Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes
Abstract
:1. Introduction
2. Main Permeation Barriers of Representative Mucosal Membranes
2.1. Ocular Mucosa
2.2. Nasal Mucosa
2.3. Rectal Mucosa
2.4. Vaginal Mucosa
3. Drug Permeation Mechanisms Across Mucosa
4. IVPT Considerations and Systems
4.1. Tissue-Based Models
4.1.1. VDC Apparatus
4.1.2. FTC Apparatus
4.1.3. Ussing Chamber System
4.2. Cell-Based Models
4.2.1. Transwell System
4.2.2. Corneal Cell Models
4.2.3. Nasal Cell Models
4.2.4. Rectal Cell Model
4.2.5. Vaginal Cell Models
4.3. Data Analysis
5. Future Perspectives
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BE | bioequivalence |
FDA | Food and Drug Administration |
FTC | flow-through cell |
IVIVC | in vitro–in vivo correlation |
IVRT | in vitro release testing |
IVPT | in vitro permeation testing |
PSG | product-specific guidance |
TEER | transepithelial electrical resistance |
VDC | vertical diffusion cell |
References
- Hearnden, V.; Sankar, V.; Hull, K.; Juras, D.V.; Greenberg, M.; Kerr, A.R.; Lockhart, P.B.; Patton, L.L.; Porter, S.; Thornhill, M.H. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv. Drug Deliv. Rev. 2012, 64, 16–28. [Google Scholar] [CrossRef]
- Brunaugh, A.D.; Smyth, H.D.C.; Williams Iii, R.O. Rectal and Vaginal Drug Delivery. In Essential Pharmaceutics; Brunaugh, A.D., Smyth, H.D.C., Williams Iii, R.O., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 149–161. [Google Scholar]
- Boddupalli, B.M.; Mohammed, Z.N.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Laffleur, F.; Bernkop-Schnürch, A. Strategies for improving mucosal drug delivery. Nanomedicine 2013, 8, 2061–2075. [Google Scholar] [CrossRef] [PubMed]
- Chastain, J. General Considerations in Ocular Drug Delivery. In Ophthalmic Drug Delivery Systems; CRC Press: Boca Raton, FL, USA, 2003; pp. 59–107. [Google Scholar]
- Xu, X.; Al-Ghabeish, M.; Rahman, Z.; Krishnaiah, Y.S.; Yerlikaya, F.; Yang, Y.; Manda, P.; Hunt, R.L.; Khan, M.A. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments. Int. J. Pharm. 2015, 493, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.K. Ophthalmic Drug Delivery Systems, Second Edition, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Bitter, C.; Suter-Zimmermann, K.; Surber, C. Nasal drug delivery in humans. Curr. Probl. Dermatol. 2011, 40, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Beule, A.G. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2010, 9, Doc07. [Google Scholar] [CrossRef]
- Eichner, H.; Behbehani, A.A.; Hochstrasser, K. Diagnostic value of nasal secretions, current state: Normal values. 1. [Nasensekretdiagnostik, aktueller Stand: Normalwerte. Teil 1]. Laryngol Laryngol. Rhinol. Otol. 1983, 62, 561–565. [Google Scholar] [CrossRef]
- Hua, S. Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Front. Pharmacol. 2019, 10, 1196. [Google Scholar] [CrossRef]
- Goldwyn, R.M. Gray’s anatomy. Plast. Reconstr. Surg. 1985, 76, 147–148. [Google Scholar] [CrossRef]
- Batchelor, H. Rectal Drug Delivery. In Pediatric Formulations: A Roadmap; Bar-Shalom, D., Rose, K., Eds.; AAPS Advances in the Pharmaceutical Sciences Series; Springer: New York, NY, USA, 2014; Volume 11, pp. 303–310. [Google Scholar] [CrossRef]
- Anderson, D.J.; Marathe, J.; Pudney, J. The structure of the human vaginal stratum corneum and its role in immune defense. Am. J. Reprod. Immunol. 2014, 71, 618–623. [Google Scholar] [CrossRef]
- Owen, D.H.; Katz, D.F. A vaginal fluid simulant. Contraception 1999, 59, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.; Paul, K.; Agnew, K.; Gaussman, R.; Coombs, R.W.; Hitti, J. Estimating volume of cervicovaginal secretions in cervicovaginal lavage fluid collected for measurement of genital HIV-1 RNA levels in women. J. Clin. Microbiol. 2011, 49, 735–736. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.M. The dynamics and drainage of tears. Int. Ophthalmol. Clin. 1973, 13, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Mishima, S.; Gasset, A.; Klyce, S.D., Jr.; Baum, J.L. Determination of Tear Volume and Tear Flow. Investig. Ophthalmol. Vis. Sci. 1966, 5, 264–276. [Google Scholar]
- Ehlers, N. The precorneal film. Biomicroscopical, histological and chemical investigations. Acta Ophthalmol. Suppl. 1965, 81, 81–134. [Google Scholar]
- Hornof, M.; Toropainen, E.; Urtti, A. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm. 2005, 60, 207–225. [Google Scholar] [CrossRef]
- Huang, H.S.; Schoenwald, R.D.; Lach, J.L. Corneal penetration behavior of beta-blocking agents III: In vitro-in vivo correlations. J. Pharm. Sci. 1983, 72, 1279–1281. [Google Scholar] [CrossRef]
- Klyce, S.D.; Crosson, C.E. Transport processes across the rabbit corneal epithelium: A review. Curr. Eye Res. 1985, 4, 323–331. [Google Scholar] [CrossRef]
- McLaughlin, B.J.; Caldwell, R.B.; Sasaki, Y.; Wood, T.O. Freeze-fracture quantitative comparison of rabbit corneal epithelial and endothelial membranes. Curr. Eye Res. 1985, 4, 951–961. [Google Scholar] [CrossRef]
- Sunkara, G.; Kompella, U. Membrane Transport Processes in the Eye. In Ophthalmic Drug Delivery Systems; CRC Press: Boca Raton, FL, USA, 2003; pp. 13–58. [Google Scholar]
- Veronesi, M.C.; Alhamami, M.; Miedema, S.B.; Yun, Y.; Ruiz-Cardozo, M.; Vannier, M.W. Imaging of intranasal drug delivery to the brain. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 1–31. [Google Scholar]
- Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal drug delivery: How, why and what for? J. Pharm. Pharm. Sci. 2009, 12, 288–311. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.L.; Darekar, A.; Saudagar, R. A recent review on nasal microemulsion for treatment of cns disorder. Int. J. Curr. Pharm. Res. 2017, 9, 5. [Google Scholar] [CrossRef]
- Bedse, A.; Sadique, S.M.S.; Kunde, V.; Jaiswal, S. Drug Delivery on Rectal Absorption: Suppositories. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 70–76. [Google Scholar]
- Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm. 2007, 337, 1–24. [Google Scholar] [CrossRef]
- Merkus, F.W.; Verhoef, J.C.; Schipper, N.G.; Marttin, E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 13–38. [Google Scholar] [CrossRef]
- Jones, N. The nose and paranasal sinuses physiology and anatomy. Adv. Drug Deliv. Rev. 2001, 51, 5–19. [Google Scholar] [CrossRef]
- Mygind, N. Structure and ultrastructure of the nose. Nasal Allergy 1979, 2, 3–38. [Google Scholar]
- Kumar, T.A.; David, G.; Puri, V. Ovulation in rhesus monkeys suppressed by intranasal administration of progesterone and norethisterone. Nature 1977, 270, 532–534. [Google Scholar] [CrossRef]
- Herbst, A.L. Comprehensive Gynecology; Mosby Elsevier Health Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef]
- Jannin, V.; Lemagnen, G.; Gueroult, P.; Larrouture, D.; Tuleu, C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev. 2014, 73, 34–49. [Google Scholar] [CrossRef]
- van Hoogdalem, E.; de Boer, A.G.; Breimer, D.D. Pharmacokinetics of rectal drug administration, Part I. General considerations and clinical applications of centrally acting drugs. Clin. Pharmacokinet. 1991, 21, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Sibinovska, N.; Božič, D.; Bošković Ribarski, M.; Kristan, K. Prediction of pharmacokinetic studies outcome for locally acting nasal sprays by using different in vitro methods. Int. J. Pharm. 2021, 601, 120569. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.; Sarmento, B.; das Neves, J. Formulation and delivery of anti-HIV rectal microbicides: Advances and challenges. J. Control Release 2014, 194, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Purohit, T.J.; Hanning, S.M.; Wu, Z. Advances in rectal drug delivery systems. Pharm. Dev. Technol. 2018, 23, 942–952. [Google Scholar] [CrossRef]
- de Boer, A.G.; Moolenaar, F.; de Leede, L.G.; Breimer, D.D. Rectal drug administration: Clinical pharmacokinetic considerations. Clin. Pharmacokinet. 1982, 7, 285–311. [Google Scholar] [CrossRef]
- van Hoogdalem, E.J.; de Boer, A.G.; Breimer, D.D. Pharmacokinetics of rectal drug administration, Part II. Clinical applications of peripherally acting drugs, and conclusions. Clin. Pharmacokinet. 1991, 21, 110–128. [Google Scholar] [CrossRef]
- Woolfson, A.D.; Malcolm, R.K.; Gallagher, R. Drug delivery by the intravaginal route. Crit. Rev. Ther. Drug Carrier Syst. 2000, 17, 509–555. [Google Scholar] [CrossRef]
- Funt, M.I.; Thompson, J.D.; Birch, H. Normal vaginal axis. South. Med. J. 1978, 71, 1552, 1534–1535. [Google Scholar] [CrossRef]
- Van De Graaff, K.M. Human Anatomy; McGraw-Hill Higher Education: New York, NY, USA, 2001. [Google Scholar]
- Schuchner, E.B.; Foix, A.; Borenstein, C.A.; Marchese, C. Electron microscopy of human vaginal epithelium under normal and experimental conditions. J. Reprod. Fertil. 1974, 36, 231–233. [Google Scholar] [CrossRef]
- Sassi, A.B.; McCullough, K.D.; Cost, M.R.; Hillier, S.L.; Rohan, L.C. Permeability of tritiated water through human cervical and vaginal tissue. J. Pharm. Sci. 2004, 93, 2009–2016. [Google Scholar] [CrossRef]
- Rohan, L.C.; Sassi, A.B. Vaginal drug delivery systems for HIV prevention. AAPS J. 2009, 11, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J. Physiology and ecology of the vagina. Scand. J. Infect. Dis. Suppl. 1983, 40, 31–35. [Google Scholar] [PubMed]
- Brannon-Peppas, L. Novel vaginal drug release applications. Adv. Drug Deliv. Rev. 1993, 11, 169–177. [Google Scholar] [CrossRef]
- Khanvilkar, K.; Donovan, M.D.; Flanagan, D.R. Drug transfer through mucus. Adv. Drug Deliv. Rev. 2001, 48, 173–193. [Google Scholar] [CrossRef]
- Schoonen, A.; Moolenaar, F.; Huizinga, T. Release of drugs from fatty suppository bases I. The release mechanism. Int. J. Pharm. 1979, 4, 141–152. [Google Scholar] [CrossRef]
- Lawson, L.B.; Norton, E.B.; Clements, J.D. Defending the mucosa: Adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol. 2011, 23, 414–420. [Google Scholar] [CrossRef]
- Shakya, P.; Madhav, N.S.; Shakya, A.K.; Singh, K. Palatal mucosa as a route for systemic drug delivery: A review. J. Control. Release 2011, 151, 2–9. [Google Scholar] [CrossRef]
- Mashru, R.; Sutariya, V.; Sankalia, M.; Sankalia, J. Transbuccal delivery of lamotrigine across porcine buccal mucosa: In vitro determination of routes of buccal transport. J. Pharm. Pharm. Sci. 2005, 8, 54–62. [Google Scholar]
- Ensign, L.M.; Tang, B.C.; Wang, Y.-Y.; Tse, T.A.; Hoen, T.; Cone, R.; Hanes, J. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med. 2012, 4, 138ra79. [Google Scholar] [CrossRef]
- Müller, C.; Leithner, K.; Hauptstein, S.; Hintzen, F.; Salvenmoser, W.; Bernkop-Schnürch, A. Preparation and characterization of mucus-penetrating papain/poly (acrylic acid) nanoparticles for oral drug delivery applications. J. Nanopart. Res. 2013, 15, 1353. [Google Scholar] [CrossRef]
- Shargel, L. Applied Biopharmaceutics & Pharmacokinetics, 4th ed.; Appleton & Lange: Stamford, CT, USA, 1999. [Google Scholar]
- Maren, T.H.; Jankowska, L.; Sanyal, G.; Edelhauser, H.F. The transcorneal permeability of sulfonamide carbonic anhydrase inhibitors and their effect on aqueous humor secretion. Exp. Eye Res. 1983, 36, 457–479. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Gómez, G.; Prado-Audelo, M.L.D.; Ortega-Peña, S.; Mendoza-Muñoz, N.; Urbán-Morlán, Z.; González-Torres, M.; González-Del Carmen, M.; Figueroa-González, G.; Reyes-Hernández, O.D.; Cortés, H. Modifications in Vaginal Microbiota and Their Influence on Drug Release: Challenges and Opportunities. Pharmaceutics 2019, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Franz, T.J. Percutaneous absorption on the relevance of in vitro data. J. Investig. Dermatol. 1975, 64, 190–195. [Google Scholar] [CrossRef]
- Saettone, M.F.; Chetoni, P.; Cerbai, R.; Mazzanti, G.; Braghiroli, L. Evaluation of ocular permeation enhancers: In vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int. J. Pharm. 1996, 142, 103–113. [Google Scholar] [CrossRef]
- Liu, J.; Fu, S.; Wei, N.; Hou, Y.; Zhang, X.; Cui, H. The effects of combined menthol and borneol on fluconazole permeation through the cornea ex vivo. Eur. J. Pharmacol. 2012, 688, 1–5. [Google Scholar] [CrossRef]
- Ranta, V.P.; Laavola, M.; Toropainen, E.; Vellonen, K.S.; Talvitie, A.; Urtti, A. Ocular pharmacokinetic modeling using corneal absorption and desorption rates from in vitro permeation experiments with cultured corneal epithelial cells. Pharm. Res. 2003, 20, 1409–1416. [Google Scholar] [CrossRef]
- Reichl, S.; Döhring, S.; Bednarz, J.; Müller-Goymann, C.C. Human cornea construct HCC-an alternative for in vitro permeation studies? A comparison with human donor corneas. Eur. J. Pharm. Biopharm. 2005, 60, 305–308. [Google Scholar] [CrossRef]
- Al-Ghabeish, M.; Xu, X.; Krishnaiah, Y.S.; Rahman, Z.; Yang, Y.; Khan, M.A. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment. Int. J. Pharm. 2015, 495, 783–791. [Google Scholar] [CrossRef]
- Tegtmeyer, S.; Papantoniou, I.; Müller-Goymann, C.C. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur. J. Pharm. Biopharm. 2001, 51, 119–125. [Google Scholar] [CrossRef]
- Richter, T.; Keipert, S. In vitro permeation studies comparing bovine nasal mucosa, porcine cornea and artificial membrane: Androstenedione in microemulsions and their components. Eur. J. Pharm. Biopharm. 2004, 58, 137–143. [Google Scholar] [CrossRef]
- Toropainen, E.; Ranta, V.P.; Vellonen, K.S.; Palmgrén, J.; Talvitie, A.; Laavola, M.; Suhonen, P.; Hämäläinen, K.M.; Auriola, S.; Urtti, A. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur. J. Pharm. Sci. 2003, 20, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Furubayashi, T.; Tanaka, A.; Sakane, T.; Sugano, K. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur. J. Pharm. Biopharm. 2020, 149, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Wengst, A.; Reichl, S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur. J. Pharm. Biopharm. 2010, 74, 290–297. [Google Scholar] [CrossRef]
- Wadell, C.; Björk, E.; Camber, O. Permeability of porcine nasal mucosa correlated with human nasal absorption. Eur. J. Pharm. Sci. 2003, 18, 47–53. [Google Scholar] [CrossRef]
- Schmidt, M.C.; Simmen, D.; Hilbe, M.; Boderke, P.; Ditzinger, G.; Sandow, J.; Lang, S.; Rubas, W.; Merkle, H.P. Validation of excised bovine nasal mucosa as in vitro model to study drug transport and metabolic pathways in nasal epithelium. J. Pharm. Sci. 2000, 89, 396–407. [Google Scholar] [CrossRef]
- Pund, S.; Rasve, G.; Borade, G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur. J. Pharm. Sci. 2013, 48, 195–201. [Google Scholar] [CrossRef]
- Henriques, P.; Bicker, J.; Silva, S.; Doktorovová, S.; Fortuna, A. Nasal-PAMPA: A novel non-cell-based high throughput screening assay for prediction of nasal drug permeability. Int. J. Pharm. 2023, 643, 123252. [Google Scholar] [CrossRef]
- Srivatsa Palakurthi, S.; Bharat Charbe, N.; Recalde Phillips, S.Y.; Alge, D.L.; Lu, D.; Palakurthi, S. Development of optimal in vitro release and permeation testing method for rectal suppositories. Int. J. Pharm. 2023, 640, 123042. [Google Scholar] [CrossRef]
- Salem, H.F.; Ali, A.A.; Rabea, Y.K.; El-Ela, F.I.A.; Khallaf, R.A. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: In vitro optimization and in vivo appraisal. Drug Deliv. Transl. Res. 2022, 12, 3083–3103. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Trapani, A.; Franco, C.D.; Mandracchia, D.; Trapani, G.; Franchini, C.; Corbo, F.; Tripodo, G.; Kolev, I.N.; Stoyanov, G.S.; et al. In vitro and ex vivo studies on diltiazem hydrochloride-loaded microsponges in rectal gels for chronic anal fissures treatment. Int. J. Pharm. 2019, 557, 53–65. [Google Scholar] [CrossRef]
- Eissa, E.M.; El Sisi, A.M.; Bekhet, M.A.; El-Ela, F.I.A.; Kharshoum, R.M.; Ali, A.A.; Alrobaian, M.; Ali, A.M.A. pH-Sensitive In Situ Gel of Mirtazapine Invasomes for Rectal Drug Delivery: Protruded Bioavailability and Anti-Depressant Efficacy. Pharmaceuticals 2024, 17, 978. [Google Scholar] [CrossRef] [PubMed]
- Moawad, F.A.; Ali, A.A.; Salem, H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: Preparation, in vitro and in vivo performance. Drug Deliv. 2017, 24, 252–260. [Google Scholar] [CrossRef] [PubMed]
- das Neves, J.; Araújo, F.; Andrade, F.; Michiels, J.; Ariën, K.K.; Vanham, G.; Amiji, M.; Bahia, M.F.; Sarmento, B. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine. Mol. Pharm. 2013, 10, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Nair, L.; Bhargava, H.N. Comparison of in vitro dissolution and permeation of fluconazole from different suppository bases. Drug Dev. Ind. Pharm. 1999, 25, 691–694. [Google Scholar] [CrossRef]
- Ravani, L.; Esposito, E.; Bories, C.; Moal, V.L.; Loiseau, P.M.; Djabourov, M.; Cortesi, R.; Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int. J. Pharm. 2013, 454, 695–702. [Google Scholar] [CrossRef]
- van Eyk, A.D.; van der Bijl, P. Porcine vaginal mucosa as an in vitro permeability model for human vaginal mucosa. Int. J. Pharm. 2005, 305, 105–111. [Google Scholar] [CrossRef]
- McCarron, P.A.; Donnelly, R.F.; Gilmore, B.F.; Woolfson, A.D.; McClelland, R.; Zawislak, A.; Price, J.H. Phototoxicity of 5-Aminolevulinic Acid in the HeLa Cell Line as an Indicative Measure of Photodynamic Effect After Topical Administration to Gynecological Lesions of Intraepithelial Form. Pharm. Res. 2004, 21, 1871–1879. [Google Scholar] [CrossRef]
- Berginc, K.; Skalko-Basnet, N.; Basnet, P.; Kristl, A. Development and evaluation of an in vitro vaginal model for assessment of drug’s biopharmaceutical properties: Curcumin. AAPS PharmSciTech 2012, 13, 1045–1053. [Google Scholar] [CrossRef]
- Sulistiawati; Enggi, C.K.; Isa, H.T.; Wijaya, S.; Ardika, K.A.R.; Asri, R.M.; Donnelly, R.F.; Permana, A.D. Validation of spectrophotometric method to quantify cabotegravir in simulated vaginal fluid and porcine vaginal tissue in ex vivo permeation and retention studies from thermosensitive and mucoadhesive gels. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120600. [Google Scholar] [CrossRef]
- Machado, R.M.; Palmeira-de-Oliveira, A.; Gaspar, C.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Studies and methodologies on vaginal drug permeation. Adv. Drug Deliv. Rev. 2015, 92, 14–26. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Zeng, W.; Ge, S.; Lu, H.; Wu, C.; Ge, L.; Liang, D.; Xu, Y. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur. J. Pharm. Sci. 2014, 62, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Karasulu, E.; Yavasoğlu, A.; Evrensanal, Z.; Uyanikgil, Y.; Karasulu, H.Y. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Deliv. 2008, 15, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Mehra, N.; Aqil, M.; Sultana, Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur. J. Pharm. Sci. 2021, 159, 105735. [Google Scholar] [CrossRef]
- Abdelbary, G.A.; Amin, M.M.; Zakaria, M.Y. Ocular ketoconazole-loaded proniosomal gels: Formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv. 2017, 24, 309–319. [Google Scholar] [CrossRef]
- Resende, A.P.; Silva, B.; Braz, B.S.; Nunes, T.; Gonçalves, L.; Delgado, E. Ex vivo permeation of erythropoietin through porcine conjunctiva, cornea, and sclera. Drug Deliv. Transl. Res. 2017, 7, 625–631. [Google Scholar] [CrossRef]
- de Fraissinette, A.; Kolopp, M.; Schiller, I.; Fricker, G.; Gammert, C.; Pospischil, A.; Vonderscher, J.; Richter, F. In vitro tolerability of human nasal mucosa: Histopathological and scanning electron-microscopic evaluation of nasal forms containing Sandostatin®. Cell Biol. Toxicol. 1995, 11, 295–301. [Google Scholar] [CrossRef]
- Lang, S.; Langguth, P.; Oschmann, R.; Traving, B.; Merkle, H.P. Transport and metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. J. Pharm. Pharmacol. 1996, 48, 1190–1196. [Google Scholar] [CrossRef]
- Tas, C.; Ozkan, C.K.; Savaser, A.; Ozkan, Y.; Tasdemir, U.; Altunay, H. Nasal administration of metoclopramide from different dosage forms: In vitro, ex vivo, and in vivo evaluation. Drug Deliv. 2009, 16, 167–175. [Google Scholar] [CrossRef]
- Greimel, A.; Bernkop-Schnürch, A.; Del Curto, M.D.; D’Antonio, M. Transport characteristics of a beta sheet breaker peptide across excised bovine nasal mucosa. Drug Dev. Ind. Pharm. 2007, 33, 71–77. [Google Scholar] [CrossRef]
- Osth, K.; Gråsjö, J.; Björk, E. A new method for drug transport studies on pig nasal mucosa using a horizontal Ussing chamber. J. Pharm. Sci. 2002, 91, 1259–1273. [Google Scholar] [CrossRef]
- de Araújo, J.S.M.; Augusto, G.G.X.; Pestana, A.M.; Groppo, F.C.; Rodrigues, F.S.M.; Novaes, P.D.; Franz-Montan, M. Impact of Storage on In Vitro Permeation and Mucoadhesion Setup Experiments Using Swine Nasal Mucosa. AAPS PharmSciTech 2024, 26, 7. [Google Scholar] [CrossRef] [PubMed]
- Reardon, P.M.; Gochoco, C.H.; Audus, K.L.; Wilson, G.; Smith, P.L. In vitro nasal transport across ovine mucosa: Effects of ammonium glycyrrhizinate on electrical properties and permeability of growth hormone releasing peptide, mannitol, and lucifer yellow. Pharm. Res. 1993, 10, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Jain, K.; Gowthamarajan, K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces 2014, 113, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Gao, Y.; Nie, S.; Pan, W. The permeation of nalmefene hydrochloride across different regions of ovine nasal mucosa. Chem. Pharm. Bull. 2006, 54, 1722–1724. [Google Scholar] [CrossRef]
- Russo, P.; Sacchetti, C.; Pasquali, I.; Bettini, R.; Massimo, G.; Colombo, P.; Rossi, A. Primary microparticles and agglomerates of morphine for nasal insufflation. J. Pharm. Sci. 2006, 95, 2553–2561. [Google Scholar] [CrossRef]
- Bortolotti, F.; Balducci, A.G.; Sonvico, F.; Russo, P.; Colombo, G. In vitro permeation of desmopressin across rabbit nasal mucosa from liquid nasal sprays: The enhancing effect of potassium sorbate. Eur. J. Pharm. Sci. 2009, 37, 36–42. [Google Scholar] [CrossRef]
- Kamel, R.; Basha, M.; Abd El-Alim, S.H. Development of a novel vesicular system using a binary mixture of sorbitan monostearate and polyethylene glycol fatty acid esters for rectal delivery of rutin. J. Liposome Res. 2013, 23, 28–36. [Google Scholar] [CrossRef]
- Mehta, S.; Verstraelen, H.; Peremans, K.; Villeirs, G.; Vermeire, S.; De Vos, F.; Mehuys, E.; Remon, J.P.; Vervaet, C. Vaginal distribution and retention of a multiparticulate drug delivery system, assessed by gamma scintigraphy and magnetic resonance imaging. Int. J. Pharm. 2012, 426, 44–53. [Google Scholar] [CrossRef]
- Moss, J.A.; Malone, A.M.; Smith, T.J.; Kennedy, S.; Kopin, E.; Nguyen, C.; Gilman, J.; Butkyavichene, I.; Vincent, K.L.; Motamedi, M.; et al. Simultaneous delivery of tenofovir and acyclovir via an intravaginal ring. Antimicrob. Agents Chemother. 2012, 56, 875–882. [Google Scholar] [CrossRef]
- Vincent, K.L.; Bourne, N.; Bell, B.A.; Vargas, G.; Tan, A.; Cowan, D.; Stanberry, L.R.; Rosenthal, S.L.; Motamedi, M. High resolution imaging of epithelial injury in the sheep cervicovaginal tract: A promising model for testing safety of candidate microbicides. Sex. Transm. Dis. 2009, 36, 312–318. [Google Scholar] [CrossRef]
- Lane, M.E. In vitro permeation testing for the evaluation of drug delivery to the skin. Eur. J. Pharm. Sci. 2024, 201, 106873. [Google Scholar] [CrossRef] [PubMed]
- Lestari, M.L.; Nicolazzo, J.A.; Finnin, B.C. A novel flow through diffusion cell for assessing drug transport across the buccal mucosa in vitro. J. Pharm. Sci. 2009, 98, 4577–4588. [Google Scholar] [CrossRef] [PubMed]
- Oh, L.; Yi, S.; Zhang, D.; Shin, S.H.; Bashaw, E. In Vitro Skin Permeation Methodology for Over-The-Counter Topical Dermatologic Products. Ther. Innov. Regul. Sci. 2020, 54, 693–700. [Google Scholar] [CrossRef]
- Clarke, L.L. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1151–G1166. [Google Scholar] [CrossRef]
- Li, H.; Sheppard, D.N.; Hug, M.J. Transepithelial electrical measurements with the Ussing chamber. J. Cyst. Fibros. 2004, 3 (Suppl. 2), 123–126. [Google Scholar] [CrossRef]
- Patel, V.F.; Liu, F.; Brown, M.B. Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems. J. Control Release 2012, 161, 746–756. [Google Scholar] [CrossRef]
- Ussing, H.H.; Zerahn, K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 1951, 23, 110–127. [Google Scholar] [CrossRef]
- Shafaie, S.; Hutter, V.; Cook, M.T.; Brown, M.B.; Chau, D.Y. In Vitro Cell Models for Ophthalmic Drug Development Applications. Biores Open Access 2016, 5, 94–108. [Google Scholar] [CrossRef]
- Schoultz, I.; Keita, Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020, 9, 1909. [Google Scholar] [CrossRef]
- Cabrera-Pérez, M.Á.; Bermejo-Sanz, M.; González-Álvarez, M.; González-Álvarez, I.; Vera Lara, V.; Chou Kam, W.-H. Chapter 2—Importance and applications of cell- and tissue-based in vitro models for drug permeability screening in early stages of drug development. In Concepts and Models for Drug Permeability Studies, 2nd ed.; Sarmento, B., Leite Pereira, C., Neves, J.D., Eds.; Woodhead Publishing: Cambridge, UK, 2024; pp. 5–41. [Google Scholar] [CrossRef]
- Notara, M.; Daniels, J.T. Characterisation and functional features of a spontaneously immortalised human corneal epithelial cell line with progenitor-like characteristics. Brain Res. Bull. 2010, 81, 279–286. [Google Scholar] [CrossRef]
- Araki-Sasaki, K.; Ohashi, Y.; Sasabe, T.; Hayashi, K.; Watanabe, H.; Tano, Y.; Handa, H. An SV40-immortalized human corneal epithelial cell line and its characterization. Investig. Ophthalmol. Vis. Sci. 1995, 36, 614–621. [Google Scholar]
- Mohan, R.R.; Possin, D.E.; Mohan, R.R.; Sinha, S.; Wilson, S.E. Development of genetically engineered tet HPV16-E6/E7 transduced human corneal epithelial clones having tight regulation of proliferation and normal differentiation. Exp. Eye Res. 2003, 77, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Reichl, S.; Bednarz, J.; Müller-Goymann, C.C. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br. J. Ophthalmol. 2004, 88, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, B.; Andrade, F.; da Silva, S.B.; Rodrigues, F.; das Neves, J.; Ferreira, D. Cell-based in vitro models for predicting drug permeability. Expert. Opin. Drug Metab. Toxicol. 2012, 8, 607–621. [Google Scholar] [CrossRef]
- Cabrera-Pérez, M.Á.; Sanz, M.B.; Sanjuan, V.M.; González-Álvarez, M.; Álvarez, I.G. Importance and applications of cell- and tissue-based in vitro models for drug permeability screening in early stages of drug development. In Concepts and Models for Drug Permeability Studies: Cell and Tissue Based In Vitro Culture Models; Woodhead Publishing: Cambridge, UK, 2016; pp. 3–29. [Google Scholar] [CrossRef]
- Gorodeski, G.I.; Eckert, R.L.; Utian, W.H.; Rorke, E.A. Maintenance of in vivo-like keratin expression, sex steroid responsiveness, and estrogen receptor expression in cultured human ectocervical epithelial cells. Endocrinology 1990, 126, 399–406. [Google Scholar] [CrossRef]
- Gorodeski, G.I.; Romero, M.F.; Hopfer, U.; Rorke, E.; Utian, W.H.; Eckert, R.L. Human uterine cervical epithelial cells grown on permeable support—A new model for the study of differentiation. Differentiation 1994, 56, 107–118. [Google Scholar] [CrossRef]
- Kuramoto, H.; Tamura, S.; Notake, Y. Establishment of a cell line of human endometrial adenocarcinoma in vitro. Am. J. Obstet. Gynecol. 1972, 114, 1012–1019. [Google Scholar] [CrossRef]
- Kaushal, G.; Trombetta, L.; Ochs, R.S.; Shao, J. Delivery of TEM beta-lactamase by gene-transformed Lactococcus lactis subsp. lactis through cervical cell monolayer. Int. J. Pharm. 2006, 313, 29–35. [Google Scholar] [CrossRef]
- Gali, Y.; Ariën, K.K.; Praet, M.; Van den Bergh, R.; Temmerman, M.; Delezay, O.; Vanham, G. Development of an in vitro dual-chamber model of the female genital tract as a screening tool for epithelial toxicity. J. Virol. Methods 2010, 165, 186–197. [Google Scholar] [CrossRef]
- Clark, M.R.; McCormick, T.J.; Doncel, G.F.; Friend, D.R. Preclinical evaluation of UC781 microbicide vaginal drug delivery. Drug Deliv. Transl. Res. 2011, 1, 175–182. [Google Scholar] [CrossRef]
- Schaller, M.; Korting, H.C.; Borelli, C.; Hamm, G.; Hube, B. Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect. Immun. 2005, 73, 2758–2765. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Bein, M.; Korting, H.C.; Baur, S.; Hamm, G.; Monod, M.; Beinhauer, S.; Hube, B. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 2003, 71, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, O.J.; Uckun, F.M. Mucosal safety of PHI-443 and stampidine as a combination microbicide to prevent genital transmission of HIV-1. Fertil. Steril. 2007, 88, 1197–1206. [Google Scholar] [CrossRef]
- Toropainen, E.; Ranta, V.P.; Talvitie, A.; Suhonen, P.; Urtti, A. Culture model of human corneal epithelium for prediction of ocular drug absorption. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2942–2948. [Google Scholar]
- Yamasaki, K.; Kawasaki, S.; Young, R.D.; Fukuoka, H.; Tanioka, H.; Nakatsukasa, M.; Quantock, A.J.; Kinoshita, S. Genomic aberrations and cellular heterogeneity in SV40-immortalized human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2009, 50, 604–613. [Google Scholar] [CrossRef]
- Dimova, S.; Brewster, M.E.; Noppe, M.; Jorissen, M.; Augustijns, P. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol. In Vitro 2005, 19, 107–122. [Google Scholar] [CrossRef]
- De Fraissinette, A.; Brun, R.; Felix, H.; Vonderscher, J.; Rummelt, A. Evaluation of the human cell line RPMI 2650 as an in vitro nasal model. Rhinology 1995, 33, 194–198. [Google Scholar]
- Werner, U.; Kissel, T. In-vitro cell culture models of the nasal epithelium: A comparative histochemical investigation of their suitability for drug transport studies. Pharm. Res. 1996, 13, 978–988. [Google Scholar] [CrossRef]
- Gorodeski, G.I.; Merlin, D.; De Santis, B.J.; Frieden, K.A.; Hopfer, U.; Eckert, R.L.; Utian, W.H.; Romero, M.F. Characterization of paracellular permeability in cultured human cervical epithelium: Regulation by extracellular adenosine triphosphate. J. Soc. Gynecol. Investig. 1994, 1, 225–233. [Google Scholar] [CrossRef]
- Higuchi, T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J. Soc. Cosmet. Chem. 1960, 11, 85–97. [Google Scholar]
- Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L.; Frasch, H.F.; Guy, R.H.; Hadgraft, J.; Kasting, G.B.; Lane, M.E.; Roberts, M.S. Mathematical models of skin permeability: An overview. Int. J. Pharm. 2011, 418, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Anissimov, Y.G. Mathematical models in percutaneous absorption. In Percutaneous Absorption; CRC Press: Boca Raton, FL, USA, 2005; pp. 37–80. [Google Scholar]
- Rojanasakul, Y.; Paddock, S.W.; Robinson, J.R. Confocal laser scanning microscopic examination of transport pathways and barriers of some peptides across the cornea. Int. J. Pharm. 1990, 61, 163–172. [Google Scholar] [CrossRef]
- Rojanasakul, Y.; Liaw, J.; Robinson, J.R. Mechanisms of action of some penetration enhancers in the cornea: Laser scanning confocal microscopic and electrophysiology studies. Int. J. Pharm. 1990, 66, 131–142. [Google Scholar] [CrossRef]
- Rojanasakul, Y.; Robinson, J.R. The cytoskeleton of the cornea and its role in tight junction permeability. Int. J. Pharm. 1991, 68, 135–149. [Google Scholar] [CrossRef]
- De Campos, A.M.; Sánchez, A.; Gref, R.; Calvo, P.; Alonso, M.J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur. J. Pharm. Sci. 2003, 20, 73–81. [Google Scholar] [CrossRef]
- Schmidt, M.C.; Rothen-Rutishauser, B.; Rist, B.; Beck-Sickinger, A.; Wunderli-Allenspach, H.; Rubas, W.; Sadée, W.; Merkle, H.P. Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Biochemistry 1998, 37, 16582–16590. [Google Scholar] [CrossRef]
- Lang, S.; Rothen-Rutishauser, B.; Perriard, J.C.; Schmidt, M.C.; Merkle, H.P. Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa. Peptides 1998, 19, 599–607. [Google Scholar] [CrossRef]
- Vila, A.; Gill, H.; McCallion, O.; Alonso, M.J. Transport of PLA-PEG particles across the nasal mucosa: Effect of particle size and PEG coating density. J. Control Release 2004, 98, 231–244. [Google Scholar] [CrossRef]
- Chuchuen, O.; Henderson, M.H.; Sykes, C.; Kim, M.S.; Kashuba, A.D.; Katz, D.F. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy. PLoS ONE 2013, 8, e85124. [Google Scholar] [CrossRef]
- Presnell, A.L.; Chuchuen, O.; Simons, M.G.; Maher, J.R.; Katz, D.F. Full depth measurement of tenofovir transport in rectal mucosa using confocal Raman spectroscopy and optical coherence tomography. Drug Deliv. Transl. Res. 2018, 8, 843–852. [Google Scholar] [CrossRef]
- Franzen, L.; Windbergs, M. Applications of Raman spectroscopy in skin research—From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv. Drug Deliv. Rev. 2015, 89, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Lee, M.; Shin, H.-W.; Chung, S. In vitro nasal mucosa gland-like structure formation on a chip. Lab Chip 2017, 17, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yan, Y.; Li, C.W.; Xia, H.M.; Chao, S.S.; Wang, D.Y.; Wang, Z.P. Live human nasal epithelial cells (hNECs) on chip for in vitro testing of gaseous formaldehyde toxicity via airway delivery. Lab Chip 2014, 14, 677–680. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Cheng, S.; Kourmatzis, A.; Traini, D.; Young, P.; Sheikh, Z.; Ong, H.X. In vitro interactions of aerosol formulations with human nasal epithelium using real-time monitoring of drug transport in a nasal mucosa-on-a-chip. Biosens. Bioelectron. 2023, 223, 115010. [Google Scholar] [CrossRef]
- Mattern, K.; Beißner, N.; Reichl, S.; Dietzel, A. DynaMiTES—A dynamic cell culture platform for in vitro drug testing PART 1—Engineering of microfluidic system and technical simulations. Eur. J. Pharm. Biopharm. 2018, 126, 159–165. [Google Scholar] [CrossRef]
- Beiβner, N.; Mattern, K.; Dietzel, A.; Reichl, S. DynaMiTES—A dynamic cell culture platform for in vitro drug testing PART 2—Ocular DynaMiTES for drug absorption studies of the anterior eye. Eur. J. Pharm. Biopharm. 2018, 126, 166–176. [Google Scholar] [CrossRef]
- Chen, L.-J.; Ito, S.; Kai, H.; Nagamine, K.; Nagai, N.; Nishizawa, M.; Abe, T.; Kaji, H. Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci. Rep. 2017, 7, 3538. [Google Scholar] [CrossRef]
- Chung, M.; Lee, S.; Lee, B.J.; Son, K.; Jeon, N.L.; Kim, J.H. Wet-AMD on a Chip: Modeling Outer Blood-Retinal Barrier In Vitro. Adv. Healthc. Mater. 2018, 7, 1700028. [Google Scholar] [CrossRef]
- Kondamudi, P.K.; Tirumalasetty, P.P.; Malayandi, R.; Mutalik, S.; Pillai, R. Lidocaine Transdermal Patch: Pharmacokinetic Modeling and In Vitro-In Vivo Correlation (IVIVC). AAPS PharmSciTech 2016, 17, 588–596. [Google Scholar] [CrossRef]
- Baynes, R.; Riviere, J.; Franz, T.; Monteiro-Riviere, N.; Lehman, P.; Peyrou, M.; Toutain, P.L. Challenges obtaining a biowaiver for topical veterinary dosage forms. J. Vet. Pharmacol. Ther. 2012, 35 (Suppl. 1), 103–114. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Draft Product Specific Guidance on Acyclovir Ointment. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_018604.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Product Specific Guidance on Acyclovir Cream. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021478.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Guidance on Penciclovir. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_020629.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Guidance on Tacrolimus. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_050777.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Guidance on Oxymetazoline Hydrochloride. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_208552.pdf (accessed on 30 December 2024).
- Santos, L.L.; Swofford, N.J.; Santiago, B.G. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. Curr. Protoc. Pharmacol. 2020, 91, e79. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Draft Guidance on Clascoterone. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_213433.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Guidance on Clindamycin Phosphate. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Clindamycin_Phosphate_crm_50680_RC03-12.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Guidance on Halobetasol Propionate. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Halobetasol%20propionate_topical%20cream_NDA%2019967_RC04-16.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. Draft Guidance on Tazarotene. Guidance Index. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021184-Cre-0.1P.pdf (accessed on 30 December 2024).
- U.S. Food and Drug Administration. In Vitro Permeation Test Studies for Topical Drug Prodcuts Submitted in ANDAs. Guidance Index. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-permeation-test-studies-topical-drug-products-submitted-andas (accessed on 30 December 2024).
- Yue, W.; Megan Kelchen, L.X.; Ghosh, P.; Niu, M.; Raney, S.G.; Shen, J. Impact of fatty acids on in vitro performance of clindamycin phosphate vaginal creams. In Proceedings of the Controlled Release Society Annual Meeting and Exposition #CRS2023, Las Vegas, NV, USA, 24–28 July 2023. [Google Scholar]
- Xie, L.; Megan Kelchen, W.Y.; Ghosh, P.; Niu, M.; Raney, S.G.; Shen, J. Impact of material attributes on in vitro performance of clindamycin phosphate vaginal creams. In Proceedings of the PHARMSCI 360, American Association of Pharmaceutical Scientists Annual Meeting and Exposition, Boston, MA, USA, 16–19 October 2022. [Google Scholar]
- U.S. Food and Drug Administration. FY 2023 GDUFA Science and Research Report. 2023. Available online: https://www.fda.gov/drugs/generic-drugs/fy-2023-gdufa-science-and-research-report (accessed on 30 December 2024).
Mucosa | Surface Area | Thickness | pH of the Fluid | Volume of the Fluid |
---|---|---|---|---|
Corneal | 1.04 cm2 [5] | 520 μm [6] | ~7.4 | 7–30 μL [7] |
Nasal | 130 cm2 (respiratory) [8] | 0.3–5 mm (respiratory) [9] | 5–6.5 | 75–135 μL [10] |
Rectal | 200–400 cm2 [11] | 100 µm [12] | 7.2–7.4 [13] | 1–3 mL [11] |
Vaginal | 360 cm2 [14] | 150–200 μm [15] | 3.5–4.5 | 0.51 mL [16] |
Mucosa | Simulated Fluids in Receptor Cell | Components of Simulated Fluids in Receptor Cell | pH |
---|---|---|---|
Corneal | Glutathione bicarbonate Ringer (GBR) buffer [62,63] | NaCl (110 mM), KCl (2 mM), K2HPO4 (1 mM), MgCl2 (0.6 mM), calcium gluconate (1.4 mM), glucose (5 mM), reduced glutathione (0.3 mM), sodium gluconate (15 mM), and NaHCO3 (28.5 mM), CO2 (5%) | 6.85 |
Balanced salt solution (BSS) buffer solution with 10 mM HEPES [64] | NaCl 0.64%, KCl 0.075%, CaCl2·2H2O 0.048%, MgCl26·H2O 0.03%, C2H3NaO2·3H2O 0.39%, C6H5Na3O7·2H2O) 0.17%, NaOH and/or HCl to adjust pH | 7.4 | |
PBS [65,66] | phosphate buffer saline | 7.4 | |
PBS [67] | phosphate buffer saline | 7.0 | |
EBS buffer solution [68] | Earl’s balanced salts (EBS) | 7.4 | |
BSS buffer [69] | NaCl 0.64%, KCl 0.075%, CaCl2·2H2O 0.048%, MgCl26·H2O 0.03%, C2H3NaO2·3H2O 0.39%, C6H5Na3O7·2H2O) 0.17%, NaOH and/or HCl to adjust pH | 7.4 | |
Nasal | Transport medium (TM) [70] | NaCl (136.89 mM), KCl (5.36 mM), Na2HPO4 (0.34 mM), KH2PO4 (0.44 mM), MgSO4·7H2O (0.41 mM), glucose (19.45 mM), CaCl2 (1.26 mM), MgCl2·6H2O (0.49 mM), NaHCO3 (4.17 mM), and HEPES (10.00 mM). | 7.4 |
Kreb’s bicarbonate Ringer’s solution (KBR) [71,72,73] | CaCl2 (1.25 mM), KCl (4.7 mM), KH2PO4 (0.6 mM), MgSO4·7H2O (1.2 mM), NaCl (108 mM), NaHCO3 (16 mM), Na2HPO4 (1.8 mM), d-glucose (11.5 mM), fumarate (5.4 mM), glutamate (4.9 mM) and pyruvate (4.9 mM) | 7.4 | |
Simulated nasal electrolyte solution (SNES) [74] | 7.45 mg/mL NaCl, 1.29 mg/mL KCl and 0.32 mg/mL CaCl2·2H2O | 5.5 | |
PBS with 5% DMSO (v/v) [75] | phosphate buffer saline added with 5% DMSO (v/v) | 7.4 | |
Rectal | 0.1× PBS [76] | phosphate buffer saline | 7.2 |
PBS [77,78,79] | phosphate buffer saline | 7.4 | |
Phosphate buffer solution [80] | 50 mL phosphate buffer solution | 7.4 | |
HBSS with poloxamer 407 [81] | Hank’s balanced salt solution (HBSS), added with 0.2% (w/v) poloxamer 407 | 7.3 | |
Saline [82] | 0.9% w/v NaCl | N/A | |
Vaginal | PBS [47,83,84,85] | phosphate buffer saline | 7.4 |
HBSS with poloxamer 407 [81] | Hank’s balanced salt solution (HBSS), added with 0.2% (w/v) poloxamer 407 | 7.3 | |
Ringer buffer [86] | 7.5 mL, oxygenated Ringer buffer at pH 7.4 containing 10 mM glucose, 0.3 g/L L-glutamine, and 2% albumin (v/v) | 7.4 | |
Simulated vaginal fluid [87] | NaCl (3.51 g/L), KOH (1.4 g/L), Ca(OH)2 (0.222 g/L), acetic acid (1 g/L), lactic acid (2 g/L), glycerol (0.16 g/L), urea (0.4 g/L), and glucose (5 g/L) | 4.2 |
Mucosa | |
---|---|
Corneal | Goat cornea [91], rabbit cornea [66,92], porcine cornea [93] |
Nasal | Human biopsies from posterior part of inferior turbinate of normal patients [94], bovine nasal mucosa [68,95,96,97], porcine respiratory mucosa [98,99], rodent nasal mucosa, ovine nasal mucosa [100,101,102], rabbit nasal mucosa [101,103,104] |
Rectal | Cattle and rat rectum [80,105], porcine rectum [76] |
Vaginal | Porcine vaginal tissue [83], bovine vaginal tissue [86], sheep vaginal tissue [106,107,108], human cervical and vaginal tissue [47] |
Mucosa | Cell Model | Source |
---|---|---|
Ophthalmic | HCE-S [119,120] | Corneal epithelial (spontaneous) |
SV 40 HCE-T [120] | Simian virus 40 immortalized human corneal epithelial cells | |
Human tet HPV16-E6/E7-transduced HCE [121] | Tetracycline-responsive human papillomavirus (HPV) 16-E6/E7-transduced human corneal epithelial cell clones | |
Human organotypic cornea equivalent [122] | Immortalized epithelial (CEP-17-CL4) and endothelial (HENC) cells and primary human stromal cells | |
Nasal | RPMI 2650 [70] | Human nasal epithelial tissues |
Rectal | Caco-2 cell lines (human colon carcinoma) [123,124] | Human colon carcinoma |
Vaginal | hECE (primary) [125,126] | Human ectocervical epithelial |
HEC-1A (immortalized) [127] | Uterine endometrial adenocarcinoma | |
CaSki (immortalized) [81] | Endocervical carcinoma cells | |
C-33A (immortalized) [128] | Cervical cells | |
ECEI6-1 (immortalized) [125,126] | Ectocervical carcinoma cells | |
HT3 (immortalized) [125,126] | Cervical carcinoma cells | |
ME-180 (immortalized) [129] | Endocervical cells | |
SiHa (immortalized) [129] | Uterine cervix | |
EpiVaginal® (cell-based tissue model) [130] | Normal, human-derived vaginal ectocervical epithelial and dendritic cells | |
HVE® (cell-based tissue model) [131,132,133] | A431 cells derived from a vulval epidermoid carcinoma grown on a polycarbonate filter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Xu, Z.; Xie, L.; Shen, J. Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes. Pharmaceutics 2025, 17, 256. https://doi.org/10.3390/pharmaceutics17020256
Song J, Xu Z, Xie L, Shen J. Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes. Pharmaceutics. 2025; 17(2):256. https://doi.org/10.3390/pharmaceutics17020256
Chicago/Turabian StyleSong, Juan, Zizhao Xu, Lingxiao Xie, and Jie Shen. 2025. "Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes" Pharmaceutics 17, no. 2: 256. https://doi.org/10.3390/pharmaceutics17020256
APA StyleSong, J., Xu, Z., Xie, L., & Shen, J. (2025). Recent Advances in Studying In Vitro Drug Permeation Across Mucosal Membranes. Pharmaceutics, 17(2), 256. https://doi.org/10.3390/pharmaceutics17020256