Clinical Efficacy and Pharmacokinetics of Antivenom Viperfav® in Vipera ammodytes ammodytes Envenomation
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Antivenom Therapy
2.3. Blood Samples
2.4. Reagents and Chemicals
2.5. Quantification of Vaa Venom in Sera Samples
2.6. Quantification of Atxs in Sera Samples
2.7. Quantification of Antivenom in Sera Samples
2.8. Pharmacokinetic Analysis
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Atx | ammodytoxin |
| AUC∞ | area under the serum concentration-time curve from time zero to infinity |
| AUC0–t | area under the serum concentration curve from time zero to t |
| ED | Emergency Department |
| CL | apparent total body clearance of the drug from serum |
| CI | confidence interval |
| cmax | maximum (peak) serum drug concentration |
| INR | international normalized ratio |
| IQR | interquartile range |
| MRT | mean residence time |
| OR | Odds ratios |
| t1/2 | elimination half-life |
| tmax | time to reach maximum (peak) serum concentration following drug administration |
| Vaa | Vipera ammodytes ammodytes |
| Vz | apparent volume of distribution during terminal phase |
References
- Chippaux, J.P. Epidemiology of snakebites in Europe: A systematic review of the literature. Toxicon 2012, 59, 86–99. [Google Scholar] [CrossRef]
- Pepin-Covatta, S.; Lutsch, C.; Lang, J.; Scherrmann, J.M. Preclinical assessment of immunoreactivity of a new purified equine F(ab’)2 against European viper venom. J. Pharm. Sci. 1998, 87, 221–225. [Google Scholar] [CrossRef]
- Kurtović, T.; Lang Balija, M.; Brvar, M.; Dobaja Borak, M.; Mateljak Lukačević, S.; Halassy, B. Comparison of preclinical properties of several available antivenoms in the search for effective treatment of Vipera ammodytes and Vipera berus envenoming. Toxins 2021, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Boels, D.; Hamel, J.F.; Le Roux, G.; Labadie, M.; Paret, N.; Delcourt, N.; Langrand, J.; Puskarczyk, E.; Nisse, P.; Sinno-Tellier, S.; et al. Snake bites by European vipers in mainland France in 2017–2018: Comparison of two antivenoms Viperfav® and Viperatab®. Clin. Toxicol. 2020, 58, 1050–1057. [Google Scholar] [CrossRef]
- Lian, N.S.; Pungerčar, J.; Križaj, I.; Štrukelj, B.; Gubenšek, F. Expression of fully active ammodytoxin A, a potent presynaptically neuro-toxic phospholipase A2, in Escherichia coli. FEBS Lett. 1993, 334, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Audebert, F.; Sorkine, M.; Robbe-Vincent, A.; Bon, C. Viper bites in France: Clinical and biological evaluation; kinetics of envenomations. Hum. Exp. Toxicol. 1994, 13, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Karlson-Stiber, C.; Persson, H.; Heath, A.; Smith, D.; al-Abdulla, I.H.; Sjöström, L. First clinical experiences with specific sheep Fab fragments in snake bite. Report of a multicentre study of Vipera berus envenoming. J. Intern. Med. 1997, 241, 53–58. [Google Scholar] [CrossRef]
- Jollivet, V.; Hamel, J.F.; de Haro, L.; Labadie, M.; Sapori, J.M.; Cordier, L.; Villa, A.; Nisse, P.; Puskarczyk, E.; Berthelon, L.; et al. European viper envenomation recorded by French poison control centers: A clinical assessment and management study. Toxicon 2015, 108, 97–103. [Google Scholar] [CrossRef]
- Stone, S.F.; Isbister, G.K.; Shahmy, S.; Mohamed, F.; Abeysinghe, C.; Karunathilake, H.; Ariaratnam, A.; Jacoby-Alner, T.E.; Cotterell, C.L.; Brown, S.G. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Neglected Trop. Dis. 2013, 7, e2326. [Google Scholar] [CrossRef]
- Resiere, D.; Mehdaoui, H.; Neviere, R. Inflammation and Oxidative Stress in Snakebite Envenomation: A Brief De-scriptive Review and Clinical Implications. Toxins 2022, 14, 802. [Google Scholar] [CrossRef]
- Gamulin, E.; Mateljak Lukačević, S.; Lang Balija, M.; Smajlović, A.; Vnuk, D.; Gulan Harcet, J.; Tomičić, M.; Hećimović, A.; Halassy, B.; Kurtović, T. Pharmacokinetics of snake antivenom following intravenous and intramuscular administration in envenomed large animal model. Pharmaceutics 2025, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Guiavarch, M.; Médus, M.; Tichadou, L.; Glaizal, M.; de Haro, L. Efficacité variable de l’antivenin Viperfav® pour traiter les envenimations vipérines avec neurotoxicité [Uneven efficacy of Viperfav® antivenom for the treatment of neurotoxic viper envenomations]. Presse Med. 2011, 40, 654–656. [Google Scholar] [CrossRef]
- Karlson-Stiber, C.; Salmonson, H.; Persson, H. Antivenom treatment in Vipera berus bites—Repeated administration in 66 cases treated during the period 1995–2008. Clin. Toxicol. 2009, 47, 473. [Google Scholar]
- Boels, D.; Hamel, J.F.; Bretaudeau Deguigne, M.; Harry, P. European viper envenomings: Assessment of Viperfav™ and other symptomatic treatments. Clin. Toxicol. 2012, 50, 189–196. [Google Scholar] [CrossRef]
- Isbister, G.K.; Maduwage, K.; Saiao, A.; Buckley, N.A.; Jayamanne, S.F.; Seyed, S.; Mohamed, F.; Chathuranga, U.; Mendes, A.; Abeysinghe, C.; et al. Population pharmacokinetics of an Indian F(ab’)2 snake antivenom in patients with Russell’s viper (Daboia russelii) bites. PLoS Negl. Trop. Dis. 2015, 9, e0003873. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Silamut, K.; White, N.J.; Karbwang, J.; Looareesuwan, S.; Phillips, R.E.; Warrell, D.A. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am. J. Trop. Med. Hyg. 1990, 42, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.P.; Habib, A.G.; Onayade, A.A.; Yakubu, A.; Smith, D.C.; Nasidi, A.; Daudu, I.J.; Warrell, D.A.; Theakston, R.D. First clinical experiences with a new ovine Fab Echis ocellatus snake bite antivenom in Nigeria: Randomized comparative trial with Institute Pasteur Serum (Ipser) Africa antivenom. Am. J. Trop. Med. Hyg. 1997, 56, 291–300. [Google Scholar] [CrossRef]
- Than, T.; Thein, K.; Thwin, M.M. Plasma clearance time of Russell’s viper (Vipera russelli) antivenom in human snake bite victims. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 262–263. [Google Scholar] [CrossRef]
- de Haro, L. Management of snakebites in France. Toxicon 2012, 60, 712–718. [Google Scholar] [CrossRef]
- de Haro, L.; Glaizal, M.; Tichadou, L.; Blanc-Brisset, I.; Hayek-Lanthois, M. Asp Viper (Vipera aspis) envenomation: Experience of the Marseille Poison Centre from 1996 to 2008. Toxins 2009, 1, 100–112. [Google Scholar] [CrossRef]
- Kurtović, T.; Brvar, M.; Grenc, D.; Lang Balija, M.; Križaj, I.; Halassy, B. A Single dose of Viperfav™ may be inadequate for Vipera ammodytes snake bite: A case report and pharmacokinetic evaluation. Toxins 2016, 8, 244. [Google Scholar] [CrossRef]
- Kurtović, T.; Karabuva, S.; Grenc, D.; Dobaja Borak, M.; Križaj, I.; Lukšić, B.; Halassy, B.; Brvar, M. Intravenous Vipera berus venom-specific Fab Fragments and intramuscular Vipera ammodytes venom-specific F(ab’)2 fragments in Vipera ammodytes-envenomed patients. Toxins 2021, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Thummel, K.E.; Lin, Y.S. Sources of interindividual variability. Methods Mol. Biol. 2014, 1113, 363–415. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; León, G.; Lomonte, B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin. Pharmacokinet. 2003, 42, 721–741. [Google Scholar] [CrossRef]
- Chippaux, J.P.; Goyffon, M. Venoms, antivenoms and immunotherapy. Toxicon 1998, 36, 823–846. [Google Scholar] [CrossRef] [PubMed]
- Rucavado, A.; Escalante, T.; Camacho, E.; Gutiérrez, J.M.; Fox, J.W. Systemic vascular leakage induced in mice by Russell’s viper venom from Pakistan. Sci. Rep. 2018, 8, 16088. [Google Scholar] [CrossRef]
- Udayabhaskaran, V.; Arun Thomas, E.T.; Shaji, B. Capillary Leak Syndrome Following Snakebite Envenomation. Indian J. Crit. Care Med. 2017, 21, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Y.; Liao, L.; Tan, H.; Li, Y.; Li, Z.; Zhou, B.; Bao, M.; He, B. Pharmacokinetics effects of chuanxiong rhizoma on warfarin in pseudo germ-free rats. Front. Pharmacol. 2023, 13, 1022567. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Y.; Wang, Y.; Lv, H.; Xie, H.; Yang, G.; Guo, C.; Tang, J.; Tang, T. The Effects of Warfarin on the Pharmacokinetics of Senkyunolide I in a Rat Model of Biliary Drainage After Administration of Chuanxiong. Front. Pharmacol. 2018, 9, 1461. [Google Scholar] [CrossRef]
- Lou, Y.; Song, F.; Cheng, M.; Hu, Y.; Chai, Y.; Hu, Q.; Wang, Q.; Zhou, H.; Bao, M.; Gu, J.; et al. Effects of the CYP3A inhibi-tors, voriconazole, itraconazole, and fluconazole on the pharmacokinetics of osimertinib in rats. PeerJ 2023, 11, e15844. [Google Scholar] [CrossRef] [PubMed]
| Age (median, IQR) (year) | 32 (20–69) |
| Gender (male) | 14 |
| Weight (median, IQR) (kg) | 81 (70–90) |
| Comorbidities | 6/21 |
| Bite location | |
| arm | 20/21 |
| leg | 1/21 |
| Time from bite to admission at the ED (h) | 2.5 (2.0–3.5) |
| Vaa Envenomed Patients’ Characteristics on Admission Before Antivenom Application (n = 21) | The Most Severe Symptoms and Peak Laboratory Results During Vaa Envenomation and Antivenom Therapy (n = 21) | OR (95% CI) | p | |
|---|---|---|---|---|
| Time from bite to venom concentration measurement (h) | 3.3 (2.1–4.6) | 3.5 (2.4–7.0) | 0.07 | |
| Venom concentration (ng/mL) | 35.7 (12.4–56.4) | 37.5 (13.9–56.7) | 0.07 | |
| Atxs concentration (ng/mL) | 1.2 (0.8–6.1) | 2.5 (0.8–8.3) | 0.32 | |
| Local pain | 21/21 | 21/21 | 1 (0.01–52.7) | 1.00 |
| Local oedema | 21/21 | 21/21 | 1 (0.01–53.1) | 1.00 |
| Local lymphadenitis | 0/21 | 12/21 | 56.6 (3.0–1057.6) | 0.01 |
| Oedema spread to trunk | 0/21 | 5/21 | 14.3 (0.7–278.1) | 0.06 |
| Ecchymosis | 6/21 | 11/21 | 2.8 (0.8–9.9) | 0.06 |
| Nausea | 11/21 | 11/21 | 1 (0.3–3.6) | 1.00 |
| Vomiting | 7/21 | 7/21 | 1 (0.3–3.6) | 1.00 |
| Diarrhea | 6/21 | 6/21 | 1 (0.3–3.8) | 1.00 |
| Abdominal pain | 4/21 | 4/21 | 1 (0.2–4.7) | 1.00 |
| Tachycardia | 4/21 | 4/21 | 1 (0.2–4.7) | 1.00 |
| Hypotension | 7/21 | 8/21 | 1.3 (0.3–5.0) | 1.00 |
| Shock | 0/21 | 0/21 | 1 (0.02–52.7 | 1.00 |
| Somnolence | 2/21 | 2/21 | 1 (0.1–7.8) | 1.00 |
| Dizziness | 6/21 | 6/21 | 1 (0.3–3.8) | 1.00 |
| Syncope | 1/21 | 1/21 | 1 (0.1–17.1) | 1.00 |
| Cranial nerve palsies | 2/21 | 2/21 | 1 (0.1–7.8) | 1.00 |
| Acute respiratory failure | 1/21 | 1/21 | 1 (0.1–17.1) | 1.00 |
| Acute myocardial injury | 0/21 | 0/21 | 1 (0.02–52.7) | 1.00 |
| Acute renal failure | 0/21 | 0/21 | 1 (0.02–52.7) | 1.00 |
| Rhabdomyolysis | 3/21 | 3/21 | 1 (0.2–5.6) | 1.00 |
| Myoglobin (µg/L) | 57 (26–143) | 71 (40–148) | 0.01 | |
| Thrombocytopenia (<150 × 109/L) | 17/21 | 17/21 | 1 (0.2–4.6) | 1.00 |
| Platelets (×109) | 70 (17–129) | 70 (17–129) | 0.07 | |
| D-dimer (>500 µg/L) | 13/21 | 18/21 | 3.7 (0.8–16.6) | 0.13 |
| D-dimer (µg/L) | 1476 (421–2673) | 2001 (1773–9136) | 0.01 | |
| INR (>1.3) | 3/21 | 5/21 | 1.9 (0.4–9.1) | 0.50 |
| INR | 1.15 (1.05–1.16) | 1.16 (1.14–1.35) | 0.01 | |
| Fibrinogen (<1.8 g/L) | 0/21 | 1/21 | 3.1 (0.1–81.7) | 1.00 |
| Fibrinogen (g/L) | 2.67 (2.40–3.25) | 2.45 (2.20–3.15) | 0.01 | |
| Disseminated intravascular coagulation | 0/21 | 0/21 | 1 (0.02–52.7) | 1.00 |
| Procalcitonin (>0.24 µg/L) | 2/21 | 8/21 | 5.8 (1.1–32.1) | 0.13 |
| Prokalcitonin (µg/L) | 0.03 (0.02–0.08) | 0.39 (0.03–1.52) | 0.04 | |
| Leukocytosis (>11 × 109/L) | 12/21 | 17/21 | 3.2 (0.8–12.8) | 0.06 |
| Leucocytes (109/L) | 12.5 (8.4–15.2) | 14.7 (12.1–18.4) | 0.01 |
| Viperfav | |
| Time from bite to the first dose (median, IQR) (h) | 4.0 (3.4–5.6) |
| Time from admission at the ED to the first dose (median, IQR) (h) | 1.3 (0.4–2.3) |
| Adverse reaction to Viperfav | |
| Bradycardia | 1/21 |
| Hypotension | 1/21 |
| Anaphylactic reaction | 0/21 |
| Serum sickness | 0/21 |
| Other therapy | |
| Corticosteroids | 2/21 |
| Antihistamines | 2/21 |
| Analgesics | 12/21 |
| Antiemetics | 12/21 |
| Antibiotics | 0/21 |
| Low molecular weight heparin | 0/21 |
| Platelet transfusion | 0/21 |
| Red blood cell transfusion | 0/21 |
| Oxygen | 0/21 |
| Mechanical ventilation | 0/21 |
| Noradrenaline infusion | 0/21 |
| Outcome | |
| Length of hospital stay (median, IQR) (day) | 2.5 (2–3.0) |
| Death | 0/21 |
| Pharmacokinetic parameters | Median (IQR) |
|---|---|
| tmax (h) | 2.0 (1.2–3.7) |
| cmax (μg/mL) | 196.4 (135.6–268.2) |
| t1/2 (h) | 49.5 (26.1–68.0) |
| AUC∞ ((μg h)/mL) | 9463.9 (6508.3–15,835.7) |
| AUC0–t ((μg/mL)∙h) | 5002.4 (4302.6–6854.4) |
| Vz (mL/kg) | 36.1 (24.3–41.9) |
| MRT (h) | 71.5 (38.5–105.3) |
| CL ((mL/h)/kg) | 0.5 (0.4–0.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurtović, T.; Dobaja Borak, M.; Grenc, D.; Leonardi, A.; Križaj, I.; Lukšić, B.; Halassy, B.; Brvar, M. Clinical Efficacy and Pharmacokinetics of Antivenom Viperfav® in Vipera ammodytes ammodytes Envenomation. Pharmaceutics 2025, 17, 1431. https://doi.org/10.3390/pharmaceutics17111431
Kurtović T, Dobaja Borak M, Grenc D, Leonardi A, Križaj I, Lukšić B, Halassy B, Brvar M. Clinical Efficacy and Pharmacokinetics of Antivenom Viperfav® in Vipera ammodytes ammodytes Envenomation. Pharmaceutics. 2025; 17(11):1431. https://doi.org/10.3390/pharmaceutics17111431
Chicago/Turabian StyleKurtović, Tihana, Mojca Dobaja Borak, Damjan Grenc, Adrijana Leonardi, Igor Križaj, Boris Lukšić, Beata Halassy, and Miran Brvar. 2025. "Clinical Efficacy and Pharmacokinetics of Antivenom Viperfav® in Vipera ammodytes ammodytes Envenomation" Pharmaceutics 17, no. 11: 1431. https://doi.org/10.3390/pharmaceutics17111431
APA StyleKurtović, T., Dobaja Borak, M., Grenc, D., Leonardi, A., Križaj, I., Lukšić, B., Halassy, B., & Brvar, M. (2025). Clinical Efficacy and Pharmacokinetics of Antivenom Viperfav® in Vipera ammodytes ammodytes Envenomation. Pharmaceutics, 17(11), 1431. https://doi.org/10.3390/pharmaceutics17111431

