Biodistribution and Toxicological Impact Assessment of Cerium Dioxide Nanoparticles in Murine Models: A Systematic Review of In Vivo and Ex Vivo Studies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Pharmacokinetics and Pharmacodynamics of Nanoceria
3.2. Assessment of the Toxicological Impact of Nanoceria on Various Organ Systems
3.3. Respiratory System
3.4. Digestive System
3.5. Urinary System
3.6. Visual Organs
3.7. Reproductive System
3.8. Nervous System
3.9. Hematopoietic System
3.10. Immune System
3.11. Cardiovascular System
3.12. Musculoskeletal System
3.13. Skin
3.14. Endocrine System
4. Discussion
5. Conclusions
5.1. Limitations
5.2. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BAL | bronchoalveolar lavage |
| BBB | blood–brain barrier |
| CA | citric acid |
| CNS | central nervous system |
| EDTA | ethylenediaminetetraacetic acid |
| GIT | gastrointestinal tract |
| ICP-MS | inductively coupled plasma mass spectrometry |
| MDA | malondialdehyde |
| NPs | cerium dioxide nanoparticles, nanoceria |
| OS | oxidative stress |
| PAA | polyacrylic acid |
| PBS | phosphate-buffered saline |
| PT | prothrombin time |
| ROS | reactive oxygen species |
| SOD | superoxide dismutase |
| TEM | transmission electron microscopy |
| TI | toxicological impact |
| WT | wild type |
References
- Tovar-Lopez, F.J. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. Sensors 2023, 23, 5406. [Google Scholar] [CrossRef]
- Payal, P.P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2022, 16, 45–66. [Google Scholar] [CrossRef]
- Allioux, F.M.; Ghasemian, M.B.; Xie, W.; O’Mullane, A.P.; Daeneke, T.; Dickey, M.D.; Kalantar-Zadeh, K. Applications of liquid metals in nanotechnology. Nanoscale Horiz. 2022, 7, 141–167. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.E.; Elfick, A. Harnessing DNA Nanotechnology and Chemistry for Applications in Photonics and Electronics. Bioconjug. Chem. 2023, 34, 97–104. [Google Scholar] [CrossRef]
- Liu, R.; Liu, X.; Yang, H.; Jie, H.; Li, T.; Lyu, K.; Shah, S.P. Effect of CeO2-GO Nanocomposite on the Anticorrosion Properties of Epoxy Coating in Simulated Acid Rain Solution. Polymers 2022, 14, 3573. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, W.; Hou, Y. Nanoconfinement-Enhanced Fire Safety and Mechanical Properties of Polylactic Acid with Nanocerium Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2024, 16, 46750–46760. [Google Scholar] [CrossRef]
- Ouyang, J.; Xie, A.; Zhou, J.; Liu, R.; Wang, L.; Liu, H.; Kong, N.; Tao, W. Minimally invasive nanomedicine: Nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 2022, 51, 4996–5041. [Google Scholar] [CrossRef]
- Tian, J.; Han, Z.; Song, D.; Peng, Y.; Xiong, M.; Chen, Z.; Duan, S.; Zhang, L. Engineered Exosome for Drug Delivery: Recent Development and Clinical Applications. Int. J. Nanomed. 2023, 18, 7923–7940. [Google Scholar] [CrossRef]
- Yuan, M.; Kermanian, M.; Agarwal, T.; Yang, Z.; Yousefiasl, S.; Cheng, Z.; Ma, P.; Lin, J.; Maleki, A. Defect Engineering in Biomedical Sciences. Adv. Mater. 2023, 35, e2304176. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Fernandez, B.; Castaño, O.; Mateos-Timoneda, M.Á.; Engel, E.; Pérez-Amodio, S. Nanotechnology Approaches in Chronic Wound Healing. Adv. Wound Care 2021, 10, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Abaszadeh, F.; Ashoub, M.H.; Khajouie, G.; Amiri, M. Nanotechnology development in surgical applications: Recent trends and developments. Eur. J. Med. Res. 2023, 28, 537. [Google Scholar] [CrossRef]
- Deming, T.J.; Tirrell, M.V.; Cui, H.; Lecommandoux, S. Peptide Materials. Biomacromolecules 2025, 26, 3901–3902. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lyu, W.; Kawakami, K.; Ariga, K. Bio-gel nanoarchitectonics in tissue engineering. Nanoscale 2024, 16, 13230–13246. [Google Scholar] [CrossRef]
- Ali, M. What function of nanoparticles is the primary factor for their hyper-toxicity? Adv. Colloid Interface Sci. 2023, 314, 102881. [Google Scholar] [CrossRef]
- Ale, A.; Andrade, V.S.; Gutierrez, M.F.; Bacchetta, C.; Rossi, A.S.; Orihuela, P.S.; Desimone, M.F.; Cazenave, J. Nanotechnology-based pesticides: Environmental fate and ecotoxicity. Toxicol. Appl. Pharmacol. 2023, 471, 116560. [Google Scholar] [CrossRef]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef] [PubMed]
- Portugal, J.; Bedia, C.; Amato, F.; Juárez-Facio, A.T.; Stamatiou, R.; Lazou, A.; Campiglio, C.E.; Elihn, K.; Piña, B. Toxicity of airborne nanoparticles: Facts and challenges. Environ. Int. 2024, 190, 108889. [Google Scholar] [CrossRef]
- Ma, X.; Tian, Y.; Yang, R.; Wang, H.; Allahou, L.W.; Chang, J.; Williams, G.; Knowles, J.C.; Poma, A. Nanotechnology in healthcare, and its safety and environmental risks. J. Nanobiotechnol. 2024, 22, 715. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kurmi, B.D.; Singh, D.; Mehan, S.; Khanna, K.; Karwasra, R.; Kumar, S.; Chaudhary, A.; Jakhmola, V.; Sharma, A.; et al. Nanoparticles toxicity: An overview of its mechanism and plausible mitigation strategies. J. Drug Target. 2024, 32, 457–469. [Google Scholar] [CrossRef]
- Habas, K.; Demir, E.; Guo, C.; Brinkworth, M.H.; Anderson, D. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab. Rev. 2021, 53, 604–617. [Google Scholar] [CrossRef]
- Kim, E.H.; Park, S.; Bae, O.N. Cardiovascular Toxicity of Metal-Based Nanoparticles. Int. J. Mol. Sci. 2025, 26, 5816. [Google Scholar] [CrossRef]
- Dantas, G.P.F.; Ferraz, F.S.; Andrade, L.M.; Costa, G.M.J. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem. Biol. Interact. 2022, 363, 110023. [Google Scholar] [CrossRef] [PubMed]
- Kardan, T.; Mohammadi, R.; Taghavifar, S.; Cheraghi, M.; Yahoo, A.; Mohammadnejad, K. Polyethylene Glycol-Based Nanocerium Improves Healing Responses in Excisional and Incisional Wound Models in Rats. Int. J. Low Extrem. Wounds 2021, 20, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Silina, E.V.; Stupin, V.A.; Suzdaltseva, Y.G.; Aliev, S.R.; Abramov, I.S.; Khokhlov, N.V. Application of Polymer Drugs with Cerium Dioxide Nanomolecules and Mesenchymal Stem Cells for the Treatment of Skin Wounds in Aged Rats. Polymers 2021, 13, 1467. [Google Scholar] [CrossRef]
- Yue, S.; Gong, L.; Tan, Y.; Zhang, X.; Liao, F. Cerium Oxide-Loaded Exosomes Derived From Regulatory T Cells Ameliorate Inflammatory Bowel Disease by Scavenging Reactive Oxygen Species and Modulating the Inflammatory Response. J. Inflamm. Res. 2025, 18, 4395–4408. [Google Scholar] [CrossRef] [PubMed]
- Elmorshdy Elsaeed Mohammed Elmorshdy, S.; Ahmed Shaker, G.; Helmy Eldken, Z.; Abdelbadie Salem, M.; Awadalla, A.; Mahmoud Abdel Shakour, H.; Elmahdy El Hosiny Sarhan, M.; Mohamed Hussein, A. Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms. Rep. Biochem. Mol. Biol. 2023, 12, 495–511. [Google Scholar] [CrossRef]
- Lord, M.S.; Berret, J.F.; Singh, S.; Vinu, A.; Karakoti, A.S. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. Small 2021, 17, e2102342. [Google Scholar] [CrossRef]
- Xu, H.; Li, S.; Ma, X.; Xue, T.; Shen, F.; Ru, Y.; Jiang, J.; Kuai, L.; Li, B.; Zhao, H.; et al. Cerium oxide nanoparticles in diabetic foot ulcer management: Advances, limitations, and future directions. Colloids Surf. B. Biointerfaces 2023, 231, 113535. [Google Scholar] [CrossRef]
- Guerra-Ojeda, S.; Marchio, P.; Rueda, C.; Suarez, A.; Garcia, H.; Victor, V.M.; Juez, M.; Martin-Gonzalez, I.; Vila, J.M.; Mauricio, M.D. Cerium dioxide nanoparticles modulate antioxidant defences and change vascular response in the human saphenous vein. Free Radic. Biol. Med. 2022, 193, 694–701. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Wang, T.; Ma, C.; Li, H.; Lei, H.; Yang, Y.; Wang, Y.; Pei, Z.; Liu, Z.; et al. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials 2022, 291, 121904, Erratum in Biomaterials 2024, 309, 122612. https://doi.org/10.1016/j.biomaterials.2024.122612. [Google Scholar] [CrossRef]
- Orera, V.M.; Merino, R.I.; Peña, F. Ce3+ ↔ Ce4+ conversion in ceria-doped zirconia single crystals induced by oxido-reduction treatments. Solid State Ion. 1994, 72, 224–231. [Google Scholar] [CrossRef]
- Scavini, M.; Bertolotti, F.; Mlloja, J.; Umbri, F.; Bosc, A.; Cappelli, S.; Checchia, S.; Oliva, C.; Fumagalli, P.; Ceresoli, D.; et al. Structure and Surface Relaxation of CeO2 Nanoparticles Unveiled by Combining Real and Reciprocal Space Total Scattering Analysis. Nanomaterials 2022, 12, 3385. [Google Scholar] [CrossRef]
- Fifere, N.; Airinei, A.; Dobromir, M.; Sacarescu, L.; Dunca, S.I. Revealing the Effect of Synthesis Conditions on the Structural, Optical, and Antibacterial Properties of Cerium Oxide Nanoparticles. Nanomaterials 2021, 11, 2596. [Google Scholar] [CrossRef]
- Abramova, A.V.; Kozlov, D.A.; Veselova, V.O.; Kozlova, T.O.; Ivanova, O.S.; Mikhalev, E.S.; Voytov, Y.I.; Baranchikov, A.E.; Ivanov, V.K.; Cravotto, G. Coating of Filter Materials with CeO2 Nanoparticles Using a Combination of Aerodynamic Spraying and Suction. Nanomaterials 2023, 13, 3168. [Google Scholar] [CrossRef]
- Gunawan, C.; Marquis, C.P.; Amal, R. Oxygen-Vacancy Engineering of Cerium Oxide Nanoparticles: Impact on Structure and Surface Chemistry. ACS Omega 2019, 4, 9473–9481. [Google Scholar] [CrossRef]
- Pugachevskii, M.A.; Ivanov, V.K.; Baranchikov, A.Y.; Orlov, A.V.; Gusev, A.I. Antioxidant Properties of Stabilized CeO2 Nanoparticles: Effect of Size, Charge, and Coating. Phys. Status Solidi A 2021, 218, 2100355. [Google Scholar] [CrossRef]
- Butterfield, A.D.; Wang, B.; Wu, P.; Hardas, S.S.; Unrine, J.M.; Grulke, E.A.; Cai, J.; Klein, J.B.; Pierce, W.M.; Yokel, R.A.; et al. Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by which Nanoceria May Exert Its Beneficial and Deleterious Effects In Vivo. J. Nanomed. Nanotechnol. 2020, 11, 546. [Google Scholar] [PubMed]
- Konduru, N.V.; Molina, R.M.; Swami, A.; Damiani, F.; Pyrgiotakis, G.; Lin, P.; Andreozzi, P.; Donaghey, T.C.; Demokritou, P.; Krol, S.; et al. Protein Corona: Implications for Nanoparticle Interactions with Pulmonary Cells. Part. Fibre Toxicol. 2017, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Pérez Gutiérrez, R.M.; Rodríguez-Serrano, L.M.; Laguna-Chimal, J.F.; de la Luz Corea, M.; Paredes Carrera, S.P.; Téllez Gomez, J. Geniposide and Harpagoside Functionalized Cerium Oxide Nanoparticles as a Potential Neuroprotective. Int. J. Mol. Sci. 2024, 25, 4262. [Google Scholar] [CrossRef]
- Estevez, A.Y.; Ganesana, M.; Trentini, J.F.; Olson, J.E.; Li, G.; Boateng, Y.O.; Lipps, J.M.; Yablonski, S.E.R.; Donnelly, W.T.; Leiter, J.C.; et al. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules 2019, 9, 562. [Google Scholar] [CrossRef]
- Vassie, J.A.; Whitelock, J.M.; Lord, M.S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater. 2017, 50, 127–141. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Wen, Y.; Zhao, M.; Dong, Y. Effect of Cerium Oxide Nanoparticles on Myocardial Cell Apoptosis Induced by Myocardial Ischemia-Reperfusion Injury. Cell. Mol. Biol. 2022, 68, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lin, J.; Wang, W.; Zhang, M.; Chen, Y.; Li, X.; Liu, H.; Wang, P.X.; Zhao, G.; Fu, J.; et al. Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction. Front. Pharmacol. 2025, 15, 1503757. [Google Scholar] [CrossRef]
- Allawadhi, P.; Khurana, A.; Sayed, N.; Godugu, C.; Vohora, D. Ameliorative Effect of Cerium Oxide Nanoparticles Against Freund’s Complete Adjuvant-Induced Arthritis. Nanomedicine 2022, 17, 383–404. [Google Scholar] [CrossRef]
- Abbas, M.K.; Javed, Y.; Shad, N.A.; Rasul, A.; Bashir, A.; Bin Farukh, S.F.; Abdulghani, H.T.; Abbas, W.; Sethi, A.; Khawar, M.R.; et al. Boosted Wound Healing and Anticancer Potential of Polymer Functionalized Cerium Oxide Nanomaterials. J. Trace Elem. Med. Biol. 2025, 90, 127681. [Google Scholar] [CrossRef] [PubMed]
- Corsi, F.; Deidda Tarquini, G.; Urbani, M.; Bejarano, I.; Traversa, E.; Ghibelli, L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? Nanomaterials 2023, 13, 2803. [Google Scholar] [CrossRef] [PubMed]
- Apte, A.; Bardill, J.R.; Canchis, J.; Skopp, S.M.; Fauser, T.; Lyttle, B.; Vaughn, A.E.; Seal, S.; Jackson, D.M.; Liechty, K.W.; et al. Targeting Inflammation and Oxidative Stress to Improve Outcomes in a TNBS Murine Crohn’s Colitis Model. Nanomaterials 2024, 14, 894. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, F.; Wu, L.; Xia, D.; Liu, Y. CeO2 Nanoparticles to Promote Wound Healing: A Systematic Review. Adv. Healthc. Mater. 2024, 13, e2302858. [Google Scholar] [CrossRef]
- Badia, A.; Duarri, A.; Salas, A.; Rosell, J.; Ramis, J.; Gusta, M.F.; Casals, E.; Zapata, M.A.; Puntes, V.; García-Arumí, J. Repeated Topical Administration of 3 nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS Nano 2023, 17, 910–926. [Google Scholar] [CrossRef]
- Chigurupati, S.; Mughal, M.R.; Okun, E.; Das, S.; Kumar, A.; McCaffery, M.; Seal, S.; Mattson, M.P. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 2013, 34, 2194–2201. [Google Scholar] [CrossRef]
- Minarchick, V.C.; Stapleton, P.A.; Sabolsky, E.M.; Nurkiewicz, T.R. Cerium Dioxide Nanoparticle Exposure Improves Microvascular Dysfunction and Reduces Oxidative Stress in Spontaneously Hypertensive Rats. Front. Physiol. 2015, 6, 339. [Google Scholar] [CrossRef] [PubMed]
- Kafader, J.O.; Topolski, J.E.; Jarrold, C.C. Molecular and electronic structures of cerium and cerium suboxide clusters. J. Chem. Phys. 2016, 145, 154306. [Google Scholar] [CrossRef]
- Campbell, C.T.; Peden, C.H. Chemistry. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Li, Y.; Tang, D.; Xiao, Y.; Liu, Y.; Huo, Q. Self-doped Ce3+ enhanced CeO2 host matrix for energy transfer from Ce3+ to Tb3+. RSC Adv. 2013, 3, 3623–3630. [Google Scholar] [CrossRef]
- Kumar, A.; Babu, S.; Karakoti, A.S.; Schulte, A.; Seal, S. Luminescence properties of europium-doped cerium oxide nanoparticles: Role of vacancy and oxidation states. Langmuir 2009, 25, 10998–11007. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Singh, P.; Pradhan, N. Plasmon-Induced Tuning of Cerium Oxidation States in Au@CeOxCore@Shell Nanoparticles. arXiv 2025, arXiv:2503.22433. [Google Scholar]
- Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J.F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 2018, 10, 6971–6980. [Google Scholar] [CrossRef]
- Heckert, E.G.; Seal, S.; Self, W.T. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ. Sci. Technol. 2008, 42, 5014–5019. [Google Scholar] [CrossRef]
- Renu, G.B.; Bijukumar, D.; Nair, S.; Subramanian, K.R.V.; Lakshmanan, V.-K. Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Adv. Sci. Lett. 2012, 6, 17–25. [Google Scholar] [CrossRef]
- Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 2013, 9, 558–569. [Google Scholar] [CrossRef]
- Skorodumova, N.V.; Simak, S.I.; Lundqvist, B.I.; Abrikosov, I.A.; Johansson, B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 2002, 89, 166601. [Google Scholar] [CrossRef]
- Kwon, H.J.; Kim, D.; Seo, K.; Kim, Y.G.; Han, S.I.; Kang, T.; Soh, M.; Hyeon, T. Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson’s Disease. Angew. Chem. Int. Ed. Engl. 2018, 57, 9408–9412. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Liu, J.; Li, L.; Zhang, Y.; Xie, M. CeO2 in Situ Growth on Red Blood Cell Membranes: CQD Coating and Multipathway Alzheimer’s Disease Therapy under NIR. ACS Appl. Mater. Interfaces 2024, 16, 35898–35911. [Google Scholar] [CrossRef]
- Tavoosi, S.; Baghsheikhi, A.H.; Shetab-Boushehri, S.V.; Navaei-Nigjeh, M.; Sarvestani, N.N.; Karimi, M.Y.; Ranjbar, A.; Ebadollahi-Natanzi, A.; Hosseini, A. Cerium and Yttrium Oxide Nanoparticles and Nano-selenium Produce Protective Effects Against H2O2-induced Oxidative Stress in Pancreatic Beta Cells by rzulating Mitochondrial Dysfunction. Pharm. Nanotechnol. 2020, 8, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.S.; Veettil, R.A.; Sakthivel, T.S.; Adumbumkulath, A.; Lee, R.; Zaheer, M.; Kolanthai, E.; Seal, S.; Acharya, G. Noninvasive Delivery of Self-Regenerating Cerium Oxide Nanoparticles to Modulate Oxidative Stress in the Retina. ACS Appl. Bio. Mater. 2022, 5, 5816–5825. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Seal, S.; McGinnis, J.F. Sustained inhibition of neovascularization in vldlr−/− mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway. Biomaterials 2014, 35, 249–258. [Google Scholar] [CrossRef]
- Bashandy, S.A.E.; Elbaset, M.A.; Ibrahim, F.A.A.; Abdelrahman, S.S.; Moussa, S.A.A.; El-Seidy, A.M.A. Management of cardiovascular disease by cerium oxide nanoparticles via alleviating oxidative stress and adipokine abnormalities. Sci. Rep. 2025, 15, 5709. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Chung, S.J.; Nafiujjaman, M.; Hill, M.L.; Siziba, M.E.; Contag, C.H.; Kim, T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020, 10, 11863–11880. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4, 5321–5331. [Google Scholar] [CrossRef]
- Tang, J.L.Y.; Moonshi, S.S.; Ta, H.T. Nanoceria: An innovative strategy for cancer treatment. Cell. Mol. Life Sci. 2023, 80, 46. [Google Scholar] [CrossRef]
- Pešić, M.; Podolski-Renić, A.; Stojković, S.; Matović, B.; Zmejkoski, D.; Kojić, V.; Bogdanović, G.; Pavićević, A.; Mojović, M.; Savić, A.; et al. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem. Biol. Interact. 2015, 232, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, X.; Fang, M.; Tian, J.; Zhang, S.; Lu, L.; Zhou, C.; Xu, C.; Qi, Y.; Li, L. Photothermal effective CeO2NPs combined in thermosensitive hydrogels with enhanced antibacterial, antioxidant and vascularization performance to accelerate infected diabetic wound healing. Regen. Biomater. 2023, 10, rbad072. [Google Scholar] [CrossRef]
- Hirst, S.M.; Karakoti, A.; Singh, S.; Self, W.; Tyler, R.; Seal, S.; Reilly, C.M. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ. Toxicol. 2013, 28, 107–118. [Google Scholar] [CrossRef]
- Yokel, R.A.; Tseng, M.T.; Butterfield, D.A.; Hancock, M.L.; Grulke, E.A.; Unrine, J.M.; Stromberg, A.J.; Dozier, A.K.; Graham, U.M. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020, 14, 827–846. [Google Scholar] [CrossRef]
- Yokel, R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine 2020, 15, 409–432. [Google Scholar] [CrossRef]
- Goujon, G.; Baldim, V.; Roques, C.; Bia, N.; Seguin, J.; Palmier, B.; Graillot, A.; Loubat, C.; Mignet, N.; Margaill, I.; et al. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Adv. Healthc. Mater. 2021, 10, e2100059. [Google Scholar] [CrossRef]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef]
- Poma, A.; Ragnelli, A.M.; de Lapuente, J.; Ramos, D.; Borras, M.; Aimola, P.; Di Gioacchino, M.; Santucci, S.; De Marzi, L. In vivo inflammatory effects of ceria nanoparticles on CD-1 mouse:evaluation by hematological, histological, and TEM analysis. J. Immunol. Res. 2014, 2014, 361419. [Google Scholar] [CrossRef] [PubMed]
- De Marzi, L.; Monaco, A.; De Lapuente, J.; Ramos, D.; Borras, M.; Di Gioacchino, M.; Santucci, S.; Poma, A. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int. J. Mol. Sci. 2013, 14, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
- Aalapati, S.; Ganapathy, S.; Manapuram, S.; Anumolu, G.; Prakya, B.M. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology 2014, 8, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Heckman, K.L.; De Coteau, W.; Estevez, A.; Reed, K.J.; Costanzo, W.; Sanford, D.; Leiter, J.C.; Clauss, J.; Knapp, K.; Gomez, C.; et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 2013, 7, 10582–10596. [Google Scholar] [CrossRef]
- Heckman, K.L.; Erlichman, J.; Reed, K.; Skeels, M. Application of mass spectrometry to characterize localization and efficacy of nanoceria in vivo. Adv. Exp. Med. Biol. 2014, 806, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Catalán, J.; Fascineli, M.L.; Politakos, N.; Hartikainen, M.; Garcia, M.P.; Cáceres-Vélez, P.R.; Moreno, C.; da Silva, S.W.; Morais, P.C.; Norppa, H.; et al. In vivo toxicological evaluation of polymer brush engineered nanoceria: Impact of brush charge. Nanotoxicology 2019, 13, 305–325. [Google Scholar] [CrossRef]
- McDonagh, P.R.; Sundaresan, G.; Yang, L.; Sun, M.; Mikkelsen, R.; Zweit, J. Biodistribution and PET imaging of 89-zirconium labeled cerium oxide nanoparticles synthesized with several surface coatings. Nanomedicine 2018, 14, 1429–1440. [Google Scholar] [CrossRef]
- Yang, L.; Sundaresan, G.; Sun, M.; Jose, P.; Hoffman, D.; McDonagh, P.R.; Lamichhane, N.; Cutler, C.S.; Perez, J.M.; Zweit, J. Intrinsically radiolabeled multifunctional cerium oxide nanoparticles for in vivo studies. J. Mater. Chem. B 2013, 1, 1421–1431. [Google Scholar] [CrossRef]
- Ernst, L.M.; Mondragón, L.; Ramis, J.; Gustà, M.F.; Yudina, T.; Casals, E.; Bastús, N.G.; Fernández-Varo, G.; Casals, G.; Jiménez, W.; et al. Exploring the Long-Term Tissue Accumulation and Excretion of 3 nm Cerium Oxide Nanoparticles after Single Dose Administration. Antioxidants 2023, 12, 765. [Google Scholar] [CrossRef] [PubMed]
- Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B. Biointerfaces 2008, 66, 274–280. [Google Scholar] [CrossRef]
- Tsoi, K.M.; MacParland, S.A.; Ma, X.Z.; Spetzler, V.N.; Echeverri, J.; Ouyang, B.; Fadel, S.M.; Sykes, E.A.; Goldaracena, N.; Kaths, J.M.; et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221. [Google Scholar] [CrossRef]
- Yokel, R.A.; Hancock, M.L.; Cherian, B.; Brooks, A.J.; Ensor, M.L.; Vekaria, H.J.; Sullivan, P.G.; Grulke, E.A. Simulated biological fluid exposure changes nanoceria’s surface properties but not its biological response. Eur. J. Pharm. Biopharm. 2019, 144, 252–265. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, G.H.; Kwon, I.H.; Yang, M.J.; Heo, M.B.; Choi, J.W.; Lee, T.G.; Yoon, C.H.; Baek, B.; Sung, M.C.; et al. Uptake and toxicity of cerium dioxide nanoparticles with different aspect ratio. Toxicol. Lett. 2023, 373, 196–209. [Google Scholar] [CrossRef]
- Annangi, B.; Lu, Z.; Bruniaux, J.; Ridoux, A.; da Silva, V.M.; Vantelon, D.; Boczkowski, J.; Lanone, S. Macrophage autophagy protects mice from cerium oxide nanoparticle-induced lung fibrosis. Part. Fibre Toxicol. 2021, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Modrzynska, J.; Berthing, T.; Ravn-Haren, G.; Kling, K.; Mortensen, A.; Rasmussen, R.R.; Larsen, E.H.; Saber, A.T.; Vogel, U.; Loeschner, K. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS ONE 2018, 13, e0202477. [Google Scholar] [CrossRef]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int. J. Nanomed. 2017, 12, 2913–2922. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Crosera, M.; Monai, M.; Montini, T.; Fornasiero, P.; Bovenzi, M.; Adami, G.; Turco, G.; Filon, F.L. Cerium Oxide Nanoparticles Absorption through Intact and Damaged Human Skin. Molecules 2019, 24, 3759. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M.; Lewis, A.B.; Roberts, J.R.; Whaley, D.A. Pulmonary effects of welding fumes: Review of worker and experimental animal studies. Am. J. Ind. Med. 2003, 43, 350–360. [Google Scholar] [CrossRef]
- Ma, X.; Wang, X.; Xu, L.; Shi, H.; Yang, H.; Landrock, K.K.; Sharma, V.K.; Chapkin, R.S. Fate and distribution of orally-ingested CeO2-nanoparticles based on a mouse model: Implication for human health. Soil Environ. Health 2023, 1, 100017. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, J.; Ji, L.; Li, Y.; Zhang, B.; Yang, T.; Yang, J.; Lv, L.; Wu, G. Translocation of intranasal (i.n.) instillation of different-sized cerium dioxide (CeO2) particles: Potential adverse effects in mice. J. Toxicol. Environ. Health. A 2019, 82, 1069–1075. [Google Scholar] [CrossRef]
- Chen, B.; Lum, J.T.; Huang, Y.; Hu, B.; Leung, K.S. Integration of sub-organ quantitative imaging LA-ICP-MS and fractionation reveals differences in translocation and transformation of CeO2 and Ce3+ in mice. Anal. Chim. Acta 2019, 1082, 18–29. [Google Scholar] [CrossRef]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef]
- Yu, F.; Zheng, M.; Zhang, A.Y.; Han, Z. A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J. Control. Release 2019, 315, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Seal, S.; McGinnis, J.F. Non-toxic retention of nanoceria in murine eyes. Mol. Vis. 2016, 22, 1176–1187. [Google Scholar] [PubMed]
- Zou, H.; Wang, H.; Xu, B.; Liang, L.; Shen, L.; Lin, Q. Regenerative cerium oxide nanozymes alleviate oxidative stress for efficient dry eye disease treatment. Regen. Biomater. 2022, 9, rbac070. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wong, L.L.; Karakoti, A.S.; Seal, S.; McGinnis, J.F. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS ONE 2011, 6, e16733. [Google Scholar] [CrossRef]
- Das, S.; Neal, C.J.; Ortiz, J.; Seal, S. Engineered nanoceria cytoprotection in vivo: Mitigation of reactive oxygen species and double-stranded DNA breakage due to radiation exposure. Nanoscale 2018, 10, 21069–21075. [Google Scholar] [CrossRef]
- Qin, F.; Shen, T.; Li, J.; Qian, J.; Zhang, J.; Zhou, G.; Tong, J. SF-1 mediates reproductive toxicity induced by Cerium oxide nanoparticles in male mice. J. Nanobiotechnol. 2019, 17, 41. [Google Scholar] [CrossRef]
- Adebayo, O.A.; Akinloye, O.; Adaramoye, O.A. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 2018, 50, e12920. [Google Scholar] [CrossRef]
- Vafaei-Pour, Z.; Shokrzadeh, M.; Jahani, M.; Shaki, F. Embryo-Protective Effects of Cerium Oxide Nanoparticles against Gestational Diabetes in Mice. Iran. J. Pharm. Res. 2018, 17, 964–975. [Google Scholar] [PubMed Central]
- Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.; Schäffler, M.; Tian, F.; Schmid, G.; Oberdörster, G.; Kreyling, W.G. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part. Fibre Toxicol. 2014, 11, 33. [Google Scholar] [CrossRef]
- Funakoshi, T.; Furushima, K.; Shimada, H.; Kojima, S. Anticoagulant action of rare earth metals. Biochem. Int. 1992, 28, 113–119. [Google Scholar] [PubMed]
- Lu, Y.Q. Coagulation disorders following an accidental ingestion of cerium dioxide nanoparticles. Environ. Toxicol. Pharmacol. 2021, 82, 103560. [Google Scholar] [CrossRef]
- Yang, L.; Ran, H.; Yin, Y.; Liu, J.; Lu, B.; Ran, X.; Luo, S.; Wang, W.; Yang, Z.; Li, R. Mitochondrial Targeted Cerium Oxide Nanoclusters for Radiation Protection and Promoting Hematopoiesis. Int. J. Nanomed. 2024, 19, 6463–6483. [Google Scholar] [CrossRef]
- Popov, A.L.; Ermakov, A.M.; Matora, L.Y.; Burlyaev, O.A.; Popov, V.V.; Gromov, A.A.; Skvortsov, A.N.; Kharitonova, I.P.; Gluschenko, S.A. Radioprotective Effects of Ultra-Small Citrate-Stabilized Cerium Oxide Nanoparticles in Vitro and in Vivo. RSC Adv. 2016, 6, 106141–106149. [Google Scholar] [CrossRef]
- Si, S.; Song, S.; Qin, Y.; Wu, Y.; Wang, Z.; Liu, Y.; Lv, G.; Yan, C. Effects of cerium oxide nanoparticles on the distribution of immune cells in peripheral blood and the proliferation of spleen T lymphocyte in X-ray irradiated mice. Chin. J. Radiol. Med. Prot. 2017, 37, 339–344. [Google Scholar] [CrossRef]
- Kim, J.; Hong, G.; Mazaleuskaya, L.; Hsu, J.C.; Rosario-Berrios, D.N.; Grosser, T.; Cho-Park, P.F.; Cormode, D.P. Ultrasmall Antioxidant Cerium Oxide Nanoparticles for Regulation of Acute Inflammation. ACS Appl. Mater. Interfaces 2021, 13, 60852–60864. [Google Scholar] [CrossRef]
- Niu, J.; Azfer, A.; Rogers, L.M.; Wang, X.; Kolattukudy, P.E. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc. Res. 2007, 73, 549–559. [Google Scholar] [CrossRef]
- Özer, A.; Şengel, N.; Küçük, A.; Yığman, Z.; Özdemir, Ç.; Kılıç, Y.; Dursun, A.D.; Bostancı, H.; Kip, G.; Arslan, M. The Effect of Cerium Oxide (CeO2) on Ischemia-Reperfusion Injury in Skeletal Muscle in Mice with Streptozocin-Induced Diabetes. Medicina 2024, 60, 752. [Google Scholar] [CrossRef] [PubMed]
- Magnano, G.C.; Marussi, G.; Larese Filon, F.; Crosera, M.; Bovenzi, M.; Adami, G. Transdermal permeation of inorganic cerium salts in intact human skin. Toxicol. Vitr. 2022, 82, 105381. [Google Scholar] [CrossRef]
- Sharmah, B.; Barman, H.; Afzal, N.U.; Loying, R.; Kabir, M.E.; Borah, A.; Das, J.; Kalita, J.; Manna, P. Surface-Functionalized Nanoceria: Dual Action in Diabetes Management via Glucose-Responsive Insulin Delivery and Oxidative Stress Mitigation. ACS Biomater. Sci. Eng. 2024, 10, 6397–6414. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Fadeel, B.; Farcal, L.; Hardy, B.; Vázquez-Campos, S.; Hristozov, D.; Marcomini, A.; Lynch, I.; Valsami-Jones, E.; Alenius, H.; Savolainen, K. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 2018, 13, 537–543. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. National Toxicology Program (NTP). OHAT Risk of Bias Rating Tool for Human and Animal Studies Research Triangle Park (NC); NIH Publication No. 15-7951. 2015. Available online: https://ntp.niehs.nih.gov/whatwestudy/assessments/noncancer/riskbias/index.html (accessed on 1 July 2025).


| Title of the Article | Authors | Year | DOI | Type of Experiment | Mouse Strain | Number of Mice (P+C) | Control Group | Nanoceria Size | Nanoceria Dose | Route of Administration | Frequency of Administration | Assessment at [Number] Days Post-Administration | Route of Elimination | Organs with the Highest Concentration | Key Findings | Substance | OHAT Risk of Bias Tool |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Anti-inflammatory properties of cerium oxide nanoparticles | Suzanne Marie Hirst et al. | 2009 | 10.1002/smll.200901048 | in vivo | C57BL/6 | 24 (16 + 8) | Yes, saline solution | 3–5 nm | 0.1 mg/kg 0.5 mg/kg | Intravenously | Once; 2 times in 7 days | 7, 30 days | Not studied | Liver, Kidneys, blood vessels | When administered intravenously, NPs are capable of persisting for a long time in the body’s tissues without inducing acute damage. | CeO2 NPs | Probably low |
| Biodistribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice | Suzanne Marie Hirst et al. | 2011 | 10.1002/tox.20704 | in vivo | CD-1 | 48 (36 + 12) | Yes, saline solution | 3–5 nm | 0.5 mg/kg | Orally Intravenously Intraperitoneally | Once a week for 2 or 5 weeks | 3, 24 h, 2, 5 weeks | Hepatobiliary | Lungs | NPs are distributed in the spleen, liver and lungs, excreted with feces, and demonstrate antioxidant properties. The greatest deposition of NPs was due to intravenous and intraperitoneal administration. During the study, cerium was practically not excreted from the organs under study. | CeO2 NPs (carboxyfluorescein coating) | Probably low |
| 24 h, 2 weeks | Spleen, liver, Lungs, kidneys, heart, Brain | ||||||||||||||||
| 24 h, 2 weeks | |||||||||||||||||
| Intrinsically Radiolabeled Multifunctional Cerium Oxide Nanoparticles for in vivo Studies | Likun Yang et al. | 2013 | 10.1039/c2tb00404f | in vivo and ex vivo | Nude | 36 | No | 2 nm | 140 pmol/mouse | Intravenously | Single dose | 5 min, 1, 4, 24, 48, 120 h | Renal | Kidneys, liver, spleen, lungs | The NP rate and route of excretion depend on their size (2 nm via the kidneys within 10 min, 6 nm via the liver, T1/2 = 27 min). | PAA rCONP | Probably low |
| 6 nm | Hepatobiliary | DT10 rCONP | |||||||||||||||
| In Vivo Inflammatory Effects of Ceria Nanoparticles on CD-1 Mouse | Anna Poma et al. | 2014 | 10.1155/2014/361419 | in vivo | CD-1 | 3 | No | 5 nm | 2000/3500/5000 mg/kg | Orally | Single dose | 10 days | Not studied | Lungs, Liver | NPs were not lethally toxic in either acute or subacute tests. However, they caused inflammatory changes in the liver, kidneys, and lungs. The most pronounced inflammation was observed at low and medium doses, which may be due to better bioavailability of the nanoparticles. High doses could cause aggregation of the NPs, which reduces their toxic effect. | CeO2 NPs | Probably low |
| 24 (18 + 6) | Yes, saline solution | 50/500/5000 mg/kg | Intraperitoneally | 14 days | Liver, kidneys, lungs | ||||||||||||
| Toxicity and bioaccumulation of inhaled cerium oxide nanoparticles in CD1 mice | Srinivas Aalapati et al. | 2014 | 10.3109/17435390.2013.829877 | in vivo | CD-1 | 72 (66 + 6) | Yes, without impact | 15–30 nm | 2 mg/m3 | Inhalation | Inhalation 6 h a day | 7, 14, 28 days | Mucociliary | Lungs, kidneys, liver, Heart, brain, lymph nodes | Inhalation of NPs causes inflammation, necrosis and fibrosis in the lungs. The kidneys are damaged (tubular necrosis), while the liver retains its functions. Elimination is slow: mainly through mucociliary clearance and then through ingestion and the gastrointestinal tract; renal excretion is limited. NPs have high biopersistence. | CeO2 NPs | Probably low |
| Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain | Karin L. Heckman et al. | 2013 | 10.1021/nn403743b | in vivo | C57BL/6 | 10 (exact number for C not specified) | Yes, saline solution | 2.9 nm | 20 mg/kg | Intravenously | Not exactly described (probably on (3), 7, 14, 21, 28, 35 days) | 24 h; 1, 2, 3, 4, 5 months | Hepatobiliary | Brain, Liver, spleen, kidneys | Using mass spectrometry to analyze the accumulation and effectiveness of NPs in the body, antioxidant activity has been demonstrated. | CA/EDTA CeO2 NPs, CeO2 NPs | Probably low |
| Nanoceria distribution and effects are mouse-strain dependent | Robert A. Yokel et al. | 2020 | 10.1080/17435390.2020.1770887 | ex vivo | C57BL/6, BALB/c | 80 (60 + 20) | Yes, saline solution | 4.2 ± 1.2 nm | 10 mg/kg | Intraperitoneally | Single dose | 0.5, 1, 3, 6, 24 h | Hepatobiliary | Liver, spleen, kidneys, lungs, heart, Brain | C57BL/6 mice showed greater accumulation of NPs in the body. BALB/c mice had more pronounced inflammation. Intracellular nanoparticles were bioprocessed to form crystalline cerium phosphate nanostructures. | CeO2 NPs (citrate coating) | Definitely low |
| Biodistribution and PET Imaging of 89-Zirconium Labelled Cerium Oxide Nanoparticles | Philip Reed McDonagh et al. | 2018 | 10.1016/j.nano.2018.04.002 | in vivo and ex vivo | C57BL/6 | 23–41 (exact number not specified) | 89ZrCl4 in saline | Without coating: 5 nm citrate: 3.1 ± 0.5 nm DT10-NH2: 6.3 ± 1.8 nm DT10-PEG: 9.3 ± 2.7 nm DT10-SB: 14.3 ± 4.6 nm PAA: 3.9 ± 0.9 nm | 0.37 MBq/mouse 3.7 MBq/mouse 11.1 MBq/mouse | Intravenously, Orally, Intraperitoneally | Single dose | 2, 24 h, 7 days | Renal, hepatobiliary | Liver, spleen, kidneys, lungs | The coating of NPs significantly affects their biodistribution and elimination. PAA-NPs show better renal elimination (>75% in 4 h), while uncoated NPs are retained in the lungs and are slowly eliminated (<3% in 7 days). DT10-PEG prolongs circulation in the bloodstream, and DT10-NH2 is rapidly taken up by the liver. The importance of coating is critical for biomedical applications. | CeO2 NPs PAA-CeO2 NPs Citrate-CeO2 NPs DT10-PEG-CeO2 NPs DT10-NH2-CeO2 NPs DT10-SB-CeO2 NPs | Definitely low |
| In vivo-induced size transformation of cerium oxide nanoparticles | JustynanModrzynska et al. | 2018 | 10.1371/journal.pone.0202477 | in vivo | C57BL/6 | 108 (81 + 27) | Yes, saline solution | 13.0 ± 12.1 nm | 162 μg per mouse | Intratracheally, intravenously, Orally | Single dose | 1, 28, 180 days | Not studied | Lungs, Liver | NPs after entering the lungs are slowly transported to the liver, where they accumulate in Kupffer cells. Their size decreases over time (intra-organism transformation), but this does not affect excretion. After 180 days, a significant number of NPs remain in the lungs and liver, which confirms the low rate of excretion and long-term accumulation in the body. They are not absorbed from the gastrointestinal tract. | CeO2 NPs | Definitely low |
| In vivo toxicological evaluation of polymer brush engineered nanoceria: impact of brush charge | JuliaCatalán et al. | 2019 | 10.1080/17435390.2018.1543469 | in vivo | C57BL/6 | 72 (54 + 18) | Yes, saline solution, Tween-80, methyl methanesulfonate | CeO2 (80–150 nm) PAA (20 nm) PMETAC (10 nm) | 1.8 mg Ce/kg 5.3 mg Ce/kg 16.0 mg Ce/kg | Intraperitoneally | 4 injections with an interval of 4–5 days | 15 days | Not studied | Liver, spleen, bone marrow | Coating of nanoceria with positively charged polymer brushes (CeO2@PMETAC) induced organ inflammation, cerium accumulation and hematological changes, while CeO2 and CeO2@PAA did not cause significant toxicity or genotoxicity. | CeO2 NPs | Probably low |
| Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles | Geoffroy Goujon et al. | 2021 | 10.1002/adhm.202100059 | in vivo | Swiss | 15 (6 + 9) | Yes, saline solution | Core size: 9 nm; hydrodynamic diameter (P1): 27.2 nm; (P3): 31.5 nm | 5 mg/kg | Intravenously | Single dose | 5, 15, 30 min; 1, 3, 6 h; 1, 2, 3, 7, 14, 21, 28 days | Hepatobiliary | Spleen, liver, kidneys, lungs, Brain | P3-coated NPs showed antioxidant activity in endothelial cells (reduction in DNA oxidation and superoxide anion production). The main accumulation organs are the liver and spleen (max concentration 30 min after administration). After 14 days, the NPs level decreased almost to background levels. | CeO2 NPs (P1—coating with phosphonic acid and methyl PEG chains. P2—includes phosphonic acid, methyl PEG chains and amino-Peg 1000. P3—similar to P2, but with amino-Peg 2000.) | Probably low |
| Exploring the Long-Term Tissue Accumulation and Excretion of 3 nm Cerium Oxide Nanoparticles | Lena M. Ernst et al. | 2023 | 10.3390/antiox12030765 | in vivo | BALB/C | 30 | No | 3 nm | 5.7 mg/kg | Intravenously | Single dose | 1, 9, 30, 100 days | Hepatobiliary | Liver, Spleen | The distribution of NPs depends on their characteristics: when captured by resistant macrophages, they can remain there until they are broken down into ions and then excreted via the urinary tract, while hepatocytes subject NPs to biliary excretion. | CeO2 NPs (coated with mouse serum albumin (MSA)) | Definitely low |
| Organ System | Title of the Article | Author | Year | DOI (PMID if No DOI) | Type of Experiment | Mouse Strain | Number of Mice (P+C) | Control Group | Nanoceria Size | Nanoceria Dose | Route of Administration | Frequency of Administration | Assessment at [Number] Days Post-Administration | Route of Elimination | Substance | OHAT Risk of Bias Tool |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Respiratory system | Toxicity and bioaccumulation of inhaled cerium oxide nanoparticles in CD1 mice | Srinivas Aalapati et al. | 2014 | 10.3109/17435390.2013.829877 | in vivo | CD-1 | 72 (66 + 6) | Yes, without impact | 15–30 nm | 2 mg/m3 | Inhalation | 6 h/day during exposure (7, 14, 28 days) | 8 days, 15 days, 29 days | NPs inhalation causes inflammation, necrosis and fibrosis in the lungs, and an active reaction in the lymph nodes. | CeO2 NPs | Probably low |
| Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice | Chaurand P, Liu W, Borschneck D et al. | 2018 | 10.1038/s41598-018-21862-4 | ex vivo | C57/Bl6 | 10 (5 + 5) | 5 mice were given water | TEM size: 31 ± 18 nm; hydrodynamic diameter: ≈90 nm | 50 μg in 25 μL | Intratracheal instillation | Single dose | 7 days | Uneven distribution of CeO2-NMs in lung tissue. Accumulations were found in the respiratory tract, parenchyma, and macrophages (size agr. 300–2373 nm). Preservation of CeO2 and absence of biotransformation were confirmed. | CeO2-NMs (cerium dioxide) | Probably high | |
| Macrophage autophagy protects mice from cerium oxide nanoparticle-induced lung fibrosis | Annangi B, Lu Z, Bruniaux J, Ridoux A, da Silva VM, Vantelon D, Boczkowski J, Lanone S. | 2021 | 10.1186/s12989-021–00398-y | in vivo | C57Bl/6 | 5–8 mice per group (4 exposed groups, 2 control groups) | Yes, saline solution | TEM size: 22.4 ± 0.2 nm; hydrodynamic diameter: 1480 nm | 5 μg 50 μg | Oropharyngeal instillation | Single dose | 24 h, 7 days, 28 days | 50 μg CeO2 NP induces progressive pulmonary fibrosis. Blockade of macrophage autophagy protects against alveolar but not bronchiolar fibrosis. | CeO2 NPs | Probably high | |
| The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice | Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. | 2017 | 10.2147/IJN.S127180 | in vivo | BALB/C | 6–8 mice in the group (n ≈ 18–24) | Yes, saline solution | 20 nm | 0.1 and 0.5 mg/kg | Intratracheal instillation (0.1 mL) | Single dose | 24 h | A single intratracheal instillation caused acute pneumonia with neutrophil and macrophage infiltration, increased TNF-α, and decreased antioxidant enzyme activity. | CeO2 NPs | Probably high | |
In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure | Modrzynska J, Berthing T, Ravn-Haren G, Kling K, Mortensen A, Rasmussen RR, Larsen EH, Saber AT, Vogel U, Loeschner K. | 2018 | 10.1371/journal.pone.0202477 | in vivo | C57BL/6 | 162 (81 + 81) | Yes, without nanoceria administration | TEM core size: 13.0 ± 12.1 nm; hydrodynamic diameter: 79 nm | 162 μg | Intratracheal instillation Orally Intravenously | Single dose | 1 day, 28 days, 180 days | NPs were detected in the liver of mice 180 days after intratracheal and intravenous administration, where a decrease in their size over time was also observed. After oral administration, NPs were not detected in the liver tissue. | CeO2 NPs | Definitely low | |
| Digestive system | Translocation of intranasal (i.n.) instillation of different-sized cerium dioxide (CeO2) particles: potential adverse effects in mice | Liu Y, Ji J, Ji L, Li Y, Zhang B, Yang T, Yang J, Lv L, Wu G. | 2019 | 10.1080/15287394.2019.1686867 | in vivo | ICR | 40 (30 + 10) | Yes, saline solution | 35 ± 3 nm 287 ± 27 nm 1–5 μm | 40 mg/kg | Intranasal instillation (in one nostril) | 3 times (day 1, 3, 5) | 7 days | In all groups, pronounced histological changes were revealed: hydropic degeneration in the liver and hemorrhages in the cortex and medulla of the kidneys. According to ICP-MS, cerium accumulation in the liver and kidneys occurred with the introduction of 300 nm and 1–5 μm particles, but not 35 nm. In the 35 nm group, a statistically significant decrease in total bilirubin, total protein and alkaline phosphatase, and an increase in the triglyceride level were observed. In the 1–5 μm group, an increase in AST activity was additionally noted. | CeO2 NPs | Probably low |
| Fate and distribution of orally-ingested CeO2-nanoparticles based on a mouse model: Implication for human health | Ma X, Wang X, Xu L, Shi H, Yang H, Landrock KK, Sharma VK, Chapkin RS. | 2023 | 10.1016/j.seh.2023.100017 | in vivo | C57BL/6 | 48 (36 + 12) | Yes, without nanoceria administration | <25 nm (CeO2) 30-50 nm (CeO2 coated with polyvinylpyrrolidone), hydrodynamic size 110.8 ± 0.8 nm and 326.4 ± 17.1 nm, respectively | 4 µg CeO2 30–50 nm (0.15 mg/kg) 20 µg CeO2 30–50 nm (0.75 mg/kg) 20 µg CeO2 <25 nm (0.75 mg/kg) | Orally | Every day for 10 days | ½ of mice at 10 days, another ½ of mice in 7 days | Oral administration of NPs at doses of 0.15–0.75 mg/kg did not cause toxicity in mice; nanoparticles did not accumulate in organs and were completely excreted with feces in less than 7 days. | CeO2 NPs CeO2 NPs coated with polyvinylpyrrolidone | Probably low | |
| Immune system | Integration of sub-organ quantitative imaging LA-ICP-MS and fractionation reveals differences in translocation and transformation of CeO2 and Ce3+ in mice. | Chen B, Lum JT, Huang Y, Hu B, Leung KS. | 2019 | 10.1016/j.aca.2019.07.044 | in vivo | ICR | 8 (5 + 3) | Yes, without nanoceria administration | 30–50 nm, hydrodynamic size 152.7 ± 1.6 nm | 0.8 mg/kg | Intraperitoneally | Once every 2 days (14 injections) | 28 days | After intraperitoneal administration of NPs to mice, accumulation of particles was observed in the marginal zone and white pulp of the spleen, as well as in Kupffer cells of the liver; 85–98% of cerium was retained in nanoform, and long-term exposure caused inflammatory changes in the liver and an immune response in the spleen. | CeO2 NPs | Probably moderate |
| Ultrasmall Antioxidant Cerium Oxide Nanoparticles for Regulation of Acute Inflammation | Kim J., Hong G., Mazaleuskaya L., Hsu J.C., Rosario-Berrios D.N., Grosser T., Cho-Park P.F., Cormode D.P. | 2021 | 10.1021/acsami.1c16126 | in vivo | C57BL/6J | 32 (16 + 16) | Yes, saline solution | 2.8 ± 0.4 nm, hydrodynamic size 3.4 ± 1.1 nm | 100 mg Ce/kg | Intravenously | Single dose | 3, 6, 18, 24 h | In mice with induced paw inflammation, intravenous administration of NPs rapidly reduced swelling and pain, decreased CD68, TNFα and IL-1β, increased IL-10 and did not cause signs of acute systemic toxicity. | CeO2 NPs, citrate-stabilized | Probably low | |
| Hematopoietic system | Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles in vitro and in vivo | Popov A.L., Zaichkina S.I., Popova N.R., Rozanova O.M., Romanchenko S.P., Ivanova O.S., Smirnov A.A., Mironova E.V., Selezneva I.I., Ivanov V.K. | 2016 | 10.1039/C6RA18566E | in vivo | SHK | Micronucleus test—48 (24 + 24) Survival—120 (60 + 60) | Intact control; control with CeO2 administration without irradiation | 3–4 nm | 8.3 nM/g body weight (100 µL 10−6 M) (approx. 1.43 mg/kg) | Intraperitoneally, Intravenously | Single dose | Micronucleus test: irradiation after 24 h, assessment 28 h after irradiation Survival test: daily observation for 30 days | In non-irradiated mice, administration of NPs did not cause changes in bone marrow and hematopoietic cell indices compared to intact controls. Administration of NPs before irradiation reduced cytogenetic damage to bone marrow and the level of reactive oxygen species, changed the expression of antioxidant enzymes, and increased 30-day survival of mice to 60% (i.p.) and 40% (i.v.). | CeO2 NPs, citrate-stabilized | Probably low |
| Mitochondrial Targeted Cerium Oxide Nanoclusters for Radiation Protection and Promoting Hematopoiesis | Yang L., Ran H., Yin Y., Liu J., Lu B., Ran X., Luo S., Wang W., Yang Z., Li R. | 2024 | 10.2147/IJN.S459607 | in vivo | BALB/c | 395 (255 + 140) | Intact control; control with CeO2 administration without irradiation | 2 nm, hydrodynamic size 30 nm | 10 mg/kg for radiobiological samples, 4, 6, 8, 10, 12, 14 mg/kg for toxicological samples | Intravenously | Single dose (12 h before irradiation) | Survival—30 days; blood—1, 3, 6, 9, 14, 21 days; CFU-S—8 days; CM—7 days; biochemistry and histology—3 days | Administration of TPP-PCNLs 12 h before irradiation increased mouse survival, bone marrow and spleen recovery, and reduced oxidative stress and tissue damage. In healthy non-irradiated mice, administration of NPs did not cause weight loss, changes in peripheral blood parameters, liver biochemistry, or pathological changes in bone marrow, liver, spleen, intestine, kidney, or heart. | Albumin CeO2 with PEG and triphenylphosphine (TPP-PCNLs) | Definitely low | |
| Reproductive system | SF-1 mediates reproductive toxicity induced by Cerium oxide nanoparticles in male mice | Qin F, Shen T, Li J, Qian J, Zhang J, Zhou G, Tong J. | 2019 | 10.1186/s12951-019-0474-2 | in vivo | C57BL/6J | 48 (36 + 12) | Yes, receiving 5% sodium carboxymethylcellulose | 27.62 ± 3.01 nm | 10 mg/kg 20 mg/kg 40 mg/kg | Orally | Every day for 32 days | 32 days | Long-term oral administration of NPs in doses greater than 20 mg/kg disrupts the reproductive function of males, reducing the number and motility of spermatozoa, disrupting DNA integrity and testosterone synthesis, and reducing the expression of the transcription regulatory factor SF-1. | CeO2 NPs | Probably low |
| Engineered nanoceria cytoprotection in vivo: mitigation of reactive oxygen species and double-stranded DNA breakage due to radiation exposure | Das S, Neal CJ, Ortiz J, Seal S. | 2018 | 10.1039/c8nr04640a | in vivo | C57BL/6J | 35 (30 + 5) | Yes, without nanoceria administration | 5–8 nm, hydrodynamic size 10 nm | 100 µL of solution with a concentration of 100 nM or 100 µM | Intravenously | Once a week for 28 days (4 injections) | 28 days | Administration of NPs reduces radiation-induced damage to spermatogenic tissue in mice at radiation doses up to 5 Gy, without signs of systemic toxicity. | CeO2 NPs | Probably low | |
| Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice | O. A. Adebayo, O. Akinloye, O. A. Adaramoye | 2017 | 10.1111/and.12920 | in vivo | BALB/C | 20 (15 + 5) | Yes, without impact | <10 nm | 100 µg/kg 200 µg/kg 300 μg/kg | Intraperitoneally, | 3 times a week for 5 weeks | 36 days | Repeated intraperitoneal administration of NPs caused a decrease in sperm motility, their morphological changes, hormonal disturbances, oxidative stress, inflammation and histopathological damage to the testicles. | PAA-CeO2 NPs | Probably high | |
| Embryo-Protective Effects of Cerium Oxide Nanoparticles against Gestational Diabetes in Mice. | Vafaei-Pour Z, Shokrzadeh M, Jahani M, Shaki F. | 2018 | PMID: 30127819 | in vivo | Swiss | 30 (20 + 10) | Yes, healthy pregnant mice without impact | No information | 60 mg/kg | Intraperitoneally, | Every day for 16 days of pregnancy | 16 days | In the control group of pregnant women without diabetes, the introduction of NPs did not cause significant changes in the weight of the mother, embryos, glucose levels, or markers of oxidative stress; pathological changes in the embryos were absent. | CeO2 NPs | Probably high | |
| Visual system | «Non-toxic retention of nanoceria in murine eyes» | Xue Cai, Sudipta Seal, James F. McGinnis | 2016 | PMID: 27746672 | in vivo | C57BL/6J | 3-6 eyes per group (7 groups) | Yes, without impact | 3–5 nm | 0.1 mM (17.2 ng), 0.3 mM (51.6 ng), 1 mM (172 ng), 3 mM (516 ng) 10 mM (1720 ng) | Intravitreal | Single dose | 7 h, 3 days, 7 days, 15 days, 30 days | No changes in retinal structure or function, inflammatory response, vascular permeability, or cellular infiltration were detected; photoreceptor protein localization and levels were unchanged. | CeO2 NPs | Probably low |
| «A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease» | Fan Yu, Min Zheng, Alice Yang Zhang, Zongchao Han | 2019 | 10.1016/j.jconrel.2019.10.039 | in vivo | C57BL/6J | 36 | Yes, without impact | 100 nm, hydrodynamic size 184.9 ± 8.7 nm | 0.1 µM 1 µM 10 µM (2 µL per eye) | Instillation (eye drops) | 2 times a day, 7 days | 3 days 7 days | NPs increased tear volume, tear film breakup time, decreased fluorescein staining scores, restored corneal morphology and goblet cell density, and decreased K10 expression. | CeO2 NPs in glycol chitosan (GCCNP) | Probably low | |
| «Regenerative cerium oxide nanozymes alleviate oxidative stress for efficient dry eye disease treatment» | Haoyu Zou, Haiting Wang, Baoqi Xu, Lin Liang, Liangliang Shen, Quankui Lin | 2022 | 10.1093/rb/rbac070 | in vivo | C57BL/6J | No information | Yes, healthy mice without nanoceria administration | 5–10 nm, hydrodynamic size 67.02 ± 0.73 nm | 5 µL/eye, concentration not specified exactly, in in vitro experiments—10 mg/mL | Instillation (eye drops) | 3 times a day, 7 days | Clinical and ophthalmic assessment on days 0, 1, 3, 5, 7; histology on day 7 | In a dry eye model, NPs significantly reduced corneal damage, accelerated corneal epithelial recovery, and normalized goblet cell counts, while not causing inflammatory or pathological changes in eye tissue in healthy animals. | CNP-bPEI-g-PEG (NPs modified bPEI-g-PEG) | Probably low | |
| Cardiovascular system | Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy | Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE | 2007 | PMID: 17207782 | in vivo | FVB/N, transgenic MCP-1 | 24 (12 + 12) | Yes, healthy mice with and without nanoceria administration | 7 nm | 0.15 mM (100 µL) | Intravenously | 2 times a week, 2 weeks | 0, 11, 15, 19 weeks—echocardiography, 19 weeks—morphological, immunohistochemical, molecular and biochemical analysis. | In healthy mice, the administration of NPs did not cause changes in echocardiographic, histological, inflammatory and biochemical parameters compared to healthy mice without administration. | CeO2 NPs | Definitely low |
| Nervous system | Custom Cerium Oxide Nanoparticles Protect Against a Free Radical Mediated Autoimmune Degenerative Disease in the Brain | Heckman K.L., et al. | 2013 | 10.1021/nn403743b | in vivo | SJL/J | 10 | Yes, healthy mice with nanoceria administration | 2.9 ± 0.3 nm | 20 mg/kg | Intravenously | Single dose | 24 h, 1, 2, 3, 4, 5 months | Cerium was detected in the brain of healthy mice with an intact BBB; the concentration decreased over time but remained measurable after 5 months. | CeO2 NPs, citrate/EDTA stabilized | Probably low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazareva, P.I.; Stupin, V.A.; Lazarev, K.A.; Litvitskiy, P.F.; Manturova, N.E.; Silina, E.V. Biodistribution and Toxicological Impact Assessment of Cerium Dioxide Nanoparticles in Murine Models: A Systematic Review of In Vivo and Ex Vivo Studies. Pharmaceutics 2025, 17, 1475. https://doi.org/10.3390/pharmaceutics17111475
Lazareva PI, Stupin VA, Lazarev KA, Litvitskiy PF, Manturova NE, Silina EV. Biodistribution and Toxicological Impact Assessment of Cerium Dioxide Nanoparticles in Murine Models: A Systematic Review of In Vivo and Ex Vivo Studies. Pharmaceutics. 2025; 17(11):1475. https://doi.org/10.3390/pharmaceutics17111475
Chicago/Turabian StyleLazareva, Polina I., Victor A. Stupin, Kirill A. Lazarev, Petr F. Litvitskiy, Natalia E. Manturova, and Ekaterina V. Silina. 2025. "Biodistribution and Toxicological Impact Assessment of Cerium Dioxide Nanoparticles in Murine Models: A Systematic Review of In Vivo and Ex Vivo Studies" Pharmaceutics 17, no. 11: 1475. https://doi.org/10.3390/pharmaceutics17111475
APA StyleLazareva, P. I., Stupin, V. A., Lazarev, K. A., Litvitskiy, P. F., Manturova, N. E., & Silina, E. V. (2025). Biodistribution and Toxicological Impact Assessment of Cerium Dioxide Nanoparticles in Murine Models: A Systematic Review of In Vivo and Ex Vivo Studies. Pharmaceutics, 17(11), 1475. https://doi.org/10.3390/pharmaceutics17111475

