menaquinone-7_ACE2 | 1.381 | 0.936 | 2.212 | 5 |
Quercetin_ACE2 | 1.317 | 0.836 | 2.205 | 4 |
Behenic acid_ACE2 | 1.482 | 0.912 | 2.198 | 3 |
Stearic acid_ACE2 | 1.412 | 0.884 | 2.203 | 3 |
Phytonadione_ACE2 | 1.358 | 0.815 | 2.214 | 5 |
Rutin_ACE2 | 1.452 | 0.922 | 2.197 | 6 |
Tocopherol_ACE2 | 1.393 | 0.858 | 2.209 | 4 |
Eicosenoic acid_ACE2 | 1.424 | 0.891 | 2.201 | 3 |
Luteolin_ACE2 | 1.336 | 0.829 | 2.210 | 4 |
Palmitic acid_ACE2 | 1.372 | 0.847 | 2.202 | 3 |
Protein-based compounds | ||||
DX600 peptide_ACE2 (standard inhibitor) | 3.152 | 1.802 | 2.792 | 8 |
Chorion class high-cysteine HCB protein 13_ACE2 | 3.284 | 1.833 | 2.805 | 13 |
Chorion class B protein M1768_ACE2 | 3.344 | 1.889 | 2.822 | 10 |
Putative defense protein_ACE2 | 3.421 | 1.902 | 2.818 | 11 |
NADH dehydrogenase 1 beta subunit 10_ACE2 | 3.381 | 1.854 | 2.809 | 10 |
Bombyxin A-5_ACE2 | 3.224 | 1.776 | 2.798 | 10 |
Diuretic hormone 45_ACE2 | 3.463 | 1.915 | 2.814 | 11 |
Fungal protease inhibitor F_ACE2 | 3.322 | 1.845 | 2.810 | 10 |
FMRFamide-related peptides_ACE2 | 3.381 | 1.875 | 2.806 | 12 |
Chorion class B protein L12_ACE2 | 3.294 | 1.812 | 2.794 | 9 |
Chorion class CA protein ERA.5_ACE2 | 3.302 | 1.821 | 2.799 | 9 |
Complex | MM/PBSA Calculation Results ΔG_Binding (kcal/mol) |
---|---|
Chemical compounds | |
Captopril_ACE2 (standard inhibitor) | −21.08 ± 1.42 |
Menaquinone-7_ACE2 | −35.12 ± 2.08 |
Quercetin_ACE2 | −29.98 ± 1.87 |
Behenic acid_ACE2 | −27.76 ± 1.65 |
Stearic acid_ACE2 | −27.01 ± 1.59 |
Phytonadione_ACE2 | −27.31 ± 1.61 |
Rutin_ACE2 | −26.88 ± 1.55 |
Tocopherol_ACE2 | −26.36 ± 1.48 |
Eicosenoic acid_ACE2 | −26.49 ± 1.50 |
Luteolin_ACE2 | −25.89 ± 1.45 |
Palmitic acid_ACE2 | −25.66 ± 1.43 |
Protein-based compounds | |
DX600 peptide_ACE2 (standard inhibitor) | −81.93 ± 3.72 |
Chorion class high-cysteine HCB protein 13_ACE2 | −212.43 ± 9.84 |
Chorion class B protein M1768_ACE2 | −195.04 ± 8.73 |
Putative defense protein_ACE2 | −162.63 ± 7.48 |
NADH dehydrogenase 1 beta subunit 10_ACE2 | −198.03 ± 8.35 |
Bombyxin A-5_ACE2 | −209.36 ± 9.10 |
Diuretic hormone 45_ACE2 | −176.48 ± 7.95 |
Fungal protease inhibitor F_ACE2 | −171.07 ± 7.58 |
FMRFamide-related peptides_ACE2 | −198.93 ± 8.41 |
Chorion class B protein L12_ACE2 | −193.50 ± 8.67 |
Chorion class CA protein ERA.5_ACE2 | −140.36 ± 6.88 |
Molecule | Lipinski Violation | Drug-Likeness | Mutagenic | Tumorigenic | Reproductive Effective | Irritant |
---|---|---|---|---|---|---|
Menaquinone-7 | 2 violations: MW > 500 g/mol LogP > 5 | 0.62 | None | None | None | None |
Quercetin | 0 | 0.52 | High | High | None | None |
Behenic acid | 1 violation: LogP > 5 | 0.54 | None | None | None | None |
Stearic acid | 0 | 0.54 | High | High | None | High |
Phytonadione | 1 violation: LogP > 5 | 0.93 | None | None | None | None |
Rutin | 3 violations: MW > 500 g/mol HBA > 10 HBD > 5 | 0.91 | None | None | None | None |
Tocopherol | 1 violation: LogP > 5 | 0.48 | None | None | None | None |
Eicosenoic acid | 1 violation: LogP > 5 | −0.30 | None | None | None | None |
Luteolin | 0 | 0.38 | None | None | None | None |
Palmitic acid | 1 violation: LogP > 5 | −0.54 | None | High | None | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dermawan, D.; Alotaiq, N. Unveiling Pharmacological Mechanisms of Bombyx mori (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study. Pharmaceutics 2025, 17, 295. https://doi.org/10.3390/pharmaceutics17030295
Dermawan D, Alotaiq N. Unveiling Pharmacological Mechanisms of Bombyx mori (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study. Pharmaceutics. 2025; 17(3):295. https://doi.org/10.3390/pharmaceutics17030295
Chicago/Turabian StyleDermawan, Doni, and Nasser Alotaiq. 2025. "Unveiling Pharmacological Mechanisms of Bombyx mori (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study" Pharmaceutics 17, no. 3: 295. https://doi.org/10.3390/pharmaceutics17030295
APA StyleDermawan, D., & Alotaiq, N. (2025). Unveiling Pharmacological Mechanisms of Bombyx mori (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study. Pharmaceutics, 17(3), 295. https://doi.org/10.3390/pharmaceutics17030295