Sustained-Release Intra-Articular Drug Delivery: PLGA Systems in Clinical Context and Evolving Strategies
Abstract
1. Introduction
2. PLGA Fundamentals for IA Delivery
2.1. Anatomical and Pharmacokinetic Considerations
2.2. Polymer Chemistry and Degradation
Polymer Parameter | Options/Examples | Effect on Degradation & Release |
---|---|---|
Lactide:Glycolide Ratio | e.g., 50:50, 65:35, 75:25, 85:15 | Higher lactide increases hydrophobicity and slows degradation; higher glycolide enhances hydration and accelerates release [29]. |
Molecular Weight (Mw) | Low (10–20 kDa), Medium (~50 kDa), High (>100 kDa) | Greater Mw provides stronger matrix integrity, leading to slower chain cleavage and prolonged release [31]. |
End-group Type | Acid-terminated vs. Ester-capped | Acid-terminated PLGA degrades faster via autocatalytic hydrolysis; ester-capped forms show more uniform erosion. |
Morphology/Porosity | Solid non-porous microspheres vs. porous structures | Porous particles allow faster water penetration and a higher initial burst; dense microspheres sustain diffusion-controlled release. |
Glass Transition (Tg) | e.g., 45 °C vs. 55 °C (adjusted by copolymer ratio and Mw) | Tg above body temp means polymer remains glassy in situ. Tg slightly above 37 °C is ideal for mechanical stability of depot. |
Formulation Additives | Stabilizers, plasticizers, pore-formers | Surfactants (e.g., PVA) or pore-formers increase initial burst, while plasticizers reduce Tg and accelerate diffusion. |
2.3. Drug Release Mechanisms
2.4. Size-Dependent Behavior: Microspheres Versus Nanoparticles
2.4.1. Clearance Pathways by Size
2.4.2. Tissue Penetration Barriers
2.4.3. Surface Charge Effects
2.4.4. Selection Criteria for Therapeutic Applications
- Microsphere systems (20–50 μm) are optimal for sustained drug delivery applications where prolonged joint residence is prioritized, as exemplified by Zilretta® [50]. These larger particles:
- Provide extended depot effect through size exclusion.
- Minimize systemic exposure through reduced clearance.
- Are suitable for anti-inflammatory drugs requiring sustained local concentrations.
- Nanoparticle systems (25–40 nm) are preferable when tissue penetration is required, offering the best compromise between penetration capability and retention time [51]. These smaller particles:
- Can access cartilage matrix for chondrocyte-targeted delivery.
- Enable deeper tissue penetration for regenerative applications.
- Allow for surface modifications to enhance cellular uptake.
2.5. Biocompatibility and Sterilization Considerations
3. Current Clinical Applications
3.1. Extended-Release Corticosteroids: Zilretta® as the Pioneer
3.2. Advanced PLGA Corticosteroid Formulations
3.3. NSAIDs and Anti-Inflammatory Drug Delivery Systems
3.4. Disease-Modifying and Regenerative Approaches
3.5. Alternative Non-PLGA Sustained-Release Platforms
3.5.1. TLC599: Multivesicular Liposome Technology
3.5.2. Cingal®: Triamcinolone-Modified Hyaluronic Acid Composite
3.5.3. SI-613 (Joyclu®): Drug-Polymer Conjugate Technology
3.5.4. Clinical Implications and Regulatory Status
4. Emerging Biologic Therapeutics
4.1. TNF-α Inhibitors and Advanced Immunomodulators
4.2. Interleukin-1 (IL-1) Pathway Modulation
4.3. Growth Factors and Regenerative Medicine Applications
4.4. Gene Therapy and Nucleic Acid Delivery
4.5. Formulation Challenges & Advanced Stabilization Strategies
4.5.1. Clinically Relevant Example: GLP-1 Microsphere Challenge
4.5.2. Advanced Stabilization Strategies
4.5.3. Incomplete Drug Release: A Persistent Challenge
5. Clinical Translation and Regulatory Considerations
5.1. Regulatory Framework and Combination Product Classification
5.2. Chemistry, Manufacturing, and Controls (CMC) Requirements
5.3. Clinical Trial Design and Regulatory Considerations
5.4. Safety Evaluation and Risk Assessment
6. Manufacturing Scale-Up and Quality Systems
6.1. Commercial Manufacturing Technologies and Scale-Up Challenges
6.2. PAT and Quality Control Systems
6.3. Quality by Design (QbD) Implementation and Regulatory Standards
6.4. Supply Chain Management and Commercial Considerations
7. Clinical Integration and Unresolved Issues in PLGA-Based IA Therapies
7.1. Repeat Administration and Safety
7.2. Clinical Injection Techniques and Considerations
7.3. Manufacturing-to-Practice Gap
7.4. Unresolved Challenges and Future Directions
8. Strategic Outlook and Future Development Pathways
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Osteoarthritis Collaborators. Global, Regional, and National Burden of Osteoarthritis, 1990–2020 and Projections to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, X.; Liu, S.; Wang, Q.; Wang, Y.; Hou, S.; Wang, J.; Zhang, Y. Global, Regional, and National Epidemiology of Rheumatoid Arthritis among People Aged 20–54 Years from 1990 to 2021. Sci. Rep. 2025, 15, 10736. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Chen, Q.; Jiang, T.; Zhang, Y.; Zhang, W.; Doherty, M.; Xie, J.; Liu, K.; Li, J.; Yang, T.; et al. Global Burden of Early-Onset Osteoarthritis, 1990–2019: Results from the Global Burden of Disease Study 2019. Ann. Rheum. Dis. 2024, 83, 915–925. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, Y.; Tao, Y.; Lin, W.; Wang, P. Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021, 13, 2166. [Google Scholar] [CrossRef]
- Si-Hyeong Park, S.; Li, B.; Kim, C. Efficacy of Intra-Articular Injections for the Treatment of Osteoarthritis: A Narrative Review. Osteoarthr. Cartil. Open 2025, 7, 100596. [Google Scholar] [CrossRef]
- Elgendy, H.A.; Makky, A.M.A.; Elakkad, Y.E.; Awad, H.H.; Hassab, M.A.E.; Younes, N.F. Atorvastatin Loaded Lecithin-Coated Zein Nanoparticles Based Thermogel for the Intra-Articular Management of Osteoarthritis: In-Silico, In-Vitro, and In-Vivo Studies. J. Pharm. Investig. 2024, 54, 497–518. [Google Scholar] [CrossRef]
- Rohanifar, M.; Johnston, B.B.; Davis, A.L.; Guang, Y.; Nommensen, K.; Fitzpatrick, J.A.J.; Pham, C.N.; Setton, L.A. Hydraulic Permeability and Compressive Properties of Porcine and Human Synovium. Biophys. J. 2022, 121, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Ong, M.T.Y.; Yung, P.S.H.; Tuan, R.S.; Jiang, Y. Role of Synovial Lymphatic Function in Osteoarthritis. Osteoarthr. Cartil. 2022, 30, 1186–1197. [Google Scholar] [CrossRef] [PubMed]
- DiDomenico, C.D.; Lintz, M.; Bonassar, L.J. Molecular Transport in Articular Cartilage—What Have We Learned from the Past 50 Years? Nat. Rev. Rheumatol. 2018, 14, 393–403. [Google Scholar] [CrossRef]
- Bruno, M.C.; Cristiano, M.C.; Celia, C.; d’Avanzo, N.; Mancuso, A.; Paolino, D.; Wolfram, J.; Fresta, M. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano 2022, 16, 19665–19690. [Google Scholar] [CrossRef]
- Evans, C.H.; Kraus, V.B.; Setton, L.A. Progress in Intra-Articular Therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22. [Google Scholar] [CrossRef]
- ELhabal, S.F.; El-Nabarawi, M.A.; Hassanin, S.O.; Hassan, F.E.; Abbas, S.S.; Gebril, S.M.; Albash, R. Transdermal Fluocinolone Acetonide Loaded Decorated Hyalurosomes Cellulose Acetate/Polycaprolactone Nanofibers Mitigated Freund’s Adjuvant-Induced Rheumatoid Arthritis in Rats. J. Pharm. Investig. 2025, 55, 113–132. [Google Scholar] [CrossRef]
- Zeng, C.; Lane, N.E.; Hunter, D.J.; Wei, J.; Choi, H.K.; McAlindon, T.E.; Li, H.; Lu, N.; Lei, G.; Zhang, Y. Intra-Articular Corticosteroids and the Risk of Knee Osteoarthritis Progression: Results from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2019, 27, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Ro, S.W.; Na, D.H. In Vitro–In Vivo Correlation of Microsphere Formulations: Recent Advances and Challenges. J. Pharm. Investig. 2024, 54, 37–49. [Google Scholar] [CrossRef]
- Mahar, R.; Chakraborty, A.; Nainwal, N.; Bahuguna, R.; Sajwan, M.; Jakhmola, V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023, 24, 39. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly (Lactic-Co-Glycolic Acid) and Progress of Poly (Lactic-Co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef]
- Simkin, P.A. The Human Knee: A Window on the Microvasculature. Tissue Barriers 2015, 3, e970465. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front. Vet. Sci. 2019, 6, 458280. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Pistiner, J.; Adjei, I.M.; Sharma, B. Nanoparticle Properties for Delivery to Cartilage: The Implications of Disease State, Synovial Fluid, and Off-Target Uptake. Mol. Pharm. 2019, 16, 469–479. [Google Scholar] [CrossRef]
- DeJulius, C.R.; Gulati, S.; Hasty, K.A.; Crofford, L.J.; Duvall, C.L. Recent Advances in Clinical Translation of Intra-Articular Osteoarthritis Drug Delivery Systems. Adv. Ther. 2021, 4, 2000088. [Google Scholar] [CrossRef]
- Pradal, J.; Maudens, P.; Gabay, C.; Seemayer, C.A.; Jordan, O.; Allémann, E. Effect of Particle Size on the Biodistribution of Nano- and Microparticles Following Intra-Articular Injection in Mice. Int. J. Pharm. 2016, 498, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shang, Y.; Wang, Y.; Wei, X. Transferrin Modified PEG–PLGA Nanoparticles: Highly Effective Notoginsenoside R1 Formulations for the Treatment of Ulcerative Colitis. J. Pharm. Investig. 2024, 54, 357–373. [Google Scholar] [CrossRef]
- Shockley, M.F.; Muliana, A.H. Modeling Temporal and Spatial Changes during Hydrolytic Degradation and Erosion in Biodegradable Polymers. Polym. Degrad. Stab. 2020, 180, 109298. [Google Scholar] [CrossRef]
- Sevim, K.; Pan, J. A Model for Hydrolytic Degradation and Erosion of Biodegradable Polymers. Acta Biomater. 2018, 66, 192–199. [Google Scholar] [CrossRef]
- Manna, S.; Donnell, A.M.; Kaval, N.; Al-Rjoub, M.F.; Augsburger, J.J.; Banerjee, R.K. Improved Design and Characterization of PLGA/PLA-Coated Chitosan Based Micro-Implants for Controlled Release of Hydrophilic Drugs. Int. J. Pharm. 2018, 547, 122–132. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent Advances in 3D-Printed Polylactide and Polycaprolactone-Based Biomaterials for Tissue Engineering Applications. Int. J. Biol. Macromol. 2022, 218, 930–968. [Google Scholar] [CrossRef]
- Arun, Y.; Ghosh, R.; Domb, A.J. Biodegradable Hydrophobic Injectable Polymers for Drug Delivery and Regenerative Medicine. Adv. Funct. Mater. 2021, 31, 2010284. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent Applications of PLGA in Drug Delivery Systems. Polymers 2024, 16, 2606. [Google Scholar] [CrossRef]
- Walker, J.; Albert, J.; Liang, D.; Sun, J.; Schutzman, R.; Kumar, R.; White, C.; Beck-Broichsitter, M.; Schwendeman, S.P. In Vitro Degradation and Erosion Behavior of Commercial PLGAs Used for Controlled Drug Delivery. Drug Deliv. Transl. Res. 2023, 13, 237–251. [Google Scholar] [CrossRef]
- Liu, G.; McEnnis, K. Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers 2022, 14, 993. [Google Scholar] [CrossRef]
- Ochi, M.; Wan, B.; Bao, Q.; Burgess, D.J. Influence of PLGA Molecular Weight Distribution on Leuprolide Release from Microspheres. Int. J. Pharm. 2021, 599, 120450. [Google Scholar] [CrossRef] [PubMed]
- Tamani, F.; Bassand, C.; Hamoudi, M.C.; Siepmann, F.; Siepmann, J. Mechanistic Explanation of the (up to) 3 Release Phases of PLGA Microparticles: Monolithic Dispersions Studied at Lower Temperatures. Int. J. Pharm. 2021, 596, 120220. [Google Scholar] [CrossRef]
- Rodrigues de Azevedo, C.; von Stosch, M.; Costa, M.S.; Ramos, A.M.; Cardoso, M.M.; Danhier, F.; Préat, V.; Oliveira, R. Modeling of the Burst Release from PLGA Micro-and Nanoparticles as Function of Physicochemical Parameters and Formulation Characteristics. Int. J. Pharm. 2017, 532, 229–240. [Google Scholar] [CrossRef]
- Gasmi, H.; Siepmann, F.; Hamoudi, M.C.; Danede, F.; Verin, J.; Willart, J.-F.; Siepmann, J. Towards a Better Understanding of the Different Release Phases from PLGA Microparticles: Dexamethasone-Loaded Systems. Int. J. Pharm. 2016, 514, 189–199. [Google Scholar] [CrossRef]
- Luk, A.; Murthy, N.S.; Wang, W.; Rojas, R.; Kohn, J. Study of Nanoscale Structures in Hydrated Biomaterials Using Small-Angle Neutron Scattering. Acta Biomater. 2012, 8, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Macha, I.J.; Ben-Nissan, B.; Vilchevskaya, E.N.; Morozova, A.S.; Abali, B.E.; Müller, W.H.; Rickert, W. Drug Delivery From Polymer-Based Nanopharmaceuticals—An Experimental Study Complemented by Simulations of Selected Diffusion Processes. Front. Bioeng. Biotechnol. 2019, 7, 37. [Google Scholar] [CrossRef]
- Cerea, M.; Maroni, A.; Palugan, L.; Bellini, M.; Foppoli, A.; Melocchi, A.; Zema, L.; Gazzaniga, A. Novel Hydrophilic Matrix System with Non-Uniform Drug Distribution for Zero-Order Release Kinetics. J. Control Release 2018, 287, 247–256. [Google Scholar] [CrossRef]
- Körber, M. PLGA Erosion: Solubility- or Diffusion-Controlled? Pharm. Res. 2010, 27, 2414–2420. [Google Scholar] [CrossRef]
- Herrero-Vanrell, R.; Bravo-Osuna, I.; Andrés-Guerrero, V.; Vicario-de-la-Torre, M.; Molina-Martínez, I.T. The Potential of Using Biodegradable Microspheres in Retinal Diseases and Other Intraocular Pathologies. Prog. Retin. Eye Res. 2014, 42, 27–43. [Google Scholar] [CrossRef]
- Brown, S.; Kumar, S.; Sharma, B. Intra-Articular Targeting of Nanomaterials for the Treatment of Osteoarthritis. Acta Biomater. 2019, 93, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhang, L.; Miao, Y.-B.; Jiang, L.; Zou, L.; Wang, Q.; Shi, Y. In Situ Size Amplification Strategy Reduces Lymphatic Clearance for Enhanced Arthritis Therapy. J. Nanobiotechnology 2024, 22, 755. [Google Scholar] [CrossRef]
- Li, X.; Dai, B.; Guo, J.; Zheng, L.; Guo, Q.; Peng, J.; Xu, J.; Qin, L. Nanoparticle–Cartilage Interaction: Pathology-Based Intra-Articular Drug Delivery for Osteoarthritis Therapy. Nano-Micro Lett. 2021, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Grodzinsky, A.J.; Ortiz, C. Nanomechanics of the Cartilage Extracellular Matrix. Annu. Rev. Mater. Res. 2011, 41, 133–168. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Alcaide-Ruggiero, L.; Cugat, R.; Domínguez, J.M. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int. J. Mol. Sci. 2023, 24, 10824. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Kumar, S.; Adjei, I.M.; Brown, S.B.; Liseth, O.; Sharma, B. Manganese Dioxide Nanoparticles Protect Cartilage from Inflammation-Induced Oxidative Stress. Biomaterials 2019, 224, 119467. [Google Scholar] [CrossRef]
- Xu, X.-L.; Xue, Y.; Ding, J.-Y.; Zhu, Z.-H.; Wu, X.-C.; Song, Y.-J.; Cao, Y.-L.; Tang, L.-G.; Ding, D.-F.; Xu, J.-G. Nanodevices for Deep Cartilage Penetration. Acta Biomater. 2022, 154, 23–48. [Google Scholar] [CrossRef]
- Kim, S.R.; Ho, M.J.; Lee, E.; Lee, J.W.; Choi, Y.W.; Kang, M.J. Cationic PLGA/Eudragit RL Nanoparticles for Increasing Retention Time in Synovial Cavity after Intra-Articular Injection in Knee Joint. IJN 2015, 10, 5263–5271. [Google Scholar] [CrossRef] [PubMed]
- Paik, J.; Duggan, S.T.; Keam, S.J. Triamcinolone Acetonide Extended-Release: A Review in Osteoarthritis Pain of the Knee. Drugs 2019, 79, 455–462. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, Y.; An, Y.; Kim, B.Y.S. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. ACS Nano 2015, 9, 8689–8696. [Google Scholar] [CrossRef]
- Kim, K. Hybrid Systems of Gels and Nanoparticles for Cancer Therapy: Advances in Multifunctional Therapeutic Platforms. Gels 2025, 11, 170. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Li, Y.; Liu, T.; Ding, W.; He, F.; Xu, Y. Transforming Osteoarthritis Treatment: Embracing Hydrogel Microspheres. ACS Mater. Lett. 2024, 6, 3862–3882. [Google Scholar] [CrossRef]
- Kazazi-Hyseni, F.; Zandstra, J.; Popa, E.R.; Goldschmeding, R.; Lathuile, A.A.R.; Veldhuis, G.J.; Van Nostrum, C.F.; Hennink, W.E.; Kok, R.J. Biocompatibility of Poly(d,l-Lactic-Co-Hydroxymethyl Glycolic Acid) Microspheres after Subcutaneous and Subcapsular Renal Injection. Int. J. Pharm. 2015, 482, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Godoy, J.; Poblete, M.G.; Ramos, R.G.; Gómez-Gaete, C. Evaluation of the Effects of Gamma Radiation Sterilization on Rhein-Loaded Biodegradable Microparticles for the Treatment of Osteoarthritis. J. Pharm. Sci. 2023, 112, 837–843. [Google Scholar] [CrossRef]
- Lih, E.; Kum, C.H.; Park, W.; Chun, S.Y.; Cho, Y.; Joung, Y.K.; Park, K.-S.; Hong, Y.J.; Ahn, D.J.; Kim, B.-S.; et al. Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(Lactide-Co-Glycolide) Implants. ACS Nano 2018, 12, 6917–6925. [Google Scholar] [CrossRef]
- Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J.M.; Nienhaus, G.U.; Parak, W.J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano 2015, 9, 6996–7008. [Google Scholar] [CrossRef] [PubMed]
- Kotla, N.G.; Langlois, J.-B.; Fisch, A.; Kramer, I.; Halleux, C. Surface Modified Cationic PLGA Microparticles as Long-Acting Injectable Carriers for Intra-Articular Small Molecule Drug Delivery. Eur. J. Pharm. Biopharm. 2023, 193, 96–104. [Google Scholar] [CrossRef]
- Malone, A.; Kowalski, M.M.; Helliwell, J.; Lynggaard Boll, S.; Rovsing, H.; Moriat, K.; Castillo Mondragón, A.; Li, Y.; Prener Miller, C.; Reinstrup Bihlet, A.; et al. Efficacy and Safety of a Diffusion-Based Extended-Release Fluticasone Propionate Intra-Articular Injection (EP-104IAR) in Knee Osteoarthritis (SPRINGBOARD): A 24-Week, Multicentre, Randomised, Double-Blind, Vehicle-Controlled, Phase 2 Trial. Lancet Rheumatol. 2024, 6, e860–e870. [Google Scholar] [CrossRef]
- Malone, A.; Price, J.; Price, N.; Peck, V.; Getgood, A.; Petrella, R.; Helliwell, J. Safety and Pharmacokinetics of EP-104IAR (Sustained-Release Fluticasone Propionate) in Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Phase 1 Trial. Osteoarthr. Cartil. Open 2021, 3, 100213. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Xiao, S.; Sun, R.; Bao, S.; Yao, Q.; Chen, R. Biomaterial-Engineered Intra-Articular Drug Delivery Systems for Osteoarthritis Therapy. Drug Deliv. 2019, 26, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.; Sandker, M.; Müller, B.; Meyboom, R.; van Midwoud, P.; Bruin, P.; Redout, E.M.; Versluijs-Helder, M.; van der Lest, C.H.A.; Buwalda, S.J.; et al. Release Behavior and Intra-Articular Biocompatibility of Celecoxib-Loaded Acetyl-Capped PCLA-PEG-PCLA Thermogels. Biomaterials 2014, 35, 7919–7928. [Google Scholar] [CrossRef]
- Consalvi, S.; Biava, M.; Poce, G. COX Inhibitors: A Patent Review (2011–2014). Expert Opin. Ther. Pat. 2015, 25, 1357–1371. [Google Scholar] [CrossRef]
- Badri, W.; Miladi, K.; Nazari, Q.A.; Greige-Gerges, H.; Fessi, H.; Elaissari, A. Encapsulation of NSAIDs for Inflammation Management: Overview, Progress, Challenges and Prospects. Int. J. Pharm. 2016, 515, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, T.J.; Fudin, J.; Jahn, H.L.; Kubotera, N.; Rennick, A.L.; Rhorer, M. What’s New in NSAID Pharmacotherapy: Oral Agents to Injectables. Pain Med. 2013, 14, S11–S17. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Que, Y.; Li, S.; Chen, Y.; Xiao, L.; Wang, H.; Guo, Z.; Wang, S.; Hu, Y. Enhanced Anti-Rheumatic Efficacy of PLGA-Based Methotrexate-Loaded Implants in Adjuvant-Induced Arthritis Rat Model. J. Drug Deliv. Sci. Technol. 2023, 88, 104939. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.-M.; Park, K.-H.; Mun, C.H.; Park, Y.-B.; Yoo, K.-H. Drug-Loaded Gold/Iron/Gold Plasmonic Nanoparticles for Magnetic Targeted Chemo-Photothermal Treatment of Rheumatoid Arthritis. Biomaterials 2015, 61, 95–102. [Google Scholar] [CrossRef]
- Alavi, S.E.; Alavi, S.F.; Koohi, M.; Raza, A.; Ebrahimi Shahmabadi, H. Nanoparticle-Integrated Metal–Organic Frameworks: A Revolution in next-Generation Drug Delivery Systems. J. Pharm. Investig. 2024, 54, 751–783. [Google Scholar] [CrossRef]
- Stefani, R.M.; Lee, A.J.; Tan, A.R.; Halder, S.S.; Hu, Y.; Guo, X.E.; Stoker, A.M.; Ateshian, G.A.; Marra, K.G.; Cook, J.L.; et al. Sustained Low-Dose Dexamethasone Delivery via a PLGA Microsphere-Embedded Agarose Implant for Enhanced Osteochondral Repair. Acta Biomater. 2020, 102, 326–340. [Google Scholar] [CrossRef]
- Shah, S.S.; Mithoefer, K. Current Applications of Growth Factors for Knee Cartilage Repair and Osteoarthritis Treatment. Curr. Rev. Musculoskelet. Med. 2020, 13, 641–650. [Google Scholar] [CrossRef]
- Chaurasiya, A.; Gorajiya, A.; Panchal, K.; Katke, S.; Singh, A.K. A Review on Multivesicular Liposomes for Pharmaceutical Applications: Preparation, Characterization, and Translational Challenges. Drug Deliv. Transl. Res. 2022, 12, 1569–1587. [Google Scholar] [CrossRef]
- Ryu, S.; Park, S.; Lee, H.Y.; Lee, H.; Cho, C.-W.; Baek, J.-S. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. Int. J. Mol. Sci. 2021, 22, 2792. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, K.; Pani, A.; Chowdhury, T.; Kundu, A.; Thomas, S. Multi-Vesicular Liposome and Its Applications: A Novel Chemically Modified Approach for Drug Delivery Application. Mini Rev. Med. Chem. 2024, 24, 26–38. Available online: https://www.eurekaselect.com/article/132507 (accessed on 11 October 2025). [CrossRef] [PubMed]
- Angst, M.S.; Drover, D.R. Pharmacology of Drugs Formulated with DepoFoamTM. Clin. Pharmacokinet. 2006, 45, 1153–1176. [Google Scholar] [CrossRef]
- Wu, T.-J.; Yu, W.-N.; Wu, M.-J.; Chang, P.-C.; Shih, S.-F. THU0465 Pharmacokinetics and toxicokinetics studies of a sustained release liposomal formulation of dexamethasone sodium phosphate (TLC599) following intra-articular injection in dogs. Ann. Rheum. Dis. 2019, 78, 523. [Google Scholar] [CrossRef]
- Li, J.; Xia, Z.; Yu, M.; Schwendeman, A. Challenges in the Development of Long Acting Injectable Multivesicular Liposomes (DepoFoam® Technology). Eur. J. Pharm. Biopharm. 2024, 205, 114577. [Google Scholar] [CrossRef] [PubMed]
- Hangody, L.; Szody, R.; Lukasik, P.; Zgadzaj, W.; Lénárt, E.; Dokoupilova, E.; Bichovsk, D.; Berta, A.; Vasarhelyi, G.; Ficzere, A.; et al. Intraarticular Injection of a Cross-Linked Sodium Hyaluronate Combined with Triamcinolone Hexacetonide (Cingal) to Provide Symptomatic Relief of Osteoarthritis of the Knee: A Randomized, Double-Blind, Placebo-Controlled Multicenter Clinical Trial. CARTILAGE 2018, 9, 276–283. [Google Scholar] [CrossRef]
- Krishna, K.V.; Benito, A.; Alkorta, J.; Gleyzes, C.; Dupin, D.; Loinaz, I.; Pandit, A. Crossing the Hurdles of Translation—A Robust Methodology for Synthesis, Characterization and GMP Production of Cross-Linked High Molecular Weight Hyaluronic Acid Particles (cHA). Nano Sel. 2020, 1, 353–371. [Google Scholar] [CrossRef]
- Duffin, R.; O’Connor, R.A.; Crittenden, S.; Forster, T.; Yu, C.; Zheng, X.; Smyth, D.; Robb, C.T.; Rossi, F.; Skouras, C.; et al. Prostaglandin E2 Constrains Systemic Inflammation through an Innate Lymphoid Cell–IL-22 Axis. Science 2016, 351, 1333–1338. [Google Scholar] [CrossRef]
- Yoshioka, K.; Yasuda, Y.; Kisukeda, T.; Nodera, R.; Tanaka, Y.; Miyamoto, K. Pharmacological Effects of Novel Cross-Linked Hyaluronate, Gel-200, in Experimental Animal Models of Osteoarthritis and Human Cell Lines. Osteoarthr. Cartil. 2014, 22, 879–887. [Google Scholar] [CrossRef]
- Andrade del Olmo, J.; Pérez-Álvarez, L.; Sáez Martínez, V.; Benito Cid, S.; Pérez González, R.; Vilas-Vilela, J.L.; Alonso, J.M. Drug Delivery from Hyaluronic Acid–BDDE Injectable Hydrogels for Antibacterial and Anti-Inflammatory Applications. Gels 2022, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.; Murphy, E.J.; Montgomery, T.R.; Major, I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers 2022, 14, 3442. [Google Scholar] [CrossRef]
- Takada, S.; Nodera, R.; Yoshioka, K. Effects of Diclofenac Etalhyaluronate (SI-613/ONO-5704) on Cartilage Degeneration in Arthritic Rats and Inflammatory Cytokine-Stimulated Human Chondrocytes. CARTILAGE 2025, 16, 388–398. [Google Scholar] [CrossRef]
- Mertz, N.; Larsen, S.W.; Kristensen, J.; Østergaard, J.; Larsen, C. Long-Acting Diclofenac Ester Prodrugs for Joint Injection: Kinetics, Mechanism of Degradation, and In Vitro Release From Prodrug Suspension. J. Pharm. Sci. 2016, 105, 3079–3087. [Google Scholar] [CrossRef]
- Kisukeda, T.; Onaya, J.; Yoshioka, K. Effect of Diclofenac Etalhyaluronate (SI-613) on the Production of High Molecular Weight Sodium Hyaluronate in Human Synoviocytes. BMC Musculoskelet. Disord. 2019, 20, 201. [Google Scholar] [CrossRef]
- Vigetti, D.; Karousou, E.; Viola, M.; Deleonibus, S.; De Luca, G.; Passi, A. Hyaluronan: Biosynthesis and Signaling. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2014, 1840, 2452–2459. [Google Scholar] [CrossRef] [PubMed]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Maudens, P.; Jordan, O.; Allémann, E. Recent Advances in Intra-Articular Drug Delivery Systems for Osteoarthritis Therapy. Drug Discov. Today 2018, 23, 1761–1775. [Google Scholar] [CrossRef]
- Davis, J.S.; Ferreira, D.; Paige, E.; Gedye, C.; Boyle, M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin. Microbiol. Rev. 2020, 33, e00035-19. [Google Scholar] [CrossRef]
- Lamela-Gómez, I.; Gonçalves, L.M.; Almeida, A.J.; Luzardo-Álvarez, A. Infliximab Microencapsulation: An Innovative Approach for Intra-Articular Administration of Biologics in the Management of Rheumatoid Arthritis—In Vitro Evaluation. Drug Deliv. Transl. Res. 2023, 13, 3030–3058. [Google Scholar] [CrossRef] [PubMed]
- Komano, Y.; Yagi, N.; Onoue, I.; Kaneko, K.; Miyasaka, N.; Nanki, T. Arthritic Joint-Targeting Small Interfering RNA-Encapsulated Liposome: Implication for Treatment Strategy for Rheumatoid Arthritis. J. Pharmacol. Exp. Ther. 2012, 340, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Gorth, D.J.; Mauck, R.L.; Chiaro, J.A.; Mohanraj, B.; Hebela, N.M.; Dodge, G.R.; Elliott, D.M.; Smith, L.J. IL-1ra Delivered from Poly(Lactic-Co-Glycolic Acid) Microspheres Attenuates IL-1β-Mediated Degradation of Nucleus Pulposus In Vitro. Arthritis Res. Ther. 2012, 14, R179. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Boyer, T.L.; Akhtar, S.; He, T.; Zhang, C.; Vedadghavami, A.; Bajpayee, A.G. Sustained Intra-Cartilage Delivery of Interleukin-1 Receptor Antagonist Using Cationic Peptide and Protein-Based Carriers. Osteoarthr. Cartil. 2023, 31, 780–792. [Google Scholar] [CrossRef]
- Institut National de la Santé Et de la Recherche Médicale, France. ANAkinra in Severe Juvenile Idiopathic Arthritis of Systemic Onset (ANAJIS); Institut National de la Santé Et de la Recherche Médicale, France: Paris, France, 2010. Available online: www.clinicaltrials.gov (accessed on 14 October 2025).
- Chen, L.; Liu, J.; Guan, M.; Zhou, T.; Duan, X.; Xiang, Z. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering. IJN 2020, 15, 6097–6111. [Google Scholar] [CrossRef]
- Jaklenec, A.; Hinckfuss, A.; Bilgen, B.; Ciombor, D.M.; Aaron, R.; Mathiowitz, E. Sequential Release of Bioactive IGF-I and TGF-Β1 from PLGA Microsphere-Based Scaffolds. Biomaterials 2008, 29, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Park, H.; Shin, N.; Shin, J.; Gwon, D.H.; Kwon, H.H.; Yin, Y.; Hwang, J.-A.; Hong, J.; Heo, J.Y.; et al. p66shc siRNA Nanoparticles Ameliorate Chondrocytic Mitochondrial Dysfunction in Osteoarthritis. IJN 2020, 15, 2379–2390. [Google Scholar] [CrossRef]
- Présumey, J.; Salzano, G.; Courties, G.; Shires, M.; Ponchel, F.; Jorgensen, C.; Apparailly, F.; De Rosa, G. PLGA Microspheres Encapsulating siRNA Anti-TNFalpha: Efficient RNAi-Mediated Treatment of Arthritic Joints. Eur. J. Pharm. Biopharm. 2012, 82, 457–464. [Google Scholar] [CrossRef]
- Gorth, D.J.; Martin, J.T.; Dodge, G.R.; Elliott, D.M.; Malhotra, N.R.; Mauck, R.L.; Smith, L.J. In Vivo Retention and Bioactivity of IL-1ra Microspheres in the Rat Intervertebral Disc: A Preliminary Investigation. J. Exp. Orthop. 2014, 1, 15. [Google Scholar] [CrossRef]
- Fathi-Achachelouei, M.; Keskin, D.; Bat, E.; Vrana, N.E.; Tezcaner, A. Dual Growth Factor Delivery Using PLGA Nanoparticles in Silk Fibroin/PEGDMA Hydrogels for Articular Cartilage Tissue Engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2041–2062. [Google Scholar] [CrossRef]
- Shen, H.; Hu, X. Growth Factor Loading on Aliphatic Polyester Scaffolds. RSC Adv. 2021, 11, 6735–6747. [Google Scholar] [CrossRef]
- Park, K.-S.; Kim, B.-J.; Lih, E.; Park, W.; Lee, S.-H.; Joung, Y.K.; Han, D.K. Versatile Effects of Magnesium Hydroxide Nanoparticles in PLGA Scaffold–Mediated Chondrogenesis. Acta Biomater. 2018, 73, 204–216. [Google Scholar] [CrossRef]
- Tapia, H.; Koshland, D.E. Trehalose Is a Versatile and Long-Lived Chaperone for Desiccation Tolerance. Curr. Biol. 2014, 24, 2758–2766. [Google Scholar] [CrossRef]
- Bittner, B.; Kissel, T. Ultrasonic Atomization for Spray Drying: A Versatile Technique for the Preparation of Protein Loaded Biodegradable Microspheres. J. Microencapsul. 1999, 16, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mascaraque, L.G.; López-Rubio, A. Protein-Based Emulsion Electrosprayed Micro-and Submicroparticles for the Encapsulation and Stabilization of Thermosensitive Hydrophobic Bioactives. J. Colloid Interface Sci. 2016, 465, 259–270. [Google Scholar] [CrossRef]
- Wen, J.; Li, H.; Dai, H.; Hua, S.; Long, X.; Li, H.; Ivanovski, S.; Xu, C. Intra-Articular Nanoparticles Based Therapies for Osteoarthritis and Rheumatoid Arthritis Management. Mater. Today Bio 2023, 19, 100597. [Google Scholar] [CrossRef] [PubMed]
- Alenazi, A.S.M.; El-Bagory, I.M.; Yassin, A.B.; Alanazi, F.K.; Alsarra, I.A.; Haq, N.; Bayomi, M.A.; Shakeel, F. Design of Polymeric Nanoparticles for Oral Delivery of Capreomycin Peptide Using Double Emulsion Technique: Impact of Stress Conditions. J. Drug Deliv. Sci. Technol. 2022, 71, 103326. [Google Scholar] [CrossRef]
- Butreddy, A.; Gaddam, R.P.; Kommineni, N.; Dudhipala, N.; Voshavar, C. PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int. J. Mol. Sci. 2021, 22, 8884. [Google Scholar] [CrossRef]
- Washington, M.A.; Balmert, S.C.; Fedorchak, M.V.; Little, S.R.; Watkins, S.C.; Meyer, T.Y. Monomer Sequence in PLGA Microparticles: Effects on Acidic Microclimates and In Vivo Inflammatory Response. Acta Biomater. 2018, 65, 259–271. [Google Scholar] [CrossRef]
- Liu, Y.; Ghassemi, A.H.; Hennink, W.E.; Schwendeman, S.P. The Microclimate pH in Poly(d,l-Lactide-Co-Hydroxymethyl Glycolide) Microspheres during Biodegradation. Biomaterials 2012, 33, 7584–7593. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.G. 641-P: Novel Microsphere Formulation Developments of Long-Acting GLP-1 RA Including Exenatide, Liraglutide, and Semaglutide. Diabetes 2021, 70, 641-P. [Google Scholar] [CrossRef]
- Maharjan, R.; Lim, D.S.; Baik, H.J.; Park, H.E.; Kim, M.-S.; Kim, K.H.; Jeong, S.H. Preparation of Semaglutide Long-Acting Injectable Microcapsules with Physicochemical Properties, Long-Term Stability, and Pharmacokinetics and Pharmacodynamics. J. Pharm. Investig. 2024, 54, 667–681. [Google Scholar] [CrossRef]
- Ding, A.G.; Schwendeman, S.P. Acidic Microclimate pH Distribution in PLGA Microspheres Monitored by Confocal Laser Scanning Microscopy. Pharm. Res. 2008, 25, 2041–2052. [Google Scholar] [CrossRef]
- Zeng, H.; Song, J.; Li, Y.; Guo, C.; Zhang, Y.; Yin, T.; He, H.; Gou, J.; Tang, X. Effect of Hydroxyethyl Starch on Drug Stability and Release of Semaglutide in PLGA Microspheres. Int. J. Pharm. 2024, 654, 123991. [Google Scholar] [CrossRef]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef]
- van de Weert, M.; Hennink, W.E.; Jiskoot, W. Protein Instability in Poly(Lactic-Co-Glycolic Acid) Microparticles. Pharm. Res. 2000, 17, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Maynard, H.D. Trehalose Hydrogels for Stabilization and Delivery of Proteins. U.S. Patent 10,662,295 B2, 26 May 2020. [Google Scholar]
- Schwendeman, S.P. Recent Advances in the Stabilization of Proteins Encapsulated in Injectable PLGA Delivery Systems. CRT 2002, 19, 73–98. [Google Scholar] [CrossRef]
- Huo, Q.; Gao, Y.; Wu, W.; Hu, S.; Dong, E.; Zhang, Y.; Tian, Y.; Huang, Y.; Quan, P.; Liu, D. Plugging the Leak of Nanoparticles by Interfacial Polymer Adsorption Enables an Efficient Protein and Peptide Encapsulation. Adv. Funct. Mater. 2024, 34, 2310146. [Google Scholar] [CrossRef]
- Duque, L.; Körber, M.; Bodmeier, R. Improving Release Completeness from PLGA-Based Implants for the Acid-Labile Model Protein Ovalbumin. Int. J. Pharm. 2018, 538, 139–146. [Google Scholar] [CrossRef]
- 21 CFR Part 3—Product Jurisdiction. Available online: https://www.ecfr.gov/current/title-21/part-3 (accessed on 6 September 2025).
- Elsaid, K.A.; Ubhe, A.; Shaman, Z.; D’Souza, G. Intra-Articular Interleukin-1 Receptor Antagonist (IL1-Ra) Microspheres for Posttraumatic Osteoarthritis: In Vitro Biological Activity and In Vivo Disease Modifying Effect. J. Exp. Orthop. 2016, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Summary Review—NDA 208845 (Cross Discipline Peer Review, ZILRETTA (Triamcinolone Acetonide Extended-Release Injectable Suspension)); 23 May 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208845Orig1s000SumRedt.pdf (accessed on 22 September 2025).
- U.S. Food and Drug Administration (FDA). Medical Review—NDA 208845 (ZILRETTA (Triamcinolone Acetonide Extended-Release Injectable Suspension)); 2017/2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208845Orig1s000MedR.pdf (accessed on 22 September 2025).
- U.S. Food and Drug Administration (FDA). Frequently Asked Questions About Combination Products. Available online: https://www.fda.gov/combination-products/about-combination-products/frequently-asked-questions-about-combination-products (accessed on 22 September 2025).
- U.S. Food and Drug Administration (FDA). Statistical Review and Evaluation—NDA 208845 (ZILRETTA); 2017/2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208845Orig1s000StatR.pdf (accessed on 22 September 2025).
- Shen, J.; Lee, K.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D.J. A Reproducible Accelerated In Vitro Release Testing Method for PLGA Microspheres. Int. J. Pharm. 2016, 498, 274–282. [Google Scholar] [CrossRef]
- Salgado, C.; Jordan, O.; Allémann, E. Osteoarthritis In Vitro Models: Applications and Implications in Development of Intra-Articular Drug Delivery Systems. Pharmaceutics 2021, 13, 60. [Google Scholar] [CrossRef]
- Hua, Y.; Su, Y.; Zhang, H.; Liu, N.; Wang, Z.; Gao, X.; Gao, J.; Zheng, A. Poly(Lactic-Co-Glycolic Acid) Microsphere Production Based on Quality by Design: A Review. Drug Deliv. 2021, 28, 1342–1355. [Google Scholar] [CrossRef]
- Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance; U.S. Department of Health and Human Services: Washington, WA, USA, 2004.
- Langworthy, M.J.; Conaghan, P.G.; Ruane, J.J.; Kivitz, A.J.; Lufkin, J.; Cinar, A.; Kelley, S.D. Efficacy of Triamcinolone Acetonide Extended-Release in Participants with Unilateral Knee Osteoarthritis: A Post Hoc Analysis. Adv. Ther. 2019, 36, 1398–1411. [Google Scholar] [CrossRef] [PubMed]
- Hummer, C.D.; Huang, Y.; Sheehan, B. Adherence to the OARSI Recommendations for Designing, Conducting, and Reporting of Clinical Trials in Knee Osteoarthritis: A Targeted Literature Review. BMC Musculoskelet. Disord. 2022, 23, 171. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Osteoarthritis: Structural Endpoints for the Development of Drugs, Devices, and Biological Products for Treatment—Guidance for Industry. 2014. Available online: https://www.fda.gov/media/71132/download (accessed on 22 September 2025).
- Zilretta: Package Insert/Prescribing Information. Available online: https://www.drugs.com/pro/zilretta.html (accessed on 6 September 2025).
- Humby, F.C. Synovial Tissue Sampling in Rheumatological Practice—Past Developments and Future Perspectives. Front. Med. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Saadat, P.; Pereira, T.V.; Lalji, R.; Kiyomoto, H.D.; Bodmer, N.S.; Bobos, P.; Iskander, S.; Veroniki, A.-A.; Hawker, G.A.; Sutton, A.J.; et al. Evidence-Based Hierarchy of Pain Outcome Measures for Osteoarthritis Clinical Trials and Meta-Analyses. Osteoarthr. Cartil. 2025, 33, 42–49. [Google Scholar] [CrossRef] [PubMed]
- PharmD, B.P. Zilretta Labeling Updated to Include Information Pertaining to Repeat Administration. MPR. 2019. Available online: https://www.empr.com/home/news/zilretta-labeling-updated-to-include-information-pertaining-to-repeat-administration/ (accessed on 11 October 2025).
- Berlin, J.A.; Glasser, S.C.; Ellenberg, S.S. Adverse Event Detection in Drug Development: Recommendations and Obligations Beyond Phase 3. Am. J. Public Health 2008, 98, 1366–1371. [Google Scholar] [CrossRef]
- Health, C. for D. and R. Postmarket Surveillance Under Section 522 of the Federal Food, Drug, and Cosmetic Act. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/postmarket-surveillance-under-section-522-federal-food-drug-and-cosmetic-act (accessed on 6 September 2025).
- Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by Solvent Evaporation: State of the Art for Process Engineering Approaches. Int. J. Pharm. 2008, 363, 26–39. [Google Scholar] [CrossRef]
- Park, K.; Otte, A.; Sharifi, F.; Garner, J.; Skidmore, S.; Park, H.; Jhon, Y.K.; Qin, B.; Wang, Y. Formulation Composition, Manufacturing Process, and Characterization of Poly(Lactide-Co-Glycolide) Microparticles. J. Control Release 2021, 329, 1150–1161. [Google Scholar] [CrossRef]
- Park, K. PLGA Microspheres: The Art of the Science. Available online: https://www.pharmamanufacturing.com/articles/2018/the-art-of-the-science/ (accessed on 23 September 2025).
- Michaelides, K.; Al Tahan, M.A.; Zhou, Y.; Trindade, G.F.; Cant, D.J.H.; Pei, Y.; Dulal, P.; Al-Khattawi, A. New Insights on the Burst Release Kinetics of Spray-Dried PLGA Microspheres. Mol. Pharm. 2024, 21, 6245–6256. [Google Scholar] [CrossRef]
- Muhaimin, M.; Chaerunisaa, A.Y.; Bodmeier, R. Real-Time Particle Size Analysis Using Focused Beam Reflectance Measurement as a Process Analytical Technology Tool for Continuous Microencapsulation Process. Sci. Rep. 2021, 11, 19390. [Google Scholar] [CrossRef]
- Anwar, A.; Sun, P.; Rong, X.; Arkin, A.; Elham, A.; Yalkun, Z.; Li, X.; Iminjan, M. Process Analytical Technology as In-Process Control Tool in Semi-Continuous Manufacturing of PLGA/PEG-PLGA Microspheres. Heliyon 2023, 9, e15753. [Google Scholar] [CrossRef]
- Jung, E.-A.; Park, Y.-J.; Kim, J.-E. Application of Continuous Manufacturing for Solid Oral Dosage Forms. J. Pharm. Investig. 2023, 53, 457–474. [Google Scholar] [CrossRef]
- Vay, K.; Frieß, W.; Scheler, S. Understanding Reflection Behavior as a Key for Interpreting Complex Signals in FBRM Monitoring of Microparticle Preparation Processes. Int. J. Pharm. 2012, 437, 1–10. [Google Scholar] [CrossRef]
- D’Souza, S.S.; DeLuca, P.P. Methods to Assess In Vitro Drug Release from Injectable Polymeric Particulate Systems. Pharm. Res. 2006, 23, 460–474. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, S.A.; Engen, J.R.; Mazzeo, J.R.; Jones, G.B. Analytical Tools for Characterizing Biopharmaceuticals and the Implications for Biosimilars. Nat. Rev. Drug. Discov. 2012, 11, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control. Pharm. Res. 2008, 25, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.; Mahale, P.; Gowtham, A.; Sutar, A.D.; Kaundal, R.K.; Shukla, R. Quality by Design Based Hydrogel Formulation of 4-Octyl Itaconate-Loaded Nanostructured Lipid Carriers for Epidermal Restoration in Atopic Dermatitis. J. Pharm. Investig. 2025. [Google Scholar] [CrossRef]
- Thoorens, G.; Krier, F.; Rozet, E.; Carlin, B.; Evrard, B. Understanding the Impact of Microcrystalline Cellulose Physicochemical Properties on Tabletability. Int. J. Pharm. 2015, 490, 47–54. [Google Scholar] [CrossRef]
- Oktay, A.N.; Karakucuk, A.; Ilbasmis-Tamer, S.; Celebi, N. Dermal Flurbiprofen Nanosuspensions: Optimization with Design of Experiment Approach and In Vitro Evaluation. Eur. J. Pharm. Sci. 2018, 122, 254–263. [Google Scholar] [CrossRef]
- Manzon, D.; Claeys-Bruno, M.; Declomesnil, S.; Carité, C.; Sergent, M. Quality by Design: Comparison of Design Space Construction Methods in the Case of Design of Experiments. Chemom. Intell. Lab. Syst. 2020, 200, 104002. [Google Scholar] [CrossRef]
- Shapourgan, M.; Mobedi, H.; Sheikh, N.; Behnamghader, A.; Mashak, A. Leuprolide Acetate Release Study from γ-Irradiated PLGA-Based In Situ Forming System. Curr. Drug Deliv. 2017, 14, 1170–1177. Available online: https://www.eurekaselect.com/article/82530 (accessed on 11 October 2025). [CrossRef]
- Morici, L.; Jordan, O.; Allémann, E.; Rodríguez-Nogales, C. Recent Advances in Nanocrystals for Arthritis Drug Delivery. Expert Opin. Drug Deliv. 2025, 22, 1031–1042. [Google Scholar] [CrossRef]
- Kim, Y.; Park, E.J.; Kim, T.W.; Na, D.H. Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System. Pharmaceutics 2021, 13, 1313. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding Pharmaceutical Quality by Design. AAPS J. 2014, 16, 771–783. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, L.; Wan, F.; Bera, H.; Cun, D.; Rantanen, J.; Yang, M. Quality by Design Thinking in the Development of Long-Acting Injectable PLGA/PLA-Based Microspheres for Peptide and Protein Drug Delivery. Int. J. Pharm. 2020, 585, 119441. [Google Scholar] [CrossRef]
- Abraham, J. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. In Handbook of Transnational Economic Governance Regimes; Tietje, C., Brouder, A., Eds.; Brill|Nijhoff: Leiden, The Netherlands, 2010; pp. 1041–1053. ISBN 978-90-04-18156-4. [Google Scholar]
- Williamson, T.L.; Walz, A.; Garlick, D.; Lightfoot-Dunn, R.; Schafer, K.; Kelley, S.; Bodick, N. Systemic and Local Effects Following Intra-Articular Injection of FX006, an Extended Release, PLGA Microsphere Formulation of Triamcinolone Acetonide: Results from Two Nonclinical Toxicity Studies in Dogs. Osteoarthr. Cartil. 2017, 25, S431–S432. [Google Scholar] [CrossRef]
- MD, K. Medication Doses and Needle Choices for Intra-Articular or Soft-Tissue Joint Injections|Time of Care. 2018. Available online: https://www.timeofcare.com/medication-doses-and-needle-choices-for-intra-articular-or-soft-tissue-joint-injections/ (accessed on 11 October 2025).
- Sarmadi, M.; Behrens, A.M.; McHugh, K.J.; Contreras, H.T.M.; Tochka, Z.L.; Lu, X.; Langer, R.; Jaklenec, A. Modeling, Design, and Machine Learning-Based Framework for Optimal Injectability of Microparticle-Based Drug Formulations. Sci. Adv. 2020, 6, eabb6594. [Google Scholar] [CrossRef]
- Pohl, T.; Gervais, A.; Dirksen, E.H.C.; D’Alessio, V.; Bechtold-Peters, K.; Burkitt, W.; Cao, L.; Greven, S.; Lennard, A.; Li, X.; et al. Technical Considerations for the Implementation of the Multi-Attribute-Method by Mass Spectrometry in a Quality Control Laboratory. Eur. J. Pharm. Biopharm. 2023, 188, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhu, Z.; Cao, X.; Pan, F.; Li, F.; Xue, M.; Guo, Y.; Zhao, Y.; Zeng, J.; Liu, Y.; et al. Evaluation the Injectability of Injectable Microparticle Delivery Systems on the Basis of Injection Force and Discharged Rate. Eur. J. Pharm. Biopharm. 2023, 190, 58–72. [Google Scholar] [CrossRef]
- Schwendeman, S.P.; Shah, R.B.; Bailey, B.A.; Schwendeman, A.S. Injectable Controlled Release Depots for Large Molecules. J. Control Release 2014, 190, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Tetsumoto, A.; Yamada, H.; Nakamura, M. Impact of Different Manufacturers and Gauge Sizes on the Performance of Backflush Needle. Sci. Rep. 2020, 10, 21452. [Google Scholar] [CrossRef]
- Chanchou, M.; Thivat, E.; Mathieu, S.; Levesque, S.; Sas, N.; Auzeloux, P.; Billoux, T.; Molnar, I.; Jouberton, E.; Rouanet, J.; et al. [99mTc]Tc-NTP 15 − 5, a New Proteoglycan Tracer for Functional Imaging of Joint Cartilage: Phase I (CARSPECT). EJNMMI Res. 2025, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Knights, A.J.; Redding, S.J.; Maerz, T. Inflammation in Osteoarthritis: The Latest Progress and Ongoing Challenges. Curr. Opin. Rheumatol. 2023, 35, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Seikagaku Corporation. Annual/Corporate Report (Press/IR Document); 24 December 2021. Available online: https://www.seikagaku.co.jp/en/ir/library/corpreports/main/08/teaserItems2/01/linkList/0/link/20211224.pdf (accessed on 22 September 2025).
- Medicines Patent Pool/LAPaL. Diffusphere™—Intra-Articular Injectable Technology (LAPaL Technology Page). Available online: https://lapal.medicinespatentpool.org/technology/diffusphere-intraarticular-injectable-technology (accessed on 22 September 2025).
Product | Drug/Dose | Formulation | Status | Duration | Key Clinical Outcomes |
---|---|---|---|---|---|
Zilretta® | Triamcinolone acetonide 32 mg | 75:25 PLGA microspheres (~45 µm) | FDA Approved (2017) | ~12 weeks | Superior to immediate-release steroid; repeat dosing safety under evaluation |
EP-104IAR | Fluticasone propionate 25 mg | Diffusphere® polymer microspheres | Phase II completed (2022) | ~14 weeks | Minimal systemic exposure; Phase III trials planned |
Product | Drug/Dose | Technology Platform | Status | Duration | Clinical Highlights |
---|---|---|---|---|---|
TLC599 | Dexamethasone sodium phosphate 12 mg | Multivesicular liposomes (DepoFoam®) | Phase III ongoing (Phase II complete) | ~24 weeks | Longest duration; well-tolerated in Phase II trials |
Cingal® | Triamcinolone hexacetonide 18 mg (+ HA 88 mg) | Cross-linked HA composite | Phase III completed (not FDA-approved) | ~26 weeks | Dual-action: immediate steroid + sustained HA benefits |
Joyclu® | Diclofenac-HA conjugate 30 mg | Covalent drug-polymer conjugate | Approved in Japan (2021) | Multi-month | First sustained-release NSAID; rare anaphylaxis risk noted |
Agent | Platform | Mechanism | Duration | Status | References |
---|---|---|---|---|---|
Infliximab (anti-TNF-α mAb) | PLGA microspheres (~45 µm) | TNF-α neutralization | ~3 weeks | Advanced preclinical | [89,90] |
TNF-α siRNA | PLGA microspheres (~200 nm) | TNF-α gene silencing | >14 days | Proof-of-concept | [91] |
IL-1Ra (anakinra) | PLGA microspheres (50:50 copolymer) | IL-1 pathway blockade | 4–6 weeks | Preclinical | [92,93,94] |
TGF-β1 | PLGA microspheres | Chondrogenesis promotion | 4–8 weeks | Preclinical | [95,96] |
p66shc siRNA | PLGA nanoparticles (~180 nm) | p66shc gene silencing | 21 days | Preclinical | [97] |
Stabilization Strategy | Target Biologics | Challenge Addressed | Key Mechanism | Outcomes and Clinical Advantages | References |
---|---|---|---|---|---|
Magnesium hydroxide (Mg(OH)2) co-encapsulation | GLP-1 analogs, insulin, growth factors | Neutralizes acidic pH (2–3 → 6.5–7.4) | Acid-base neutralization | Complete release: 50% → >85%; prevents degradation & immunogenicity | [56,102] |
Trehalose co-encapsulation | Proteins, antibodies, enzymes | Prevents acid-induced unfolding | Molecular chaperone, hydrogen bonding | >95% activity retention at pH 3; enhanced storage stability | [103,104] |
Magnesium carbonate (MgCO3) buffering | pH-sensitive biologics, peptides | Sustained pH buffering control | Controlled CO2 release mechanism | pH 6.8–7.2 for 8 weeks; reduced inflammation. | [56,102] |
Ultrasonic atomization processing | Large proteins, antibodies | Reduces processing-induced aggregation | Gentle processing uniform distribution | 3–4× encapsulation efficiency; better batch consistency | [105] |
Step | Key Activities and Deliverables |
---|---|
Pre-RFD Submission | Confirm combination-product classification under 21 CFR 3.2(e); obtain lead center assignment and initial guidance on nonclinical and CMC expectations |
Pre-IND Meeting | Finalize IA route-specific toxicology (local tolerability, biodistribution), define QTPP/CQAs, agree on in vitro release methods, and establish trial endpoints. |
IND/NDA Submission | Submit IA-focused nonclinical package and CMC dossier including PAT data (FBRM particle sizing; NIR solvent monitoring), polymer specifications, and release profiles. |
Phase I–III Clinical Evaluations | Conduct Phase I safety/PK studies; Phase II dose-ranging and preliminary efficacy; Phase III pivotal trials with long follow-up, imaging, and patient-reported outcomes. |
NDA/BLA Review & Approval | Provide Module 3 CMC details (polymer Mw/ratio/end-cap, in vitro–in vivo correlation), validation of sterilization/endotoxin methods; undergo pre-approval inspection. |
Post-Marketing Surveillance | Implement pharmacovigilance specific to long dosing intervals; conduct device-type postmarket surveillance if required for combination product configuration. |
Domain | Unresolved Challenge | Strategic Direction |
---|---|---|
Safety & Repeat Dosing | Limited long-term safety data for multiple injections; potential cumulative joint effects | Conduct multicenter Phase III trials with ≥2 years follow-up, incorporating quantitative imaging, histology, and PROs |
Injection Technique | Needle blockage, suspension settling, and dosing inconsistency | Optimize suspension rheology; develop standardized resuspension protocols and needle selection guidelines |
Biologic Formulation | Protein/peptide instability, aggregation, and immunogenicity in acidic microenvironment | Co-encapsulate buffering excipients; novel copolymer blends; validate analytical methods for real-time stability assays |
Manufacturing & Scale-Up | Batch-to-batch variability in particle size, drug loading, and release kinetics; supply chain integrity | Implement QbD with PAT tools for real-time CPP/CQA control; establish robust cold-chain logistics where needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.W.; Park, J.H.; Yu, G.W.; You, J.W.; Han, M.J.; Kang, M.J.; Ho, M.J. Sustained-Release Intra-Articular Drug Delivery: PLGA Systems in Clinical Context and Evolving Strategies. Pharmaceutics 2025, 17, 1350. https://doi.org/10.3390/pharmaceutics17101350
Lee JW, Park JH, Yu GW, You JW, Han MJ, Kang MJ, Ho MJ. Sustained-Release Intra-Articular Drug Delivery: PLGA Systems in Clinical Context and Evolving Strategies. Pharmaceutics. 2025; 17(10):1350. https://doi.org/10.3390/pharmaceutics17101350
Chicago/Turabian StyleLee, Jun Woo, Ji Ho Park, Geon Woo Yu, Jae Won You, Min Ji Han, Myung Joo Kang, and Myoung Jin Ho. 2025. "Sustained-Release Intra-Articular Drug Delivery: PLGA Systems in Clinical Context and Evolving Strategies" Pharmaceutics 17, no. 10: 1350. https://doi.org/10.3390/pharmaceutics17101350
APA StyleLee, J. W., Park, J. H., Yu, G. W., You, J. W., Han, M. J., Kang, M. J., & Ho, M. J. (2025). Sustained-Release Intra-Articular Drug Delivery: PLGA Systems in Clinical Context and Evolving Strategies. Pharmaceutics, 17(10), 1350. https://doi.org/10.3390/pharmaceutics17101350