Development of a Novel Compound Effective Against Juvenile, Adult, and Drug-Resistant Schistosoma Species
Abstract
1. Introduction
1.1. Current Treatment for Schistosomiasis
1.2. Historical Treatment for Schistosomiasis
2. Rational Approach to Drug Discovery for Human Schistosomiasis
2.1. Oxamniquine as a Starting Point for Novel Anthelmintic Design
2.2. Design and Synthesis of Modified OXA and Choice of Lead Compound
3. Proof of Principle
3.1. CIDD-0150303 Dual Efficacy
3.2. Evidence That the Mode of Action of PZQ Differs from CIDD-0150303
3.3. Determining Whether CIDD-0150303 Demonstrates Antischistosomal Efficacy in Resistance Settings
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PZQ | Praziquantel |
| OXA | Oxamniquine |
| Sm | Schistosoma mansoni |
| Sh | S. haematobium |
| DALYs | Disability-adjusted life year |
| MDA | Mass drug administration |
| TRPMPZQ | Transient receptor potential channel |
| HYC | Hycanthone |
| SmSULT | S. mansoni sulfotransferase |
| PAPS | 3′-phosphoadenosine 5′-phosphosulfate |
| SULT | Sulfotransferase |
| ShSULT | S. haematobium sulfotransferase |
| qPCR | Quantitative polymerase chain reaction |
| PZQ-R | PZQ-resistant |
References
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, M.J.; de Vlas, S.J.; Brooker, S.; Looman, C.W.; Nagelkerke, N.J.; Habbema, J.D.; Engels, D. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop. 2003, 86, 125–139. [Google Scholar] [CrossRef]
- Chitsulo, L.; Loverde, P.; Engels, D. Focus: Schistosomiasis. Nat. Rev. Microbiol. 2004, 2, 12. [Google Scholar] [CrossRef]
- Anderson, T.J.C.; Enabulele, E.E. Schistosoma mansoni. Trends Parasitol. 2021, 37, 176–177. [Google Scholar] [CrossRef]
- Hotez, P.J. Malnutrition vaccines for an imminent global food catastrophe. Trends Pharmacol. Sci. 2022, 43, 994–997. [Google Scholar] [CrossRef]
- Shousha, H.I.; Abdelaziz, A.O.; Nabeel, M.M.; Omran, D.A.; Abdelmaksoud, A.H.; Elbaz, T.M.; Salah, A.; Harb, S.T.E.; Hosny, K.A.; Osman, A.; et al. Schistosoma mansoni infection and the occurrence, characteristics, and survival of patients with hepatocellular carcinoma: An observational study over a decade. Pathog. Glob. Health 2022, 116, 119–127. [Google Scholar] [CrossRef]
- Kjetland, E.F.; Leutscher, P.D.; Ndhlovu, P.D. A review of female genital schistosomiasis. Trends Parasitol. 2012, 28, 58–65. [Google Scholar] [CrossRef]
- Hotez, P.J.; Engels, D.; Gyapong, M.; Ducker, C.; Malecela, M.N. Female Genital Schistosomiasis. N. Engl. J. Med. 2019, 381, 2493–2495. [Google Scholar] [CrossRef] [PubMed]
- Bowa, K.; Mulele, C.; Kachimba, J.; Manda, E.; Mapulanga, V.; Mukosai, S. A review of bladder cancer in Sub-Saharan Africa: A different disease, with a distinct presentation, assessment, and treatment. Ann. Afr. Med. 2018, 17, 99–105. [Google Scholar] [CrossRef]
- Chala, B.; Torben, W. An Epidemiological Trend of Urogenital Schistosomiasis in Ethiopia. Front. Public Health 2018, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Verjee, M.A. Schistosomiasis: Still a Cause of Significant Morbidity and Mortality. Res. Rep. Trop. Med. 2019, 10, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Strohmayer, J.; Matthews, I.; Locke, R. Schistosomiasis: Traverers in Africa. J. Spec. Oper. Med. 2016, 16, 47–52. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis—From immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef]
- Boissier, J.; Grech-Angelini, S.; Webster, B.L.; Allienne, J.F.; Huyse, T.; Mas-Coma, S.; Toulza, E.; Barre-Cardi, H.; Rollinson, D.; Kincaid-Smith, J.; et al. Outbreak of urogenital schistosomiasis in Corsica (France): An epidemiological case study. Lancet Infect. Dis. 2016, 16, 971–979. [Google Scholar] [CrossRef]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; Lo, N.C.; Ndeffo-Mbah, M.L.; Durham, D.P.; King, C.H. The human-snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PLoS Neglected Trop. Dis. 2018, 12, e0006514. [Google Scholar] [CrossRef]
- Chen, M.G.; Mott, K.E. Progress in assesment of morbidity due to Schistosoma mansoni infection: A review of recent literature. Trop. Dis. Bull. 1998, 85, R1–R56. [Google Scholar]
- Mouahid, G.; Rognon, A.; de Carvalho Augusto, R.; Driguez, P.; Geyer, K.; Karinshak, S.; Luviano, N.; Mann, V.; Quack, T.; Rawlinson, K.; et al. Transplantation of schistosome sporocysts between host snails: A video guide. Wellcome Open Res. 2018, 3, 3. [Google Scholar] [CrossRef]
- Nation, C.S.; Da’dara, A.A.; Marchant, J.K.; Skelly, P.J. Schistosome migration in the definitive host. PLoS Neglected Trop. Dis. 2020, 14, e0007951. [Google Scholar] [CrossRef]
- Miller, P.; Wilson, R.A. Migration of the schistosomula of Schistosoma mansoni from the lungs to the hepatic portal system. Parasitology 1980, 80, 267–288. [Google Scholar] [CrossRef]
- Wheater, P.R.; Wilson, R.A. Schistosoma mansoni: A histological study of migration in the laboratory mouse. Parasitology 1979, 79, 49–62. [Google Scholar] [CrossRef]
- He, Y.X.; Chen, L.; Ramaswamy, K. Schistosoma mansoni, S. haematobium, and S. japonicum: Early events associated with penetration and migration of schistosomula through human skin. Exp. Parasitol. 2002, 102, 99–108. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.L.; Fishelson, Z.; Kusel, J.R.; Ruppel, A. Schistosoma japonicum migration through mouse skin compared histologically and immunologically with S. mansoni. Parasitol. Res. 2005, 95, 218–223. [Google Scholar] [CrossRef]
- LoVerde, P.T. Presidential address. Sex and schistosomes: An interesting biological interplay with control implications. J. Parasitol. 2002, 88, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, R.; Collins, J.J., 3rd. Systematically improved in vitro culture conditions reveal new insights into the reproductive biology of the human parasite Schistosoma mansoni. PLoS Biol. 2019, 17, e3000254. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.V.; Sandground, J.H. The relative egg producing capacity of Schistosoma mansoni and Schistosoma japonicum. Am. J. Trop. Med. Hyg. 1956, 5, 831–840. [Google Scholar] [CrossRef]
- von Bulow, V.; Gindner, S.; Baier, A.; Hehr, L.; Buss, N.; Russ, L.; Wrobel, S.; Wirth, V.; Tabatabai, K.; Quack, T.; et al. Metabolic reprogramming of hepatocytes by Schistosoma mansoni eggs. JHEP Rep. 2023, 5, 100625. [Google Scholar] [CrossRef] [PubMed]
- Takaki, K.K.; Rinaldi, G.; Berriman, M.; Pagan, A.J.; Ramakrishnan, L. Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host Microbe 2021, 29, 58–67.E5. [Google Scholar] [CrossRef]
- Gouvras, A.N.; Kariuki, C.; Koukounari, A.; Norton, A.J.; Lange, C.N.; Ireri, E.; Fenwick, A.; Mkoji, G.M.; Webster, J.P. The impact of single versus mixed Schistosoma haematobium and S. mansoni infections on morbidity profiles amongst school-children in Taveta, Kenya. Acta Trop. 2013, 128, 309–317. [Google Scholar] [CrossRef]
- Koukounari, A.; Donnelly, C.A.; Sacko, M.; Keita, A.D.; Landoure, A.; Dembele, R.; Bosque-Oliva, E.; Gabrielli, A.F.; Gouvras, A.; Traore, M.; et al. The impact of single versus mixed schistosome species infections on liver, spleen and bladder morbidity within Malian children pre- and post-praziquantel treatment. BMC Infect. Dis. 2010, 10, 227. [Google Scholar] [CrossRef]
- Meurs, L.; Mbow, M.; Vereecken, K.; Menten, J.; Mboup, S.; Polman, K. Epidemiology of mixed Schistosoma mansoni and Schistosoma haematobium infections in northern Senegal. Int. J. Parasitol. 2012, 42, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Nelwan, M.L. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr. Ther. Res. 2019, 91, 5–9. [Google Scholar] [CrossRef]
- Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 2008, 21, 659–667. [Google Scholar] [CrossRef]
- Taylor, M. Global trends in schistosomiasis control. Bull. World Health Organ. 2008, 86, 738. [Google Scholar] [CrossRef]
- Cupit, P.M.; Cunningham, C. What is the mechanism of action of praziquantel and how might resistance strike? Future Med. Chem. 2015, 7, 701–705. [Google Scholar] [CrossRef]
- Liu, J.; Kong, D.; Qiu, J.; Xie, Y.; Lu, Z.; Zhou, C.; Liu, X.; Zhang, R.; Wang, Y. Praziquantel ameliorates CCl4-induced liver fibrosis in mice by inhibiting TGF-beta/Smad signalling via up-regulating Smad7 in hepatic stellate cells. Br. J. Pharmacol. 2019, 176, 4666–4680. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, A.; Webster, J.P.; Bosque-Oliva, E.; Blair, L.; Fleming, F.M.; Zhang, Y.; Garba, A.; Stothard, J.R.; Gabrielli, A.F.; Clements, A.C.; et al. The Schistosomiasis Control Initiative (SCI): Rationale, development and implementation from 2002–2008. Parasitology 2009, 136, 1719–1730. [Google Scholar] [CrossRef]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gartner, F.; Correia da Costa, J.M. Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob. Agents Chemother. 2017, 61, e02582-16. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- WHO. Zanzibar: Gearing Up to Eliminate Schistosomiasis. 2012. Available online: https://www.who.int/news/item/07-03-2012-zanzibar-gearing-up-to-eliminate-schistosomiasis?utm_source=chatgpt.com (accessed on 23 February 2025).
- Xiao, S.H.; Mei, J.Y.; Jiao, P.Y. The in vitro effect of mefloquine and praziquantel against juvenile and adult Schistosoma japonicum. Parasitol. Res. 2009, 106, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Marchant, J.S. The Journey to Discovering a Flatworm Target of Praziquantel: A Long TRP. Trends Parasitol. 2020, 36, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Friedrich, L.; Yahya, N.A.; Rohr, C.M.; Chulkov, E.G.; Maillard, D.; Rippmann, F.; Spangenberg, T.; Marchant, J.S. Mechanism of praziquantel action at a parasitic flatworm ion channel. Sci. Transl. Med. 2021, 13, eabj5832. [Google Scholar] [CrossRef] [PubMed]
- Le Clec’h, W.; Chevalier, F.D.; Mattos, A.C.A.; Strickland, A.; Diaz, R.; McDew-White, M.; Rohr, C.M.; Kinung’hi, S.; Allan, F.; Webster, B.L.; et al. Genetic analysis of praziquantel response in schistosome parasites implicates a transient receptor potential channel. Sci. Transl. Med. 2021, 13, eabj9114. [Google Scholar] [CrossRef]
- Zwang, J.; Olliaro, P. Efficacy and safety of praziquantel 40 mg/kg in preschool-aged and school-aged children: A meta-analysis. Parasites Vectors 2017, 10, 47. [Google Scholar] [CrossRef]
- King, C.H.; Olbrych, S.K.; Soon, M.; Singer, M.E.; Carter, J.; Colley, D.G. Utility of repeated praziquantel dosing in the treatment of schistosomiasis in high-risk communities in Africa: A systematic review. PLoS Neglected Trop. Dis. 2011, 5, e1321. [Google Scholar] [CrossRef]
- Wiegand, R.E.; Mwinzi, P.N.M.; Montgomery, S.P.; Chan, Y.L.; Andiego, K.; Omedo, M.; Muchiri, G.; Ogutu, M.O.; Rawago, F.; Odiere, M.R.; et al. A Persistent Hotspot of Schistosoma mansoni Infection in a Five-Year Randomized Trial of Praziquantel Preventative Chemotherapy Strategies. J. Infect. Dis. 2017, 216, 1425–1433. [Google Scholar] [CrossRef]
- Mushi, V.; Zacharia, A.; Shao, M.; Mubi, M.; Tarimo, D. Persistence of Schistosoma haematobium transmission among school children and its implication for the control of urogenital schistosomiasis in Lindi, Tanzania. PLoS ONE 2022, 17, e0263929. [Google Scholar] [CrossRef]
- Doenhoff, M.J.; Hagan, P.; Cioli, D.; Southgate, V.; Pica-Mattoccia, L.; Botros, S.; Coles, G.; Tchuem Tchuente, L.A.; Mbaye, A.; Engels, D. Praziquantel: Its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 2009, 136, 1825–1835. [Google Scholar] [CrossRef]
- Ismail, M.; Botros, S.; Metwally, A.; William, S.; Farghally, A.; Tao, L.F.; Day, T.A.; Bennett, J.L. Resistance to praziquantel: Direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am. J. Trop. Med. Hyg. 1999, 60, 932–935. [Google Scholar] [CrossRef]
- Alonso, D.; Munoz, J.; Gascon, J.; Valls, M.E.; Corachan, M. Failure of standard treatment with praziquantel in two returned travelers with Schistosoma haematobium infection. Am. J. Trop. Med. Hyg. 2006, 74, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Couto, F.F.; Coelho, P.M.; Araujo, N.; Kusel, J.R.; Katz, N.; Jannotti-Passos, L.K.; Mattos, A.C. Schistosoma mansoni: A method for inducing resistance to praziquantel using infected Biomphalaria glabrata snails. Mem. Inst. Oswaldo Cruz 2011, 106, 153–157. [Google Scholar] [CrossRef]
- Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg. 1994, 51, 83–88. [Google Scholar] [CrossRef]
- Gryseels, B.; Stelma, F.F.; Talla, I.; van Dam, G.J.; Polman, K.; Sow, S.; Diaw, M.; Sturrock, R.F.; Doehring-Schwerdtfeger, E.; Kardorff, R.; et al. Epidemiology, immunology and chemotherapy of Schistosoma mansoni infections in a recently exposed community in Senegal. Trop. Geogr. Med. 1994, 46, 209–219. [Google Scholar]
- Danso-Appiah, A.; De Vlas, S.J. Interpreting low praziquantel cure rates of Schistosoma mansoni infections in Senegal. Trends Parasitol. 2002, 18, 125–129. [Google Scholar] [CrossRef]
- Kabuyaya, M.; Chimbari, M.J.; Manyangadze, T.; Mukaratirwa, S. Efficacy of praziquantel on Schistosoma haematobium and re-infection rates among school-going children in the Ndumo area of uMkhanyakude district, KwaZulu-Natal, South Africa. Infect. Dis. Poverty 2017, 6, 83. [Google Scholar] [CrossRef]
- Midzi, N.; Sangweme, D.; Zinyowera, S.; Mapingure, M.P.; Brouwer, K.C.; Kumar, N.; Mutapi, F.; Woelk, G.; Mduluza, T. Efficacy and side effects of praziquantel treatment against Schistosoma haematobium infection among primary school children in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 759–766. [Google Scholar] [CrossRef]
- Barakat, R.; El Morshedy, H. Efficacy of two praziquantel treatments among primary school children in an area of high Schistosoma mansoni endemicity, Nile Delta, Egypt. Parasitology 2011, 138, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Tchuente, L.A.; Shaw, D.J.; Polla, L.; Cioli, D.; Vercruysse, J. Efficacy of praziquantel against Schistosoma haematobium infection in children. Am. J. Trop. Med. Hyg. 2004, 71, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Loker, E.S. A comparative study of the life-histories of mammalian schistosomes. Parasitology 1983, 87 Pt 2, 343–369. [Google Scholar] [CrossRef] [PubMed]
- Zdesenko, G.; Mutapi, F. Drug metabolism and pharmacokinetics of praziquantel: A review of variable drug exposure during schistosomiasis treatment in human hosts and experimental models. PLoS Neglected Trop. Dis. 2020, 14, e0008649. [Google Scholar] [CrossRef]
- Singer, B.J.; Gomes, M.; Coulibaly, J.T.; Daigavane, M.; Tan, S.T.; Bogoch, I.I.; Lo, N.C. Population-level impact of mass drug administration against schistosomiasis with anthelmintic drugs targeting juvenile schistosomes: A modelling study. Lancet Microbe 2025, 6, 101065. [Google Scholar] [CrossRef]
- da Silva, V.B.R.; Campos, B.; de Oliveira, J.F.; Decout, J.L.; do Carmo Alves de Lima, M. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine. Bioorganic Med. Chem. 2017, 25, 3259–3277. [Google Scholar] [CrossRef]
- Liu, R.; Dong, H.F.; Guo, Y.; Zhao, Q.P.; Jiang, M.S. Efficacy of praziquantel and artemisinin derivatives for the treatment and prevention of human schistosomiasis: A systematic review and meta-analysis. Parasites Vectors 2011, 4, 201. [Google Scholar] [CrossRef]
- Saeed, M.E.M.; Krishna, S.; Greten, H.J.; Kremsner, P.G.; Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res. 2016, 110, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Cioli, D.; Pica-Mattoccia, L.; Archer, S. Antischistosomal drugs: Past, present … and future? Pharmacol. Ther. 1995, 68, 35–85. [Google Scholar] [CrossRef] [PubMed]
- Katz, N.; Coelho, P.M. Clinical therapy of schistosomiasis mansoni: The Brazilian contribution. Acta Trop. 2008, 108, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Hagan, P.; Appleton, C.C.; Coles, G.C.; Kusel, J.R.; Tchuem-Tchuente, L.A. Schistosomiasis control: Keep taking the tablets. Trends Parasitol. 2004, 20, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Foster, R.; Cheetham, B.I.; King, D.F.; Mesmer, E.T. The action of UK 3883, a novel 2-aminomethyltetrahydroquinoline derivative, against mature schistosomes in rodents and primates. Ann. Trop. Med. Parasitol. 1971, 65, 59–70. [Google Scholar] [CrossRef]
- Alwan, S.N.; Taylor, A.B.; Rhodes, J.; Tidwell, M.; McHardy, S.F.; LoVerde, P.T. Oxamniquine derivatives overcome Praziquantel treatment limitations for Schistosomiasis. PLoS Pathog. 2023, 19, e1011018. [Google Scholar] [CrossRef]
- Archer, S.; Yarinsky, A. Recent developments in the chemotherapy of schistosomiasis. In Progress in Drug Research; Birkhäuser Basel: Basel, Switzerland, 1972; Volume 16, pp. 11–66. [Google Scholar] [CrossRef]
- Haese, W.H.; Bueding, E. Long-term hepatocellular effects of hycanthone and of two other anti-Schistosomal drugs in mice infected with Schistosoma mansoni. J. Pharmacol. Exp. Ther. 1976, 197, 703–713. [Google Scholar] [CrossRef]
- Hartman, P.E.; Hulbert, P.B. Genetic activity spectra of some antischistosomal compounds, with particular emphasis on thioxanthenones and benzothiopyranoindazoles. J. Toxicol. Environ. Health 1975, 1, 243–270. [Google Scholar] [CrossRef]
- Foster, R. A review of clinical experience with oxamniquine. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Daneshmend, T.K.; Homeida, M.A. Oxamniquine pharmacokinetics in hepatosplenic schistosomiasis in the Sudan. J. Antimicrob. Chemother. 1987, 19, 87–93. [Google Scholar] [CrossRef]
- Danso-Appiah, A.; Olliaro, P.L.; Donegan, S.; Sinclair, D.; Utzinger, J. Drugs for treating Schistosoma mansoni infection. Cochrane Database Syst. Rev. 2013, 2013, CD000528. [Google Scholar] [CrossRef]
- Kokwaro, G.O.; Taylor, G. Oxamniquine pharmacokinetics in healthy Kenyan African volunteers. East. Afr. Med. J. 1991, 68, 359–364. [Google Scholar]
- Rogers, S.H.; Bueding, E. Hycanthone resistance: Development in Schistosoma mansoni. Science 1971, 172, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Pica-Mattoccia, L.; Dias, L.C.; Moroni, R.; Cioli, D. Schistosoma mansoni: Genetic complementation analysis shows that two independent hycanthone/oxamniquine-resistant strains are mutated in the same gene. Exp. Parasitol. 1993, 77, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Filho, S.B.; Gargioni, C.; Silva Pinto, P.L.; Chiodelli, S.G.; Gurgel Vellosa, S.A.; da Silva, R.M.; da Silveira, M.A. Synthesis and evaluation of new oxamniquine derivatives. Int. J. Pharm. 2002, 233, 35–41. [Google Scholar] [CrossRef]
- Filho, R.P.; de Souza Menezes, C.M.; Pinto, P.L.; Paula, G.A.; Brandt, C.A.; da Silveira, M.A. Design, synthesis, and in vivo evaluation of oxamniquine methacrylate and acrylamide prodrugs. Bioorganic Med. Chem. 2007, 15, 1229–1236. [Google Scholar] [CrossRef]
- da Rocha Pitta, M.G.; da Rocha Pitta, M.G.; de Melo Rego, M.J.; Galdino, S.L. The evolution of drugs on schistosoma treatment: Looking to the past to improve the future. Mini-Rev. Med. Chem. 2013, 13, 493–508. [Google Scholar] [CrossRef]
- Hess, J.; Panic, G.; Patra, M.; Mastrobuoni, L.; Spingler, B.; Roy, S.; Keiser, J.; Gasser, G. Ferrocenyl, Ruthenocenyl, and Benzyl Oxamniquine Derivatives with Cross-Species Activity against Schistosoma mansoni and Schistosoma haematobium. ACS Infect. Dis. 2017, 3, 645–652. [Google Scholar] [CrossRef]
- Buchter, V.; Hess, J.; Gasser, G.; Keiser, J. Assessment of tegumental damage to Schistosoma mansoni and S. haematobium after in vitro exposure to ferrocenyl, ruthenocenyl and benzyl derivatives of oxamniquine using scanning electron microscopy. Parasites Vectors 2018, 11, 580. [Google Scholar] [CrossRef]
- Buchter, V.; Ong, Y.C.; Mouvet, F.; Ladaycia, A.; Lepeltier, E.; Rothlisberger, U.; Keiser, J.; Gasser, G. Multidisciplinary Preclinical Investigations on Three Oxamniquine Analogues as New Drug Candidates for Schistosomiasis. Chemistry 2020, 26, 15232–15241. [Google Scholar] [CrossRef]
- Rugel, A.; Tarpley, R.S.; Lopez, A.; Menard, T.; Guzman, M.A.; Taylor, A.B.; Cao, X.; Kovalskyy, D.; Chevalier, F.D.; Anderson, T.J.C.; et al. Design, Synthesis, and Characterization of Novel Small Molecules as Broad Range Antischistosomal Agents. ACS Med. Chem. Lett. 2018, 9, 967–973. [Google Scholar] [CrossRef]
- Valentim, C.L.; Cioli, D.; Chevalier, F.D.; Cao, X.; Taylor, A.B.; Holloway, S.P.; Pica-Mattoccia, L.; Guidi, A.; Basso, A.; Tsai, I.J.; et al. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 2013, 342, 1385–1389. [Google Scholar] [CrossRef]
- Cioli, D.; Pica-Mattoccia, L.; Rosenberg, S.; Archer, S. Evidence for the mode of antischistosomal action of hycanthone. Life Sci. 1985, 37, 161–167. [Google Scholar] [CrossRef]
- Guzman, M.A.; Rugel, A.; Alwan, S.N.; Tarpley, R.; Taylor, A.B.; Chevalier, F.D.; Wendt, G.R.; Collins, J.J., 3rd; Anderson, T.J.C.; McHardy, S.F.; et al. Schistosome Sulfotransferases: Mode of Action, Expression and Localization. Pharmaceutics 2022, 14, 1416. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, A.A.; Collins, J.J., 3rd; Newmark, P.A.; Williams, D.L. Whole mount in situ hybridization methodology for Schistosoma mansoni. Mol. Biochem. Parasitol. 2011, 178, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.J., 3rd; Wang, B.; Lambrus, B.G.; Tharp, M.E.; Iyer, H.; Newmark, P.A. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 2013, 494, 476–479. [Google Scholar] [CrossRef]
- Taylor, A.B.; Roberts, K.M.; Cao, X.; Clark, N.E.; Holloway, S.P.; Donati, E.; Polcaro, C.M.; Pica-Mattoccia, L.; Tarpley, R.S.; McHardy, S.F.; et al. Structural and enzymatic insights into species-specific resistance to schistosome parasite drug therapy. J. Biol. Chem. 2017, 292, 11154–11164. [Google Scholar] [CrossRef] [PubMed]
- LoVerde, P.T.; Alwan, S.N.; Taylor, A.B.; Rhodes, J.; Chevalier, F.D.; Anderson, T.J.; McHardy, S.F. Rational approach to drug discovery for human schistosomiasis. Int. J. Parasitol. Drugs Drug Resist. 2021, 16, 140–147. [Google Scholar] [CrossRef]
- Rugel, A.R.; Guzman, M.A.; Taylor, A.B.; Chevalier, F.D.; Tarpley, R.S.; McHardy, S.F.; Cao, X.; Holloway, S.P.; Anderson, T.J.C.; Hart, P.J.; et al. Why does oxamniquine kill Schistosoma mansoni and not S. haematobium and S. japonicum? Int. J. Parasitol. Drugs Drug Resist. 2020, 13, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.A.; Rugel, A.R.; Tarpley, R.S.; Alwan, S.N.; Chevalier, F.D.; Kovalskyy, D.P.; Cao, X.; Holloway, S.P.; Anderson, T.J.C.; Taylor, A.B.; et al. An iterative process produces oxamniquine derivatives that kill the major species of schistosomes infecting humans. PLoS Neglected Trop. Dis. 2020, 14, e0008517. [Google Scholar] [CrossRef]
- Utzinger, J.; Raso, G.; Brooker, S.; De Savigny, D.; Tanner, M.; Ornbjerg, N.; Singer, B.H.; N’Goran, E.K. Schistosomiasis and neglected tropical diseases: Towards integrated and sustainable control and a word of caution. Parasitology 2009, 136, 1859–1874. [Google Scholar] [CrossRef]
- El Ridi, R.A.; Tallima, H.A. Novel therapeutic and prevention approaches for schistosomiasis: Review. J. Adv. Res. 2013, 4, 467–478. [Google Scholar] [CrossRef]
- Toth, K.; Alwan, S.; Khan, S.; McHardy, S.F.; LoVerde, P.T.; Cameron, M.D. Addressing the oxamniquine in vitro-in vivo paradox to facilitate a new generation of anti-schistosome treatments. Int. J. Parasitol. Drugs Drug Resist. 2023, 21, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Sabah, A.A.; Fletcher, C.; Webbe, G.; Doenhoff, M.J. Schistosoma mansoni: Chemotherapy of infections of different ages. Exp. Parasitol. 1986, 61, 294–303. [Google Scholar] [CrossRef]
- Gentile, R.; Oliveira, G. Brazilian studies on the genetics of Schistosoma mansoni. Acta Trop. 2008, 108, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Cioli, D.; Pica-Mattoccia, L.; Moroni, R. Schistosoma mansoni: Hycanthone/oxamniquine resistance is controlled by a single autosomal recessive gene. Exp. Parasitol. 1992, 75, 425–432. [Google Scholar] [CrossRef]







, C) were plotted on a semi-logarithmic scale, and the terminal phase was extrapolated to the Y-axis. Patient plasma concentration values (C) were subtracted from the corresponding concentration from the extrapolated terminal line (
, C’, ---). The residual line was constructed by plotting the difference (
, C”, ---) between the extrapolated and the observed concentrations for each timepoint in the absorption phase. The absorption rate constant was determined from the slope of the residual line. The calculated total hepatic inlet concentrations of OXA in patients was 94 µM [98].
, C) were plotted on a semi-logarithmic scale, and the terminal phase was extrapolated to the Y-axis. Patient plasma concentration values (C) were subtracted from the corresponding concentration from the extrapolated terminal line (
, C’, ---). The residual line was constructed by plotting the difference (
, C”, ---) between the extrapolated and the observed concentrations for each timepoint in the absorption phase. The absorption rate constant was determined from the slope of the residual line. The calculated total hepatic inlet concentrations of OXA in patients was 94 µM [98].





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwan, S.N.; Taylor, A.B.; McHardy, S.F.; Cameron, M.D.; LoVerde, P.T. Development of a Novel Compound Effective Against Juvenile, Adult, and Drug-Resistant Schistosoma Species. Pharmaceutics 2025, 17, 1268. https://doi.org/10.3390/pharmaceutics17101268
Alwan SN, Taylor AB, McHardy SF, Cameron MD, LoVerde PT. Development of a Novel Compound Effective Against Juvenile, Adult, and Drug-Resistant Schistosoma Species. Pharmaceutics. 2025; 17(10):1268. https://doi.org/10.3390/pharmaceutics17101268
Chicago/Turabian StyleAlwan, Sevan N., Alexander B. Taylor, Stanton F. McHardy, Michael D. Cameron, and Philip T. LoVerde. 2025. "Development of a Novel Compound Effective Against Juvenile, Adult, and Drug-Resistant Schistosoma Species" Pharmaceutics 17, no. 10: 1268. https://doi.org/10.3390/pharmaceutics17101268
APA StyleAlwan, S. N., Taylor, A. B., McHardy, S. F., Cameron, M. D., & LoVerde, P. T. (2025). Development of a Novel Compound Effective Against Juvenile, Adult, and Drug-Resistant Schistosoma Species. Pharmaceutics, 17(10), 1268. https://doi.org/10.3390/pharmaceutics17101268

