Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- Population (P): Healthy and susceptible populations in in vivo animal or human studies, including immunocompromised, pregnant, and metabolically vulnerable models.
- Intervention/Exposure (I): Chronic or repeated exposure to engineered nanoparticles used in cosmetics (silver, titanium dioxide, zinc oxide, silica) via dermal or oral routes relevant to consumer use. Chronic exposure was defined according to U.S. EPA criteria as repeated exposure exceeding 10% of the organism’s lifespan (>90 days in rodents), applied to both dermal and oral routes [22].
- Comparator (C): Unexposed controls or alternative formulations (e.g., bulk materials, ionic forms, conventional cosmetics without nanoparticles).
- Outcomes (O):
- ○
- Skin and gut microbiota composition and diversity
- ○
- Epithelial barrier integrity (cutaneous and intestinal)
- ○
- Immune signalling pathways, with emphasis on telocyte- and exosome-mediated communication
- ○
- Adverse health effects relevant to long-term cosmetic use
- Additional objective: Identify and discuss gaps in regulatory frameworks—particularly the absence of microbiome-integrated toxicity endpoints and validated chronic-exposure models—and propose systems-biology approaches to improve safety assessments.
- “Nanoparticles AND skin barrier”
- “Nanoparticles AND gut microbiota”
- “Chronic exposure AND cosmetics”
- “Nanotoxicology AND regulation”
- Publication type and date: Peer-reviewed original research articles or systematic reviews published between 1 December 2014 and 15 April 2025.
- Study design and population: In vivo animal or human studies, involving healthy or susceptible populations (e.g., immunocompromised, pregnant, metabolically vulnerable models).
- Exposure: Chronic or repeated exposure—via dermal or oral routes—to cosmetic-relevant engineered nanoparticles (e.g., silver, titanium dioxide, zinc oxide, silica), including realistic consumer-use or occupational scenarios.
- ○
- Chronic exposure definition: “Repeated exposure by the oral, dermal, or inhalation route for more than approximately 10% of the life span in humans (more than approximately 90 days to 2 years in typically used laboratory animal species)” [22].
- Outcomes: At least one of the following:
- ○
- Skin or gut microbiota composition/diversity
- ○
- Epithelial barrier integrity (cutaneous or intestinal)
- ○
- Immune signalling pathways, with emphasis on telocyte and/or exosome-mediated communication
- ○
- Regulatory or safety assessment aspects related to chronic nanoparticle exposure
- Relevance to synthesis groups:
- ○
- Studies assessing biological outcomes (microbiota, barrier, immune markers) were included in the mechanistic toxicology synthesis.
- ○
- Studies addressing regulatory context or safety frameworks were included in the regulatory gap analysis synthesis.
- ○
- Studies meeting both criteria contributed to both syntheses.
- In vitro-only experiments, non-peer-reviewed content, or publications before 2014.
- Focus exclusively on physicochemical nanoparticle characterisation without biological or regulatory endpoints.
- Non-English publications.
- Studies unrelated to skin, gut, microbiota, or immune signalling (e.g., purely environmental monitoring without human/animal relevance).
- Acute exposure models without relevance to chronic cosmetic or consumer-use scenarios.
- Study design and model (species, health status, sample size)
- Nanoparticle characteristics (type, size, surface properties)
- Exposure route and duration
- Outcomes on microbiota (gut or skin), epithelial barrier integrity, immune markers (e.g., cytokines), and telocyte/exosome involvement
- Regulatory context, if reported
- Relevance to chronic cosmetic exposure scenarios
- Microbial abundance and diversity metrics (e.g., Lactobacillus counts)
- Barrier integrity measures (e.g., transepidermal water loss)
- Immune biomarkers (e.g., IL-6, TNF-α)
- Telocyte/exosome-related parameters
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Honari, G.; Maibach, H.I. Skin Structure and Function. In Applied Dermatotoxicology: Clinical Aspects; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 1–10. [Google Scholar]
- Leprince, C.; Simon, M. Epidermal lamellar bodies, essential organelles for the skin barrier. Front. Cell Dev. Biol. 2025, 13, 1597884. [Google Scholar] [CrossRef]
- Clayton, K.; Vallejo, A.F.; Davies, J.; Sirvent, S.; Polak, M.E. Langerhans Cells—Programmed by the Epidermis. Front. Immunol. 2017, 8, 1676. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Soulika, A.M. The Dynamics of the Skin’s Immune System. Int. J. Mol. Sci. 2019, 20, 1811. [Google Scholar] [CrossRef]
- Pat, Y.; Ogulur, I.; Yazici, D.; Mitamura, Y.; Cevhertas, L.; Küçükkase, O.C.; Mesisser, S.S.; Akdis, M.; Nadeau, K.; Akdis, C.A. Effect of Altered Human Exposome on the Skin and Mucosal Epithelial Barrier Integrity. Tissue Barriers 2023, 11, e2133877. [Google Scholar] [CrossRef]
- Gu, Y.; Bian, Q.; Zhou, Y.; Huang, Q.; Gao, J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J. Pharm. Sci. 2022, 17, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, A.; Mordini, D.; Montalti, M. Penetration of Microplastics and Nanoparticles Through Skin: Effects of Size, Shape, and Surface Chemistry. J. Xenobiot. 2025, 15, 6. [Google Scholar] [CrossRef]
- Zia, S.; Islam Aqib, A.; Muneer, A.; Fatima, M.; Atta, K.; Kausar, T.; Zaheer, C.-N.F.; Ahmad, I.; Saeed, M.; Shafique, A. Insights into nanoparticles-induced neurotoxicity and cope up strategies. Front. Neurosci. 2023, 17, 1127460. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.Y.; Kim, G.-D. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants 2024, 13, 1256. [Google Scholar] [CrossRef] [PubMed]
- Parrado, C.; Mercado-Saenz, S.; Perez-Davo, A.; Gilaberte, Y.; Gonzalez, S.; Juarranz, A. Environmental Stressors on Skin Aging: Mechanistic Insights. Front. Pharmacol. 2019, 10, 759. [Google Scholar] [CrossRef]
- Seweryn, A. Interactions between Surfactants and the Skin—Theory and Practice. Adv. Colloid Interface Sci. 2018, 256, 242–256. [Google Scholar] [CrossRef]
- Baur, R.; Kashon, M.; Lukomska, E.; Weatherly, L.M.; Shane, H.L.; Anderson, S.E. Exposure to the Anti-Microbial Chemical Triclosan Disrupts Keratinocyte Function and Skin Integrity in a Model of Reconstructed Human Epidermis. J. Immunotoxicol. 2023, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Lin, Y.-H.; Hou, W.-C.; Li, M.-H.; Chang, J.-W. Exposure to ZnO/TiO2 Nanoparticles Affects Health Outcomes in Cosmetics Salesclerks. Int. J. Environ. Res. Public Health 2020, 17, 6088. [Google Scholar] [CrossRef]
- Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro. Environ. Health Perspect. 2010, 118, 407–413. [Google Scholar] [CrossRef]
- Knaggs, H.; Lephart, E.D. Enhancing Skin Anti-Aging through Healthy Lifestyle Factors. Cosmetics 2023, 10, 142. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Celiberto, L.S.; Yang, H.; Sham, H.P.; Vallance, B.A. The gut–skin axis: A bi-directional, microbiota-driven relationship with therapeutic potential. Gut Microbes 2025, 17, 2473524. [Google Scholar] [CrossRef]
- Zhou, Q.; Verne, G.N. Intestinal hyperpermeability: A gateway to multi-organ failure? J. Clin. Investig. 2018, 128, 4764–4766. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef]
- Prajaati, S.K.; Lekkala, L.; Yadav, D.; Jain, S.; Yadav, H. Microbiome and Postbiotics in Skin Health. Biomedicines 2025, 13, 791. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, A.G.; Santos, C.F.; Bagatini, M.D.; Ignácio, Z.M. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front. Neurosci. 2025, 19, 1541075. [Google Scholar] [CrossRef]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.-K.; Huang, R. Nanoparticles-Induced Potential Toxicity on Human Health: Applications, Toxicity Mechanisms, and Evaluation Models. Med. Comm 2023, 4, e327. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). IRIS Glossary—Chronic Exposure. Available online: https://sor.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=IRIS%20Glossary&filterTerm=chronic (accessed on 25 August 2025).
- Ghebretatios, M.; Schaly, S.; Prakash, S. Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. Int. J. Mol. Sci. 2021, 22, 1942. [Google Scholar] [CrossRef]
- Aguwa, C.; Enwereji, N.; Santiago, S.; Hine, A.; Kels, G.G.; McGee, J.; Lu, J. Targeting Dysbiosis in Psoriasis, Atopic Dermatitis, and Hidradenitis Suppurativa: The Gut–Skin Axis and Microbiome-Directed Therapy. Clin. Dermatol. 2023, 41, 640–649. [Google Scholar] [CrossRef]
- Ramasamy, M.; Lee, J. Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices. BioMed Res. Int. 2016, 2016, 1851242. [Google Scholar] [CrossRef]
- Khanipour-Machiani, M.; Jamshidi, S.; Nikaein, D.; Khosravi, A.; Balal, A. The Inhibitory Effects of Zinc Oxide Nanoparticles on Clinical Isolates of Microsporumcanis in Dogs and Cats. Vet. Med. Sci. 2024, 10, e1316. [Google Scholar] [CrossRef]
- SCCS. Guidance on the Safety Assessment of Nanomaterials in Cosmetics, 2nd ed.; Public Health; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; FDA: Silver Spring, MD, USA, 2014. [Google Scholar]
- Rosa, I.; Marini, M.; Manetti, M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J. Histochem. Cytochem. 2021, 69, 795–818. [Google Scholar] [CrossRef] [PubMed]
- Manole, C.G.; Voiculescu, V.M.; Soare, C.; Ceafalan, L.C.; Gherghiceanu, M.; Hinescu, M.E. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024, 13, 1321. [Google Scholar] [CrossRef]
- Ye, Q.; Yu, Z.-H.; Nie, L.; Wang, F.-X.; Mu, G.; Lu, B. Understanding the Complex Role of Exosomes in Intestinal Ischemia–Reperfusion Injury: From Pathogenesis to Protection. Front. Pharmacol. 2025, 16, 1533628. [Google Scholar] [CrossRef]
- Lima, T.S.M.; Souza, W.; Geaquinto, L.R.O.; Sanches, P.L.; Stępień, E.L.; Meneses, J.; Fernández-de Gortari, E.; Meisner-Kober, N.; Himly, M.; Granjeiro, J.M.; et al. Nanomaterial Exposure, Extracellular Vesicle Biogenesis and Adverse Cellular Outcomes: A Scoping Review. Nanomaterials 2022, 12, 1231. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Yu, N.; Shi, J.; Zhang, Y.; Chen, Z.; Jia, G. Effect of Nanomaterials on Gut Microbiota. Toxics 2023, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhang, T.; Xue, Y.; Wang, S.; Huang, M.; Yang, Y.; Lu, M.; Fan, T.; Li, Y.; Xu, L. Do Engineered Nanomaterials Affect Immune Responses by Interacting with Gut Microbiota? Front. Immunol. 2021, 12, 684605. [Google Scholar] [CrossRef] [PubMed]
- Mikiciuk, J.; Mikiciuk, E.; Wrońska, A.; Szterk, A. Antimicrobial Potential of Commercial Silver Nanoparticles toward Probiotic Bacteria Isolated from Fermented Milk Products. J. Environ. Sci. Health Part B 2016, 51, 222–229. [Google Scholar] [CrossRef]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut–Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Ni, Q.; Zhang, P.; Li, Q.; Han, Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front. Cell Dev. Biol. 2022, 10, 849985. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ryu, H.J.; Seong, N.-W.; So, B.J.; Seo, H.-S.; Kim, J.-H.; Hong, J.-S.; Park, M.-K.; Kim, M.-S.; Kim, Y.-R.; Cho, K.-B.; et al. Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. Int. J. Nanomed. 2024, 9 (Suppl. S2), 127–136. [Google Scholar] [CrossRef]
- Yazdanshenas, M.R.; Rezaei, M.R.; Kharkan, J. Comparative toxicity of zinc oxide nanoparticles and zinc salts in male mice: Hematological, biochemical, and histopathological impacts. Toxicol. Rep. 2025, 14, 102003. [Google Scholar] [CrossRef] [PubMed]
- Landsiedel, R.; Hahn, D.; Ossig, R.; Ritz, S.; Sauer, L.; Buesen, R.; Rehm, S.; Wohlleben, W.; Groeters, S.; Strauss, V.; et al. Gut microbiome and plasma metabolome changes in rats after oral gavage of nanoparticles: Sensitive indicators of possible adverse health effects. Part. Fibre Toxicol. 2022, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, Y.; Hu, C.; Lam, P.K.S.; Lam, J.C.W.; Zhou, B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environ. Pollut. 2018, 234, 307–317. [Google Scholar] [CrossRef]
- Wilding, L.A.; Bassis, C.M.; Walacavage, K.; Hashway, S.; Leroueil, P.R.; Morishita, M.; Maynard, A.D.; Philbert, M.A.; Bergin, I.L. Repeated dose (28 day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology 2016, 10, 513–520. [Google Scholar] [CrossRef]
- Van den Brule, S.; Ambroise, J.; Lecloux, H.; Levard, C.; Soulas, R.; De Temmerman, P.-J.; Palmai-Pallag, M.; Marbaix, E.; Lison, D. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part. Fibre Toxicol. 2016, 13, 38. [Google Scholar] [CrossRef]
- Lyu, Z.; Ghoshdastidar, S.; Rekha, K.R.; Suresh, D.; Mao, J.; Bivens, N.; Kannan, R.; Joshi, T.; Rosenfeld, C.S.; Upendran, A. Developmental Exposure to Silver Nanoparticles Leads to Long Term Gut Dysbiosis and Neurobehavioral Alterations. Sci. Rep. 2021, 11, 6558. [Google Scholar] [CrossRef]
- Chen, Z.; Han, S.; Zhou, D.; Zhou, S.; Jia, G. Effects of Oral Exposure to Titanium Dioxide Nanoparticles on Gut Microbiota and Gut-Associated Metabolism in Vivo. Nanoscale 2019, 11, 22398–22412. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Li, Y.; Dong, T.; Zhang, L.; Zhang, Y.; Li, S.; Hu, H.; Sun, C.; Xia, Y. Exposure to Titanium Dioxide Nanoparticles During Pregnancy Changed Maternal Gut Microbiota and Increased Blood Glucose of Rat. Nanoscale Res. Lett. 2019, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, S.; Hu, Y.; He, X.; Huang, K.; Xu, W. Toxicity and Impact of Silica Nanoparticles on the Configuration of Gut Microbiota in Immunodeficient Mice. Microorganisms 2023, 11, 1183. [Google Scholar] [CrossRef]
- Hirai, T.; Yoshioka, Y.; Takahashi, H.; Ichihashi, K.; Udaka, A.; Mori, T.; Nishijima, N.; Yoshida, T.; Nagano, K.; Kamada, H.; et al. Cutaneous Exposure to Agglomerates of Silica Nanoparticles and Allergen Results in IgE-Biased Immune Response and Increased Sensitivity to Anaphylaxis in Mice. Part. Fibre Toxicol. 2015, 12, 16. [Google Scholar] [CrossRef]
- Palmer, B.C.; Jatana, S.; Phelan-Dickinson, S.J.; DeLouise, L.A. Amorphous Silicon Dioxide Nanoparticles Modulate Immune Responses in a Model of Allergic Contact Dermatitis. Sci. Rep. 2019, 9, 5085. [Google Scholar] [CrossRef]
- Lorenz, C.; von Goetz, N.; Scheringer, M.; Wormuth, M.; Hungerbühler, K. Potential Exposure of German Consumers to Engineered Nanoparticles in Cosmetics and Personal Care Products. Nanotoxicology 2011, 5, 12–29. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; López-Jiménez, A.J.; Abad-Jordá, M.; Rubio-Moraga, A.; Ahrazem, O.; Gómez-Gómez, L.; Niza, E. Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products. Molecules 2021, 26, 4696. [Google Scholar] [CrossRef]
- Hosny, A.E.-D.M.S.; Kashef, M.T.; Taher, H.A.; El-Bazza, Z.E. The Use of Unirradiated and γ-Irradiated Zinc Oxide Nanoparticles as a Preservative in Cosmetic Preparations. Int. J. Nanomed. 2017, 12, 6799–6811. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.K. Adverse Reactions to Cosmetics and Methods of Testing. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 10. [Google Scholar] [CrossRef]
- Skibska, A.; Perlikowska, R. Signal Peptides—Promising Ingredients in Cosmetics. Curr. Protein Pept. Sci. 2021, 22, 716–728. [Google Scholar] [CrossRef]
- Balwierz, R.; Biernat, P.; Jasińska-Balwierz, A.; Siodłak, D.; Kusakiewicz-Dawid, A.; Kurek-Górecka, A.; Olczyk, P.; Ochędzan-Siodłak, W. Potential Carcinogens in Makeup Cosmetics. Int. J. Environ. Res. Public Health 2023, 20, 4780. [Google Scholar] [CrossRef]
- Roso, A.; Aubert, A.; Cambos, S.; Vial, F.; Schäfer, J.; Belin, M.; Gabriel, D.; Bize, C. Contribution of Cosmetic Ingredients and Skin Care Textures to Emotions. Int. J. Cosmet. Sci. 2024, 46, 262–283. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.B.; Kamath, P.P.; Chatterjee, S.; Bhattacherjee, R.; Nayak, U.Y. Recent updates on nanocosmeceutical skin care and anti-aging products. Curr. Pharm. Des. 2022, 28, 1258–1271. [Google Scholar] [CrossRef]
- Liu, L. Penetration of Surfactants into Skin. J. Cosmet. Sci. 2020, 71, 91–109. [Google Scholar] [PubMed]
- Yin, C.; Yu, L.; Feng, L.; Zhou, J.T.; Du, C.; Shao, X.; Cheng, Y. Nanotoxicity of two-dimensional nanomaterials on human skin and the structural evolution of keratin protein. Nanotechnology 2024, 35, 225101. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, G.J.; Lademann, J.; Ribaud, C.; Roberts, M.S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 2007, 37, 251–277. [Google Scholar] [CrossRef]
- Eroğlu, C.; Sinani, G.; Ülker, Z. Current state of lipid nanoparticles (SLN and NLC) for skin applications. Curr. Pharm. Des. 2023, 29, 1632–1644. [Google Scholar] [CrossRef]
- Namdar, R.; Nafisi, S. Nanodiamond Applications in Skin Preparations. Drug Discov. Today 2018, 23, 1152–1159. [Google Scholar] [CrossRef]
- Puglia, C.; Santonocito, D. Cosmeceuticals: Nanotechnology-Based Strategies for the Delivery of Phytocompounds. Curr. Pharm. Des. 2019, 25, 2314–2322. [Google Scholar] [CrossRef]
- Matsuo, K.; Hirobe, S.; Okada, N.; Nakagawa, S. Analysis of Skin Permeability and Toxicological Properties of Amorphous Silica Particles. Biol. Pharm. Bull. 2016, 39, 1201–1205. [Google Scholar] [CrossRef]
- Busch, L.; Keziban, Y.; Dähne, L.; Keck, C.M.; Meinke, M.C.; Lademann, J.; Patzelt, A. The impact of skin massage frequency on the intrafollicular transport of silica nanoparticles: Validation of the ratchet effect on an ex vivo porcine skin model. Eur. J. Pharm. Biopharm. 2021, 158, 266–272. [Google Scholar] [CrossRef]
- Kaur, J.; Anwer, M.K.; Sartaj, A.; Panda, B.P.; Ali, A.; Zafar, A.; Kumar, V.; Gilani, S.J.; Kala, C.; Taleuzzaman, M. ZnO nanoparticles of Rubia cordifolia extract formulation developed and optimized with QbD application, considering ex vivo skin permeation, antimicrobial and antioxidant properties. Molecules 2022, 27, 1450. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Seare, W.J.; DiBernardo, B.; Alhasan, A.H.; Cory, E.; Chasan, P.; Sah, R.L.; Almutairi, K.M.; Almutairi, A. A single-blind study evaluating the efficacy of gold nanoparticle photothermal-assisted liposuction in an ex vivo human tissue model. Aesthet. Surg. J. 2018, 38, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Mousavisani, S.Z.; Raoof, J.-B.; Cheung, K.Y.; Hernández Camargo, A.R.; Ruzgas, T.; Turner, A.P.F.; Mak, W.C. Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents. Biosens. Bioelectron. 2019, 128, 159–165. [Google Scholar] [CrossRef]
- Ang She Tou, K.; Rehman, K.; Wan Ishak, W.M.; Zulfakar, M.H. Influence of omega fatty acids on skin permeation of a coenzyme Q10 nanoemulsion cream formulation: Characterization, in silico and ex vivo determination. Drug Dev. Ind. Pharm. 2019, 45, 1451–1458. [Google Scholar] [CrossRef]
- Demir, E.; Turna Demir, F.; Marcos, R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. In Nanotoxicology in Safety Assessment of Nanomaterials; Advances in Experimental Medicine and Biology; Louro, H., Silva, M.J., Eds.; Springer: Cham, Switzerland, 2022; Volume 1357, pp. 275–301. [Google Scholar] [CrossRef]
- Gonzalez-Moragas, L.; Berto, P.; Vilches, C.; Quidant, R.; Kolovou, A.; Santarella-Mellwig, R.; Schwab, Y.; Stürzenbaum, S.; Roig, A.; Laromaine, A. In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomater. 2017, 53, 598–609. [Google Scholar] [CrossRef]
- Fröhlich, E. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo. Int. J. Nanomed. 2015, 10, 3761–3778. [Google Scholar] [CrossRef]
- Durbakula, K.; Prabhu, V.; Jose, M. Genotoxicity of non-alcoholic mouth rinses: A micronucleus and nuclear abnormalities study with fluorescent microscopy. J. Investig. Clin. Dent. 2017, 9, e12309. [Google Scholar] [CrossRef]
- Liu, W.; Jie, L.; Liu, D.; Makino, E.T.; Krutmann, J.; Mehta, R.C. Protective effects of a day/night dual-antioxidant serum on skin: A randomized, regimen-controlled study in Chinese women exposed to air pollution. J. Cosmet. Dermatol. 2023, 22, 245–254. [Google Scholar] [CrossRef]
- Oh, S.; Jeong, J.; Kim, M.; Jin, X.; Zheng, S.; Kim, Y.-M.; Yi, T.-H. A study of anti-wrinkle functions and improvement of cream with Phaseolus angularis. Int. J. Cosmet. Sci. 2024, 46, 318–332. [Google Scholar] [CrossRef]
- Prakoeswa, C.R.S.; Huda, B.K.N.; Indrawati, D.; Umborowati, M.A.; Anggraeni, S.; Damayanti; Murtiastutik, D.; Kerob, D. Effectiveness and tolerability of an emollient “plus” compared to urea 10% in patients with mild-to-moderate atopic dermatitis. J. Cosmet. Dermatol. 2025, 24, e70051. [Google Scholar] [CrossRef]
- Souza, C.; de Freitas, L.A.P.; Maia Campos, P.M.B.G. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function. AAPS PharmSciTech 2017, 18, 2505–2516. [Google Scholar] [CrossRef]
- Kurtz, C.C.; Mitchell, S.; Nielsen, K.; Crawford, K.D.; Mueller-Spitz, S.R. Acute high-dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice. J. Appl. Toxicol. 2020, 40, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Annangi, B.; Rubio, L.; Alaraby, M.; Bach, J.; Marcos, R.; Hernández, A. Acute and long-term in vitro effects of zinc oxide nanoparticles. Arch. Toxicol. 2016, 90, 2201–2213. [Google Scholar] [CrossRef] [PubMed]
- Mangalampalli, B.; Dumala, N.; Grover, P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul. Toxicol. Pharmacol. 2017, 90, 170–184. [Google Scholar] [CrossRef]
- Nelson, M.A.; Domann, F.E.; Bowden, G.T.; Hooser, S.B.; Fernando, Q.; Carter, D.E. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol. Ind. Health 1993, 9, 623–630. [Google Scholar] [CrossRef]
- Korani, M.; Rezayat, S.M.; Gilani, K.; Arbabi Bidgoli, S.; Adeli, S. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int. J. Nanomed. 2011, 6, 855–862. [Google Scholar] [CrossRef]
- Hansen, T.; Tillmann, T.; Wiench, K.; Creutzenberg, O. Studies on acute dermal toxicity and dermal absorption of a nanoform zinc oxide (ZnO; NM-111) in rats. Toxicol. Lett. 2025, 409, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Yan, R.; Fu, Z.; Wu, T.; Ren, C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. Sci. Total Environ. 2024, 927, 172240. [Google Scholar] [CrossRef]
- Schmid, G.; Kreyling, W.G.; Simon, U. Toxic Effects and Biodistribution of Ultrasmall Gold Nanoparticles. Arch. Toxicol. 2017, 91, 3011–3037. [Google Scholar] [CrossRef]
- Cazenave, J.; Ale, A.; Bacchetta, C.; Rossi, A.S. Nanoparticles toxicity in fish models. Curr. Pharm. Des. 2019, 25, 3927–3942. [Google Scholar] [CrossRef]
- Severino, P.; Silveira, E.F.; Loureiro, K.; Chaud, M.V.; Antonini, D.; Lancellotti, M.; Sarmento, V.H.; da Silva, C.F.; Santana, M.H.A.; Souto, E.B. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur. J. Pharm. Sci. 2017, 106, 177–184. [Google Scholar] [CrossRef]
- Utembe, W.; Tlotleng, N.; Kamng’ona, A.W. A systematic review on the effects of nanomaterials on gut microbiota. Curr. Res. Microbiol. Sci. 2022, 3, 100118. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Mora, V.; Gasbarrini, A.; Mele, M.C. Impact of Food Additive Titanium Dioxide on Gut Microbiota Composition, Microbiota-Associated Functions, and Gut Barrier: A Systematic Review of In Vivo Animal Studies. Int. J. Environ. Res. Public Health 2021, 18, 2008. [Google Scholar] [CrossRef]
- Bettini, S.; Boutet-Robinet, E.; Cartier, C.; Coméra, C.; Gaultier, E.; Dupuy, J.; Naud, N.; Taché, S.; Grysan, P.; Reguer, S.; et al. Food-Grade TiO2 Impairs Intestinal and Systemic Immune Homeostasis, Initiates Preneoplastic Lesions and Promotes Aberrant Crypt Development in the Rat Colon. Sci. Rep. 2017, 7, 40373. [Google Scholar] [CrossRef]
- Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [Google Scholar] [CrossRef]
- Khabir, Z.; Holmes, A.M.; Lai, Y.J.; Liang, L.; Deva, A.; Polikarpov, M.A.; Roberts, M.S.; Zvyagin, A.V. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int. J. Mol. Sci. 2021, 22, 12372. [Google Scholar] [CrossRef]
- Babaei, V.; Ashtarinezhad, A.; Torshabi, M.; Teimourian, S.; Shahmirzaie, M.; Abolghasemi, J.; ZeraatgarGohardani, H.; Vernousfaderani, E.K.; Shirazi, F.H. High Inflammatory Cytokines Gene Expression Can Be Detected in Workers with Prolonged Exposure to Silver and Silica Nanoparticles in Industries. Sci. Rep. 2024, 14, 5667. [Google Scholar] [CrossRef] [PubMed]
- Ratanapokasatit, Y.; Laisuan, W.; Rattananukrom, T.; Petchlorlian, A.; Thaipisuttikul, I.; Sompornrattanaphan, M. How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives. Life 2022, 12, 936. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Bouladoux, N.; Wilhelm, C.; Molloy, M.J.; Salcedo, R.; Kastenmuller, W.; Deming, C.; Quinones, M.; Koo, L.; Conlan, S.; et al. Compartmentalized Control of Skin Immunity by Resident Commensals. Science 2012, 337, 1115–1119. [Google Scholar] [CrossRef]
- Henkler, F.; Tralau, T.; Tentschert, J.; Kneuer, C.; Haase, A.; Platzek, T.; Luch, A.; Götz, M.E. Risk Assessment of Nanomaterials in Cosmetics: A European Union Perspective. Arch. Toxicol. 2012, 86, 1641–1646. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Kuroda, E.; Hirai, T.; Tsutsumi, Y.; Ishii, K.J. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Front. Immunol. 2017, 8, 169. [Google Scholar] [CrossRef]
- Allan, J.; Belz, S.; Hoeveler, A.; Hugas, M.; Okuda, H.; Patri, A.; Rauscher, H.; Silva, P.; Slikker, W.; Sokull-Kluettgen, B.; et al. Regulatory Landscape of Nanotechnology and Nanoplastics from a Global Perspective. Regul. Toxicol. Pharmacol. 2021, 122, 104885. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Saweres-Argüelles, C.; Ramírez-Novillo, I.; Vergara-Barberán, M.; Carrasco-Correa, E.J.; Lerma-García, M.J.; Simó-Alfonso, E.F. Skin Absorption of Inorganic Nanoparticles and Their Toxicity: A Review. Eur. J. Pharm. Biopharm. 2023, 182, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Pinget, G.; Tan, J.; Janac, B.; Kaakoush, N.O.; Angelatos, A.S.; O’Sullivan, J.; Koay, Y.C.; Sierro, F.; Davis, J.; Divakarla, S.K.; et al. Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota–Host Interaction. Front. Nutr. 2019, 6, 57, Erratum in Front. Nutr. 2019, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Han, Y.; Gu, M.; Du, H.; Song, M.; Zhu, X.; Ma, G.; Pan, C.; Wang, W.; Zhao, E.; et al. Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Non-Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. Small 2020, 16, 2001858. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.A.; Morón, B.; Becker, H.M.; Lang, S.; Atrott, K.; Spalinger, M.R.; Scharl, M.; Wojtal, K.A.; Fischbeck-Terhalle, A.; Frey-Wagner, I.; et al. Titanium Dioxide Nanoparticles Exacerbate DSS-Induced Colitis: Role of the NLRP3 Inflammasome. Gut 2017, 66, 1216–1224. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, N.; Lu, H.; Shi, J.; Zhang, Y.; Chen, Z.; Jia, G. Titanium Dioxide Nanoparticles: Revealing the Mechanisms Underlying Hepatotoxicity and Effects in the Gut Microbiota. Arch. Toxicol. 2023, 97, 2051–2067. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, D.; Han, S.; Zhou, S.; Jia, G. Hepatotoxicity and the Role of the Gut–Liver Axis in Rats after Oral Administration of Titanium Dioxide Nanoparticles. Part FibreToxicol. 2019, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Agans, R.T.; Gordon, A.; Hussain, S.; Paliy, O. Titanium Dioxide Nanoparticles Elicit Lower Direct Inhibitory Effect on Human Gut Microbiota Than Silver Nanoparticles. Toxicol. Sci. 2019, 172, 411–416. [Google Scholar] [CrossRef]
- Wang, S.; Ilves, M.; Mäenpää, K.; Zhao, L.; El-Nezami, H.; Karisola, P.; Alenius, H. ZnO Nanoparticles as Potent Inducers of Dermal Immunosuppression in Contact Hypersensitivity in Mice. ACS Nano 2024, 18, 29479–29491. [Google Scholar] [CrossRef]
- Júnior, D.M.; Hausen, M.A.; Asami, J.; Higa, A.M.; Leite, F.L.; Mambrini, G.P.; Rossi, A.L.; Komatsu, D.; Duek, E.A.R. A New Dermal Substitute Containing Polyvinyl Alcohol with Silver Nanoparticles and Collagen with Hyaluronic Acid: In Vitro and In Vivo Approaches. Antibiotics 2021, 10, 742. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Youssef, S.H.; Song, Y.; Nayak, U.Y.; Garg, S. Harnessing the Power of Antimicrobial Peptides: From Mechanisms to Delivery Optimization for Topical Infections. Antibiotics 2025, 14, 379. [Google Scholar] [CrossRef] [PubMed]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef]
- Duan, S.; Wang, H.; Gao, Y.; Wang, X.; Lyu, L.; Wang, Y. Oral Intake of Titanium Dioxide Nanoparticles Affect the Course and Prognosis of Ulcerative Colitis in Mice: Involvement of the ROS-TXNIP-NLRP3 Inflammasome Pathway. Part. Fibre Toxicol. 2023, 20, 24. [Google Scholar] [CrossRef]
- Meier, M.J.; Nguyen, K.C.; Crosthwait, J.; Kawata, A.; Rigden, M.; Leingartner, K.; Wong, A.; Holloway, A.; Shwed, P.S.; Beaudette, L.; et al. Low Dose Antibiotic Ingestion Potentiates Systemic and Microbiome Changes Induced by Silver Nanoparticles. NanoImpact 2021, 23, 100343. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, X.; Du, H.; Guo, X.; Han, Y.; McClements, D.J.; Decker, E.; Xing, B.; Xiao, H. Adverse Effects of Titanium Dioxide Nanoparticles on Beneficial Gut Bacteria and Host Health Based on Untargeted Metabolomics Analysis. Environ. Res. 2023, 228, 115921. [Google Scholar] [CrossRef] [PubMed]
- Larese Filon, F.; Bello, D.; Cherrie, J.W.; Sleeuwenhoek, A.; Spaan, S.; Brouwer, D.H. Occupational Dermal Exposure to Nanoparticles and Nano-Enabled Products: Part I—Factors Affecting Skin Absorption. Int. J. Hyg. Environ. Health 2016, 219, 536–544. [Google Scholar] [CrossRef]
- Brouwer, D.H.; Spaan, S.; Roff, M.; Sleeuwenhoek, A.; Tuinman, I.; Goede, H.; van Duuren-Stuurman, B.; Filon, F.L.; Bello, D.; Cherrie, J.W. Occupational Dermal Exposure to Nanoparticles and Nano-Enabled Products: Part 2, Exploration of Exposure Processes and Methods of Assessment. Int. J. Hyg. Environ. Health 2016, 219, 503–512. [Google Scholar] [CrossRef]
- Hartwig, O.; Loretz, B.; Nougarede, A.; Jary, D.; Sulpice, E.; Gidrol, X.; Navarro, F.; Lehr, C.M. Leaky Gut Model of the Human Intestinal Mucosa for Testing siRNA-Based Nanomedicine Targeting JAK1. J. Control. Release 2022, 345, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, M.; Xue, Y. Review of the Effects of Silver Nanoparticle Exposure on Gut Bacteria. J. Appl. Toxicol. 2019, 39, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Akombaetwa, N.; Ilangala, A.B.; Thom, L.; Memvanga, P.B.; Witika, B.A.; Buya, A.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023, 15, 656. [Google Scholar] [CrossRef] [PubMed]
- Aljuffali, I.A.; Huang, C.H.; Fang, J.Y. Nanomedical Strategies for Targeting Skin Microbiomes. Curr. Drug Metab. 2015, 16, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Jain, P.; Kurmi, J.; Jain, D.; Jain, R.; Chandel, S.; Sahu, A.; Mody, N.; Upadhaya, S.; Jain, A. Novel Strategies for Effective Transdermal Drug Delivery: A Review. Crit. Rev. Ther. Drug Carr. Syst. 2014, 31, 219–272. [Google Scholar] [CrossRef]
- Akdis, C.A. Does the Epithelial Barrier Hypothesis Explain the Increase in Allergy, Autoimmunity and Other Chronic Conditions? Nat. Rev. Immunol. 2021, 21, 739–751. [Google Scholar] [CrossRef]
- Celebi Sozener, Z.; Özbey Yücel, Ü.; Altiner, S.; OzdelOztürk, B.; Cerci, P.; Türk, M.; Gorgülü Akin, B.; Akdis, M.; Yilmaz, I.; Ozdemir, C.; et al. The External Exposome and Allergies: From the Perspective of the Epithelial Barrier Hypothesis. Front. Allergy 2022, 3, 887672. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The Microbiota in Adaptive Immune Homeostasis and Disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef]
- Zhou, G.; Yu, R.; Ahmed, T.; Jiang, H.; Zhang, M.; Lv, L.; Alhumaydhi, F.A.; Allemailem, K.S.; Li, B. Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children. Front. Microbiol. 2021, 12, 700707. [Google Scholar] [CrossRef]




| Component | Function | Interaction with Microbiota | Impact of Dysbiosis |
|---|---|---|---|
| Skin Barrier | Physical and immunological protection | Supports commensal bacteria, produces antimicrobial peptides | Inflammation, increased permeability |
| Gut Barrier | Nutrient absorption, immune modulation | Produces short-chain fatty acids, trains the immune system | Leaky gut, systemic inflammation |
| Hypothalamic–Pituitary–Adrenal axis | Stress and neuroendocrine regulation | Bidirectional gut–skin signalling via cortisol | Cortisol dysregulation, immune shifts |
| Microbiome (Gut/Skin) | Homeostasis, pathogen resistance | Maintains immune balance, produces metabolites | Supports inflammation, immune dysregulation |
| Study (Author, Year) | Random Allocation | Blinding of Investigators | Blinded Outcome Assessment | Incomplete Outcome Data | Selective Reporting | Other Bias (e.g., Dose Relevance) | Overall Risk of Bias |
|---|---|---|---|---|---|---|---|
| Ryu et al. (2014) [39] | Unclear | No | No | Low | Low | Moderate | High |
| Yazdanshenas et al. (2025) [40] | Unclear | No | No | Low | Unclear | Moderate | High |
| Landsiedel et al. (2022) [41] | Low | Unclear | No | Low | Low | Low | Moderate |
| Chen et al. (2018) [42] | Unclear | No | No | Low | Unclear | Moderate | High |
| Wilding et al. (2016) [43] | Low | Low | Unclear | Low | Low | Low | Low |
| Van den Brule et al. (2016) [44] | Low | Unclear | Unclear | Low | Low | Low | Moderate |
| Lyu et al. (2021) [45] | Unclear | No | No | Low | Low | Moderate | High |
| Chen et al. (2019) [46] | Unclear | No | No | Low | Unclear | Moderate | High |
| Mao et al. (2019) [47] | Unclear | No | No | Low | Unclear | Moderate | High |
| Shabbir et al. (2023) [48] | Low | Unclear | No | Low | Low | Moderate | Moderate |
| Hirai et al. (2015) [49] | Low | Low | Unclear | Low | Low | Low | Low |
| Palmer et al. (2019) [50] | Low | Low | Low | Low | Low | Low | Low |
| Study | Exposure | Nanoparticle Type | Sample Size | Health Status | Model | Key Findings | Authors’ Conclusions | Regulatory Gap | Funding/Conflict of Interest |
|---|---|---|---|---|---|---|---|---|---|
| 1. Ryu et al. (2014) [39] | Topical | Silica NPs | 100 | Healthy | Rats | No systemic toxicity after 90-day | Safe at tested dose | Limited human data | Funding—Yes Conflict of interest—No |
| 2. Yazdanshenas et al. (2025) [40] | Oral | ZnO NPs + salts | 45 | Healthy | Mice | Hematologic, biochemical, and histopathologic changes; ZnCl2 is most toxic | ZnCl2 is more toxic than ZnO NPs | Lack of comparative safety guidelines | Funding—NS Conflict of interest—No |
| 3. Landsiedel et al. (2022) [41] | Oral | SiO2,AgNPs | NS | Healthy | Rats | Gut microbiota and plasma metabolite shifts | Subclinical effects observed | No microbiome endpoints in safety assessments | Funding—Yes Conflict of interest—No |
| 4. Chen et al.(2018) [42] | Oral | TiO2 NPs | NS | Healthy | Zebrafish | Microbiota dysbiosis, inflammation, and increased permeability | Adverse host effects | Lack of co-exposure assessments | Funding/Conflict of Interest—No |
| 5. Wilding et al. (2016) [43] | Oral | AgNPs | 5/cage | Healthy | Mice | No major microbiota change | Minimal impact | Need chronic exposure data | Funding/Conflict of Interest—NS |
| 6. Van den Brule et al.(2016) [44] | Oral | AgNPs | 6 female | Healthy | Mice | Microbiota shifts, no histopathological change | Disturbed microbiota | Missing subclinical endpoints | Funding/Conflict of Interest—No |
| 7. Lyu et al. (2021) [45] | Oral | AgNPs | 12 dams | Healthy | Mice | Offspring: dysbiosis, increased adiposity, behaviour changes | Gut–brain axis impact | No long-term neurodevelopment data | Funding—Yes Conflict of interest—No |
| 8. Chen et al. (2019) [46] | Oral | TiO2 NPs | 6 | Healthy | Rats | Dysbiosis, metabolic and colon changes, increased inflammation | Chronic metabolic effects are overlooked | No chronic metabolic assessment in cosmetics | Funding/Conflict of Interest—No |
| 9. Mao et al. (2019) [47] | Oral | TiO2 NPs | 4/group | Rats | Dysbiosis, hyperglycemia | Gestational diabetes risk | No pregnancy-specific guidance | Funding/Conflict of Interest—No | |
| 10. Shabbir etal. (2023) [48] | Oral | SIO2 NPs | 5 | Immunosuppressed | Mice | Microbiota shifts, no overt toxicity | Microbiome effects in susceptible hosts | No data for immunocompromised hosts | Funding—Yes Conflict of interest—No |
| 11. Hirai et al. (2015) [49] | Topical | SiNPs agglomerates | 5–12/group | Healthy | Mice | Increased IgE, anaphylaxis with allergen | Sensitisation risk | Allergy potentiation was not addressed | Funding/Conflict of Interest—No |
| 12. Palmer et al. (2019) [50] | Topical | SiO2 NPs | NS | Healthy | Mice | Decreased inflammation in the contact dermatitis model | Therapeutic potential | Immunomodulation endpoints missing | Funding/Conflict of Interest—No |
| Nanoparticle Type | Silver Nanoparticles (AgNPs) | Zinc Oxide (ZnO) | Silica Nanoparticles (SiNPs) | Titanium Dioxide (TiO2) |
|---|---|---|---|---|
| Number of studies | 3 [43,44,45] | 1 [40] | 5 [39,41,48,49,50] | 3 [42,46,47] |
| Regulatory relevance | No requirements for neurodevelopmental or microbiome testing in long-term cosmetic NP exposure. | Guidelines address topical safety but not chronic ingestion or ionic form comparisons. | No microbiome or allergen potentiation endpoints in leave-on cosmetic safety assessments. | No chronic metabolic or pregnancy-specific endpoints in SCCS/FDA guidelines. |
| Human evidence | Workers show chronic respiratory inflammation; dermal use in wound dressings → occasional argyria; microbiome effects in humans are not well studied. | Used widely in sunscreen; minimal systemic toxicity in healthy users; oral exposure data lacking. | Occupational exposure linked to chronic inflammation in inhalation settings; no consumer-use chronic dermal/oral studies. | Occupational exposure linked to respiratory inflammation; limited direct human gut/skin microbiome data; possible photocatalytic skin effects in sunscreen workers. |
| Animal Model | Gut microbiota shifts (↓ beneficial taxa), ↑ pro-inflammatory species, neurobehavioral changes in perinatal exposure, and immune modulation. | Haematologic, biochemical, and organ toxicity; ZnCl2 is more toxic than ZnO NPs. | Oral: microbiota/metabolite shifts without overt toxicity; Dermal: allergen co-exposure → ↑IgE/anaphylaxis; dermatitis model → reduced inflammation. | Gut dysbiosis, ↑ intestinal permeability, oxidative stress, metabolic changes (hyperglycemia, altered amino acids), and immune activation. Pregnancy exposure → gestational diabetes risk in rats. |
| Jurisdiction | Main Regulatory Body | Current NP AssessmentScope | Gaps Relevant to Chronic Exposure & Microbiome |
|---|---|---|---|
| European Union | SCCS under EU Cosmetics Regulation (EC) No 1223/2009 | Requires notification & safety assessment of NPs; acute &subchronic toxicity data; particle characterisation. | No requirement for chronic exposure testing; no microbiome or immune endpoint integration; pregnancy/vulnerable population data not mandated. |
| United States | FDA (Cosmetics not pre-approved, except colour additives) | Manufacturers are responsible for safety, voluntary registration, and toxicology data are rarely required unless safety concerns arise. | No NP-specific chronic exposure guidelines; no requirement for microbiome/barrier integrity studies; lack of occupational exposure considerations. |
| Canada | Health Canada (Cosmetic Regulations, Food and Drugs Act) | Ingredient Hotlist bans/restrictions; NP evaluation case-by-case; relies on existing toxicology. | No standardized NP chronic exposure framework; no gut–skin axis or microbiome endpoints. |
| Japan | MHLW under the Pharmaceutical and Medical Device Act | Cosmetics are regulated for safety; NP-specific risk assessment is rare; focus on product efficacy & safety at intended use. | No chronic NP exposure models; no immune or microbiome testing requirements |
| Australia | NICNAS (now AICIS) | NP definition included notification required for new industrial chemicals including NPs. | No specific chronic cosmetic-use testing for microbiome/immune outcomes; minimal dermal penetration guidance for NPs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pîrvulescu, L.-E.; Popescu, S.-C.; Popescu, R.; Voiculescu, V.-M.; Negrei, C. Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review. Pharmaceutics 2025, 17, 1246. https://doi.org/10.3390/pharmaceutics17101246
Pîrvulescu L-E, Popescu S-C, Popescu R, Voiculescu V-M, Negrei C. Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review. Pharmaceutics. 2025; 17(10):1246. https://doi.org/10.3390/pharmaceutics17101246
Chicago/Turabian StylePîrvulescu, Loredana-Elena, Sorana-Cristiana Popescu, Roman Popescu, Vlad-Mihai Voiculescu, and Carolina Negrei. 2025. "Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review" Pharmaceutics 17, no. 10: 1246. https://doi.org/10.3390/pharmaceutics17101246
APA StylePîrvulescu, L.-E., Popescu, S.-C., Popescu, R., Voiculescu, V.-M., & Negrei, C. (2025). Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review. Pharmaceutics, 17(10), 1246. https://doi.org/10.3390/pharmaceutics17101246

