The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies
Abstract
1. Introduction
1.1. Skin
1.2. Wound Healing
1.3. Acute and Chronic Wounds
2. Conventional Clinical Practices in Wound Healing
3. Characteristics of an Ideal Wound Healing System
4. Importance of Hydrogels in the Wound Healing System
Hydrogels for Treatment of Burn Wounds
5. Hydrogel Composition and Types
5.1. Classification Based on Compositions
5.1.1. Natural Hydrogels
5.1.2. Synthetic Hydrogels
5.1.3. Hybrid Hydrogels
5.2. Classification Based on Network
5.2.1. Physical Hydrogels
5.2.2. Chemical Hydrogels
6. Importance of Natural Hydrogels in Wound Healing
6.1. Polysaccharide-Based Hydrogels
6.1.1. Alginate-Based Hydrogels
6.1.2. Chitosan-Based Hydrogels
6.1.3. Hyaluronic Acid-Based Hydrogels
6.1.4. Cellulose-Based Hydrogels
6.1.5. Dextran-Based Hydrogels
6.1.6. Starch-Based Hydrogels
6.1.7. Pectin-Based Hydrgels
6.2. Protein-Based Hydrogels
6.2.1. Gelatin-Based Hydrogels
6.2.2. Collagen-Based Hydrogels
6.2.3. Fibrin-Based Hydrogels
6.2.4. Silk Fibroin-Based Hydrogels
6.2.5. Peptide-Based Hydrogels
7. Beyond the Benefits: A Closer Look at the Risks and Challenges of Natural Hydrogels
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sanabria-de la Torre, R.; Ceres-Muñoz, M.; Pretel-Lara, C.; Montero-Vílchez, T.; Arias-Santiago, S. Microtopography and barrier function in healthy skin: Differences between forearm, cheek and palm. Cosmetics 2024, 11, 5. [Google Scholar] [CrossRef]
- Isom, M.; Desaire, H. Skin surface sebum analysis by ESI-MS. Biomolecules 2024, 14, 790. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.M. Skin epidermis and barrier function. Int. J. Mol. Sci. 2021, 22, 3035. [Google Scholar] [CrossRef]
- Iliescu, C.A.; Beiu, C.; Tebeică, T.; Popa, L.G. Prurigo pigmentosa associated with a ketogenic diet in a Romanian patient: A case report. Healthcare 2025, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Flores-Balderas, X.; Peña-Peña, M.; Rada, K.M.; Alvarez-Alvarez, Y.Q.; Guzmán-Martín, C.A.; Sánchez-Gloria, J.L.; Huang, F.; Ruiz-Ojeda, D.; Morán-Ramos, S.; Springall, R.; et al. Beneficial effects of plant-based diets on skin health and inflammatory skin diseases. Nutrients 2023, 15, 2842. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Soulika, A.M. The dynamics of the skin’s immune system. Int. J. Mol. Sci. 2019, 20, 1811. [Google Scholar] [CrossRef]
- Berardesca, E.; Cameli, N. Perspectives of regenerative medicine in dermatology and cosmetology. Cosmetics 2024, 11, 188. [Google Scholar] [CrossRef]
- Pleguezuelos-Beltrán, P.; Herráiz-Gil, S.; Martínez-Moreno, D.; Medraño-Fernandez, I.; León, C.; Guerrero-Aspizua, S. Regenerative cosmetics: Skin tissue engineering for anti-aging, repair, and hair restoration. Cosmetics 2024, 11, 121. [Google Scholar] [CrossRef]
- Albayati, N.; Talluri, S.R.; Dholaria, N.; Michniak-Kohn, B. AI-driven innovation in skin kinetics for transdermal drug delivery: Overcoming barriers and enhancing precision. Pharmaceutics 2025, 17, 188. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, S.; Wang, G.; Yan, Z.; Wu, G.; Tang, L.; Wang, W. Nanocarrier-based transdermal drug delivery systems for dermatological therapy. Pharmaceutics 2024, 16, 1384. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.; Kim, S.K.; Park, H.; Kim, J.E.; Lee, S. Autophagy: Guardian of skin barrier. Biomedicines 2022, 10, 1817. [Google Scholar] [CrossRef]
- Sun, J.; Yao, K.; Huang, G.; Zhang, C.; Leach, M.; Huang, K.; Yang, X. Machine learning methods in skin disease recognition: A systematic review. Processes 2023, 11, 1003. [Google Scholar] [CrossRef]
- Szabó, K.; Bolla, B.S.; Erdei, L.; Balogh, F.; Kemény, L. Are the cutaneous microbiota a guardian of the skin’s physical barrier? The intricate relationship between skin microbes and barrier integrity. Int. J. Mol. Sci. 2023, 24, 15962. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, M. Skin barrier function and the microbiome. Int. J. Mol. Sci. 2022, 23, 13071. [Google Scholar] [CrossRef]
- Mazini, L.; Rochette, L.; Hamdan, Y.; Malka, G. Skin immunomodulation during regeneration: Emerging new targets. J. Pers. Med. 2021, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Cobo, R.; García-Piqueras, J.; Cobo, J.; Vega, J.A. The human cutaneous sensory corpuscles: An update. J. Clin. Med. 2021, 10, 227. [Google Scholar] [CrossRef]
- Menichetti, A.; Mordini, D.; Vicenzi, S.; Montalti, M. Melanin for photoprotection and hair coloration in the emerging era of nanocosmetics. Int. J. Mol. Sci. 2024, 25, 5862. [Google Scholar] [CrossRef] [PubMed]
- Riyahi, F.; Riahy, S.; Yousefpour, M. Reviewing the physiology of cutaneous wound healing and evaluating the effect of exercise on it: A narrative review article. Ann. Mil. Health Sci. Res. 2021, 19, e115926. [Google Scholar] [CrossRef]
- Thiruvoth, F.; Mohapatra, D.; Sivakumar, D.; Chittoria, R.; Nandhagopal, V. Current concepts in the physiology of adult wound healing. Plast. Aesthet. Res. 2015, 2, 250–256. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Bogadi, S.; Uddin, M.E.; Rahman, H.M.; Satyanarayana Reddy Karri, V.V.; Begum, R.; Udeabor, S.E. Wound healing in the modern era: Emerging research, biomedical advances, and transformative clinical approaches. J. Drug Deliv. Sci. Technol. 2025, 110, 107058. [Google Scholar] [CrossRef]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of acute and chronic wound healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Gushiken, L.F.S.; Beserra, F.P.; Bastos, J.K.; Jackson, C.J.; Pellizzon, C.H. Cutaneous wound healing: An update from physiopathology to current therapies. Life 2021, 11, 665. [Google Scholar] [CrossRef]
- Almadani, Y.H.; Vorstenbosch, J.; Davison, P.G.; Murphy, A.M. Wound healing: A comprehensive review. Semin. Plast. Surg. 2021, 35, 141–144. [Google Scholar] [CrossRef]
- Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Syst. Rev. 2016, 5, 152. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Winter, G.D. Some factors affecting skin and wound healing. J. Tissue Viability 2006, 16, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Al Mamun, A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front. Immunol. 2024, 15, 1395479. [Google Scholar] [CrossRef]
- Fernández-Guarino, M.; Hernández-Bule, M.L.; Bacci, S. Cellular and molecular processes in wound healing. Biomedicines 2023, 11, 2526. [Google Scholar] [CrossRef]
- Stanciu, C.T.; Vermesan, D.; Pop, D.L.; Hogea, B.; Vlad, S.V. Functional and clinical outcomes in acute wound management: Measuring the impact of negative pressure wound therapy and specialized physical therapy. Life 2025, 15, 511. [Google Scholar] [CrossRef] [PubMed]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment strategies for infected wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef] [PubMed]
- Millán-Reyes, M.J.; Afanador-Restrepo, D.F.; Carcelén-Fraile, M.D.C.; Aibar-Almazán, A.; Sánchez-Alcalá, M.; Cano-Sánchez, J.; Mesas-Aróstegu, M.A.; Castellote-Caballer, Y. Reducing infections and improving healing in complex wounds: A systematic review and meta-analysis. J. Clin. Med. 2025, 14, 3237. [Google Scholar] [CrossRef]
- Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in chronic wounds. Int. J. Mol. Sci. 2016, 17, 2085. [Google Scholar] [CrossRef]
- Schilrreff, P.; Alexiev, U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int. J. Mol. Sci. 2022, 23, 4928. [Google Scholar] [CrossRef]
- Popescu, V.; Cauni, V.; Petrutescu, M.S.; Rustin, M.M.; Bocai, R.; Turculet, C.R.; Doran, H.; Patrascu, T.; Lazar, A.M.; Cretoiu, D.; et al. Chronic wound management: From gauze to homologous cellular matrix. Biomedicines 2023, 11, 2457. [Google Scholar] [CrossRef]
- Diban, F.; Di Lodovico, S.; Di Fermo, P.; D’Ercole, S.; D’Arcangelo, S.; Di Giulio, M.; Cellini, L. Biofilms in chronic wound infections: Innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int. J. Mol. Sci. 2023, 24, 1004. [Google Scholar] [CrossRef] [PubMed]
- Spinazzola, E.; Picaud, G.; Becchi, S.; Pittarello, M.; Ricci, E.; Chaumont, M.; Subsol, G.; Pareschi, F.; Teot, L.; Secco, J. Chronic ulcers healing prediction through machine learning approaches: Preliminary results on diabetic foot ulcers case study. J. Clin. Med. 2025, 14, 2943. [Google Scholar] [CrossRef]
- Alberts, A.; Bratu, A.G.; Niculescu, A.G.; Grumezescu, A.M. New perspectives of hydrogels in chronic wound management. Molecules 2025, 30, 686. [Google Scholar] [CrossRef]
- Wolny, D.; Štěpánek, L.; Horáková, D.; Thomas, J.; Zapletalová, J.; Patel, M.S. Risk factors for non-healing wounds—A single-centre study. J. Clin. Med. 2024, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
- La Monica, F.; Campora, S.; Ghersi, G. Collagen-based scaffolds for chronic skin wound treatment. Gels 2024, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Tronci, G. The application of collagen in advanced wound dressings. In Advanced Textiles for Wound Care; The Textile Institute Book Series; Woodhead Publishing: Cambridge, UK, 2019; pp. 363–389. [Google Scholar] [CrossRef]
- Metcalf, D.G.; Bowler, P.G. Biofilm delays wound healing: A review of the evidence. Burn. Trauma 2013, 1, 5–12. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Zhang, C.; Jin, Z.; Midgley, A.C. Dermal fibrosis and the current scope of hydrogel strategies for scarless wound healing. Fibrosis 2024, 2, 10010. [Google Scholar] [CrossRef]
- Kohlhauser, M.; Mayrhofer, M.; Kamolz, L.P.; Smolle, C. An update on molecular mechanisms of scarring—A narrative review. Int. J. Mol. Sci. 2024, 25, 11579. [Google Scholar] [CrossRef]
- Shirakami, E.; Yamakawa, S.; Hayashida, K. Strategies to prevent hypertrophic scar formation: A review of therapeutic interventions based on molecular evidence. Burn. Trauma 2020, 8, tkz003. [Google Scholar] [CrossRef]
- Ngo, Q.C.; Ogrin, R.; Kumar, D.K. Computerised prediction of healing for venous leg ulcers. Sci. Rep. 2022, 12, 17962. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.; Lopes, M.; Ramos, P.; Neves Amado, J.; Alves, P. Prognostic factors for delayed healing of complex wounds in adults: A scoping review protocol. Nurs. Rep. 2022, 12, 904–911. [Google Scholar] [CrossRef]
- Cretu, A.; Grosu-Bularda, A.; Bordeanu-Diaconescu, E.-M.; Hodea, F.-V.; Ratoiu, V.-A.; Dumitru, C.-S.; Andrei, M.-C.; Neagu, T.-P.; Lascar, I.; Hariga, C.-S. Strategies for optimizing acute burn wound therapy: A comprehensive review. Medicina 2025, 61, 128. [Google Scholar] [CrossRef]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef]
- El Ayadi, A.; Jay, J.W.; Prasai, A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int. J. Mol. Sci. 2020, 21, 1105. [Google Scholar] [CrossRef]
- Kolimi, P.; Narala, S.; Nyavanandi, D.; Youssef, A.A.A.; Dudhipala, N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022, 11, 2439. [Google Scholar] [CrossRef]
- Wong, C.C.Q.; Tomura, K.; Yamamoto, O. Wound healing performance in a moist environment of crystalline glucose/mannose film as a new dressing material using a rat model: Comparing with medical-grade wound dressing and alginate. Pharmaceuticals 2023, 16, 1532. [Google Scholar] [CrossRef]
- Pott, F.S.; Meier, M.J.; Stocco, J.G.D.; Crozeta, C.; Ribas, J.D. The effectiveness of hydrocolloidal dressings versus other dressings in the healing of pressure ulcers in adults and older adults: A systematic review and meta-analysis. Rev. Lat.-Am. Enferm. 2014, 22, 511–520. [Google Scholar] [CrossRef]
- Yousefian, F.; Hesari, R.; Jensen, T.; Obagi, S.; Rgeai, A.; Damiani, G.; Bunick, C.G.; Grada, A. Antimicrobial Wound Dressings: A Concise Review for Clinicians. Antibiotics 2023, 12, 1434. [Google Scholar] [CrossRef] [PubMed]
- Bazaliński, D.; Kózka, M.; Karnas, M.; Więch, P. Effectiveness of Chronic Wound Debridement with the Use of Larvae of Lucilia sericata. J. Clin. Med. 2019, 8, 1845. [Google Scholar] [CrossRef]
- Tatarusanu, S.-M.; Lupascu, F.-G.; Profire, B.-S.; Szilagyi, A.; Gardikiotis, I.; Iacob, A.-T.; Caluian, I.; Herciu, L.; Giscă, T.-C.; Baican, M.-C. Modern Approaches in Wounds Management. Polymers 2023, 15, 3648. [Google Scholar] [CrossRef]
- Astasio-Picado, Á.; Montero, M.D.M.; López-Sánchez, M.; Jurado-Palomo, J.; Cobos-Moreno, P.; Gómez-Martín, B. The Effectiveness of Negative Pressure Therapy: Nursing Approach. J. Pers. Med. 2022, 12, 1813. [Google Scholar] [CrossRef] [PubMed]
- Beraja, G.E.; Gruzmark, F.; Pastar, I.; Lev-Tov, H. What’s New in Wound Healing: Treatment Advances and Microbial Insights. Am. J. Clin. Dermatol. 2025, 26, 677–694. [Google Scholar] [CrossRef]
- Wodash, A.J. Wet-to-Dry Dressings Do Not Provide Moist Wound Healing. J. Am. Coll. Clin. Wound Spec. 2013, 4, 63–66. [Google Scholar] [CrossRef]
- Britto, E.J.; Nezwek, T.A.; Popowicz, P.; Robins, M. Wound dressings. In StatPearls; StatPearls Publishing: Tampa/St. Petersburg, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546248/ (accessed on 11 January 2023).
- Kim, Y.C.; Shin, J.C.; Park, C.I.; Oh, S.H.; Choi, S.M.; Kim, Y.S. Efficacy of hydrocolloid occlusive dressing technique in decubitus ulcer treatment: A comparative study. Yonsei Med. J. 1996, 37, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Bhoyar, S.D.; Malhotra, K.; Madke, B. Dressing Materials: A Comprehensive Review. J. Cutan. Aesthet. Surg. 2023, 16, 81–89. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Buyana, B. Alginate in Wound Dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, Ł.; Kuś, M.; Jurak, J.; Rybka, M.; Kuczeriszka, M.; Stradczuk-Mazurek, M.; Konop, M. Biomedical potential of alginate wound dressings—From preclinical studies to clinical applications: A review. Int. J. Biol. Macromol. 2025, 309 Pt 2, 142908. [Google Scholar] [CrossRef]
- Khalil, E.A.; Abou-Zekry, S.S.; Sami, D.G.; Abdellatif, A. Natural Products as Wound Healing Agents. In Wound Healing Research; Kumar, P., Kothari, V., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Enoch, S.; Grey, J.E.; Harding, K.G. ABC of wound healing. Non-surgical and drug treatments. BMJ 2006, 332, 900–903. [Google Scholar] [CrossRef]
- Trinh, X.-T.; Long, N.-V.; Van Anh, L.T.; Nga, P.T.; Giang, N.N.; Chien, P.N.; Nam, S.-Y.; Heo, C.-Y. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int. J. Mol. Sci. 2022, 23, 9573. [Google Scholar] [CrossRef]
- Ramundo, J.; Gray, M. Enzymatic wound debridement. J. Wound Ostomy Cont. Nurs. 2008, 35, 273–280. [Google Scholar] [CrossRef]
- Verbanic, S.; Shen, Y.; Lee, J.; Deacon, J.M.; Chen, I.A. Microbial predictors of healing ans short-term effect of debridement on the microbiome of chronic wounds. NPJ Biofilms Microbiomes 2020, 6, 21. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.; Kim, J. Wound Pain Management; The Present and the Future. J. Wound Manag. Res. 2024, 20, 199–211. [Google Scholar] [CrossRef]
- Baghavath, P.R.; Manovah, A.; Ram, P.S.P.; Raj, E.K. The comparison of total contact casting with conventional dressing for wound healing in patients with diabetic foot ulcer. Int. J. Acad. Med. Pharm. 2023, 5, 861–865. [Google Scholar]
- Romanelli, M.; Manzo Margiotta, F.; Michelucci, A.; Granieri, G.; Janowska, A.; Dini, V. Compression Therapy in Dermatology. Curr. Dermatol. Rep. 2023, 12, 33–37. [Google Scholar] [CrossRef]
- Seth, I.; Gibson, D.; Lim, B.; Cevik, J.; Bulloch, G.; Xie, Y.; Marcaccini, G.; Rozen, W.M.; Cuomo, R. Advancements, applications, and safety of negative pressure wound therapy: A comprehensive review of its impact on wound outcomes. Plast. Aesthet. Res. 2024, 11, 29. [Google Scholar] [CrossRef]
- Barysch, M.J.; Läuchli, S. Oxygen Therapy in Wound Healing. In Local Wound Care for Dermatologists; Alavi, A., Maibach, H., Eds.; Updates in Clinical Dermatology; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Capó, X.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Batle, J.M.; Tur, J.A.; Pons, A.; Sureda, A.; Tejada, S. Hyperbaric Oxygen Therapy Reduces Oxidative Stress and Inflammation, and Increases Growth Factors Favouring the Healing Process of Diabetic Wounds. Int. J. Mol. Sci. 2023, 24, 7040. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.P.; Datli, A. Surgical Flaps in Wound Healing—An Update on Evidence-Based Management. In Chronic Wound Management; Mani, R., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Ovington, L.G. Surgical Wound Closure and Healing. In Wound Healing-Recent Advances and Future Opportunities; Ethicon, Inc.: Raritan, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Gupta, A.; Bah, M. NSAIDs in the Treatment of Postoperative Pain. Curr. Pain Headache Rep. 2016, 20, 62. [Google Scholar] [CrossRef]
- Schug, S.A. Do NSAIDs Really Interfere with Healing after Surgery? J. Clin. Med. 2021, 10, 2359. [Google Scholar] [CrossRef]
- Saini, S.; Dhiman, A.; Nanda, S. Traditional Indian medical plants with potential wound healing activity: A review. Int. J. Pharm. Sci. Res. 2016, 7, 1809–1819. [Google Scholar] [CrossRef]
- Patel, B.; Kothari, V.; Acharya, N. Mainstreaming Traditional Practices for Wound Management. In Wound Healing Research; Kumar, P., Kothari, V., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Velickovic, V.; Jankovic, D. Challenges around quantifying uncertainty in a holistic approach to hard-to-heal wound management: Health economic perspective. Int. Wound J. 2023, 20, 792–798. [Google Scholar] [CrossRef]
- Wang, C.; Shirzaei Sani, E.; Shih, C.-D.; Lim, C.T.; Wang, J.; Armstrong, D.G.; Gao, W. Wound Management Materials and Technologies: From Bench to Bedside and Beyond. Nat. Rev. Mater. 2024, 9, 550–566. [Google Scholar] [CrossRef] [PubMed]
- Pagano, C.; Viseras Iborra, C.A.; Perioli, L. Recent Approaches for Wound Treatment. Int. J. Mol. Sci. 2023, 24, 5959. [Google Scholar] [CrossRef]
- Khonakdar, H.; Ehsani, M.; Naderi, G.; Shokrolahi, F.; Khonakdar, H.A. Recent Advances in Injectable Stimuli-Responsive Hydrogels for Biomedical Applications. J. Polym. Environ. 2025, 33, 3512–3554. [Google Scholar] [CrossRef]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- Ding, K.; Liao, M.; Wang, Y.; Lu, J.R. Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications. Gels 2025, 11, 420. [Google Scholar] [CrossRef]
- Protsak, I.S.; Morozov, Y.M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025, 11, 30. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Soylu, Z.; Oktay, B.; Erarslan, A.; Özerol, E.A. Multifunctional Polymeric Wound Dressings. Polym. Bull. 2025, 82, 5325–5383. [Google Scholar] [CrossRef]
- Vivcharenko, V.; Trzaskowska, M.; Przekora, A. Wound Dressing Modifications for Accelerated Healing of Infected Wounds. Int. J. Mol. Sci. 2023, 24, 7193. [Google Scholar] [CrossRef]
- Gupta, M.; Rathored, J. Hyperbaric Oxygen Therapy: Future Prospects in Regenerative Therapy and Anti-Aging. Front. Aging 2024, 5, 1368982. [Google Scholar] [CrossRef]
- Frykberg, R.G. Topical Wound Oxygen Therapy in the Treatment of Chronic Diabetic Foot Ulcers. Medicina 2021, 57, 917. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, H. Application of Superabsorbent Spacer Fabrics as Exuding Wound Dressing. Polymers 2018, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Neamtu, B.; Barbu, A.; Negrea, M.O.; Berghea-Neamțu, C.Ș.; Popescu, D.; Zăhan, M.; Mireșan, V. Carrageenan-Based Compounds as Wound Healing Materials. Int. J. Mol. Sci. 2022, 23, 9117. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Fang, Y.; Zhang, Z.; Cao, Y.; Yan, Y.; Gan, L.; Xu, J.; Zhou, G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. Materials 2023, 16, 5459. [Google Scholar] [CrossRef] [PubMed]
- Prete, S.; Dattilo, M.; Patitucci, F.; Pezzi, G.; Parisi, O.I.; Puoci, F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J. Funct. Biomater. 2023, 14, 455. [Google Scholar] [CrossRef] [PubMed]
- Pusta, A.; Tertiș, M.; Cristea, C.; Mirel, S. Wearable Sensors for the Detection of Biomarkers for Wound Infection. Biosensors 2022, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Zheng, Y.; Jiang, X.; Zhou, C.; Jin, H.; Jin, K.; Wu, W.; Haick, H. Wearable Sensors and Systems for Wound Healing-Related pH and Temperature Detection. Micromachines 2021, 12, 430. [Google Scholar] [CrossRef]
- Musuc, A.M.; Mititelu, M.; Chelu, M. Hydrogel for Sustained Delivery of Therapeutic Agents. Gels 2024, 10, 717. [Google Scholar] [CrossRef]
- Che, X.; Zhao, T.; Hu, J.; Yang, K.; Ma, N.; Li, A.; Sun, Q.; Ding, C.; Ding, Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers 2024, 16, 344. [Google Scholar] [CrossRef]
- Olteanu, G.; Neacșu, S.M.; Joița, F.A.; Musuc, A.M.; Lupu, E.C.; Ioniță-Mîndrican, C.-B.; Lupuliasa, D.; Mititelu, M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 3849. [Google Scholar] [CrossRef]
- Duong, T.K.N.; Truong, T.T.; Phan, T.N.L.; Nguyen, T.X.; Doan, V.H.M.; Vo, T.T.; Choi, J.; Pal, U.; Dhar, P.; Lee, B.; et al. Hydrogel-Based Smart Materials for Wound Healing and Sensing. Aggregate 2025, 6, e70047. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, Y.; Zhang, Z. Swelling Behaviour of Polystyrene Microsphere Enhanced PEG-Based Hydrogels in Seawater and Evolution Mechanism of Their Three-Dimensional Network Microstructure. Materials 2022, 15, 4959. [Google Scholar] [CrossRef] [PubMed]
- De Piano, R.; Caccavo, D.; Barba, A.A.; Lamberti, G. Swelling Behavior of Anionic Hydrogels: Experiments and Modeling. Gels 2024, 10, 813. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.U.; Kim, H.C.; Kim, J.W.; Kim, J. Swelling Behavior of Polyacrylamide-Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and pH Effects. Materials 2019, 12, 2080. [Google Scholar] [CrossRef]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy. Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef]
- Han, Z.; Yuan, M.; Liu, L.; Zhang, K.; Zhao, B.; He, B.; Liang, Y.; Li, F. pH-reponsive wound dressing: Advances and prospects. Nanoscale Horiz. 2023, 8, 422–440. [Google Scholar] [CrossRef] [PubMed]
- Espenti, C.S.; Mettu, M.R.; Surendra, T.V.; Boora, S.; Kummara, M.R.; Krishna Rao, K.S.V.; Eppakayala, L.; Anna, M. pH-responsive polymer hydrogel nanocomposites for sensor applications: A review. Sens. Actuators A Phys. 2025, 393, 116853. [Google Scholar] [CrossRef]
- Muñana-González, S.; Veloso-Fernández, A.; Ruiz-Rubio, L.; Pérez-Álvarez, L.; Vilas-Vilela, J.L. Covalent Cross-Linking as a Strategy to Prepare Water-Dispersible Chitosan Nanogels. Polymers 2023, 15, 434. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Lin, J.; Fan, S.; Hu, D. A multifunctional poly(acrylic acid)/gelatin hydrogel. J. Mater. Res. 2009, 24, 1653–1661. [Google Scholar] [CrossRef]
- Hong, F.; Qiu, P.; Wang, Y.; Ren, P.; Liu, J.; Zhao, J.; Gou, D. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem. X 2024, 21, 101095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Q.; Dai, Z.; Dai, Y.; Xia, F.; Zhang, X. Nanocomposite adhesive hydrogels: From design to application. J. Mater. Chem. B 2021, 9, 585–593. [Google Scholar] [CrossRef]
- Zhu, J.; Jia, Y.; Lei, J.; Liu, Z. Deep Learning Approach to Mechanical Property Prediction of Single-Network Hydrogel. Mathematics 2021, 9, 2804. [Google Scholar] [CrossRef]
- Malektaj, H.; Drozdov, A.D.; deClaville Christiansen, J. Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cations. Polymers 2023, 15, 3012. [Google Scholar] [CrossRef]
- Ning, X.; Huang, J.A.Y.; Yuan, N.; Chen, C.; Lin, D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int. J. Mol. Sci. 2022, 23, 15757. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, H.; Guo, Y.; Sun, X.; Hu, Z.; Teng, L.; Zeng, Z. Porous Hydrogels for Immunomodulatory Applications. Int. J. Mol. Sci. 2024, 25, 5152. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Wu, D.T.; Jeffreys, N.; Diba, M.; Mooney, D.J. Viscoelastic Biomaterials for Tissue Regeneration. Tissue Eng. Part C Methods 2022, 28, 289–300. [Google Scholar] [CrossRef]
- Wu, D.T.; Jeffreys, N.; Diba, M.; Mooney, D.J. Thermal Transport in Soft PAAm Hydrogels. Polymers 2017, 9, 688. [Google Scholar] [CrossRef]
- Zhang, K.; Xue, K.; Loh, X.J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7, 77. [Google Scholar] [CrossRef]
- Xin, F.; Lyu, Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2023, 9, 7. [Google Scholar] [CrossRef]
- Kim, A.; Lee, H.; Jones, C.F.; Mujumdar, S.K.; Gu, Y.; Siegel, R.A. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains. Gels 2018, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef]
- Nitin, J.; Aakanksha, S.; Vivek, P.; Divya, D.; Hitesh, C.; Tabarak, M.; Ameya, S. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv. 2025, 15, 12402–12442. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, Q.; Zhang, Y.; Su, Q.; Feng, Z.; Huang, P.; Zhang, C.; Zhai, Y.; Wang, W. ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing. Acta Biomater. 2023, 166, 155–166. [Google Scholar] [CrossRef]
- Davidenko, N.; Schuster, C.F.; Bax, D.V.; Farndale, R.W.; Hamaia, S.; Best, S.M.; Cameron, R.E. Evaluation of cell binding to collagen and gelatin: A study of the effect of 2D and 3D architecture and surface chemistry. J. Mater. Sci. Mater. Med. 2016, 27, 148. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, F.; Wan, X.; Liu, S.; Fu, L.; Mo, J.; Meng, X.; Mo, Z. Hyaluronic acid facilitates angiogenesis of endothelial colony forming cell combining with mesenchymal stem cell via CD44/microRNA-139-5p pathway. Front. Bioeng. Biotechnol. 2022, 10, 794037. [Google Scholar] [CrossRef]
- Korzhikov-Vlakh, V.; Krylova, M.; Sinitsyna, E.; Ivankova, E.; Averianov, I.; Tennikova, T.B. Hydrogel Layers on the Surface of Polyester-Based Materials for Improvement of Their Biointeractions and Controlled Release of Proteins. Polymers 2016, 8, 418. [Google Scholar] [CrossRef]
- Lupu, A.; Gradinaru, L.M.; Gradinaru, V.R.; Bercea, M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Darvishi, A. A Review of the Current State of Natural Biomaterials in Wound Healing Applications. Front. Bioeng. Biotechnol. 2024, 12, 1309541. [Google Scholar] [CrossRef]
- Jia, X.; Dou, Z.; Zhang, Y.; Li, F.; Xing, B.; Hu, Z.; Li, X.; Liu, Z.; Yang, W.; Liu, Z. Smart Responsive and Controlled-Release Hydrogels for Chronic Wound Treatment. Pharmaceutics 2023, 15, 2735. [Google Scholar] [CrossRef]
- Ringrose, N.S.; Balk, R.W.J.; Gibbs, S.; van Zuijlen, P.S.P.M.; Korkmaz, H.I. The Potential of Functional Hydrogels in Burns Treatment. Gels 2025, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Surowiecka, A.; Strużyna, J.; Winiarska, A.; Korzeniowski, T. Hydrogels in Burn Wound Management—A Review. Gels 2022, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Stoica, A.E.; Chircov, C.; Grumezescu, A.M. Hydrogel Dressings for the Treatment of Burn Wounds: An Up-to-Date Overview. Materials 2020, 13, 2853. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, A.; Yuan, C.; Chen, X.; Liu, Y. Recent Trends on Burn Wound Care: Hydrogel Dressings and Scaffolds. Biomater. Sci. 2021, 9, 4523–4540. [Google Scholar] [CrossRef]
- Shi, W.; Song, N.; Huang, Y.; He, C.; Zhang, M.; Zhao, W.; Zhao, C. Improved Cooling Performance of Hydrogel Wound Dressings via Integrating Thermal Conductivity and Heat Storage Capacity for Burn Therapy. Biomacromolecules 2022, 23, 889–902. [Google Scholar] [CrossRef]
- Madaghiele, M.; Demitri, C.; Sannino, A.; Ambrosio, L. Polymeric Hydrogels for Burn Wound Care: Advanced Skin Wound Dressings and Regenerative Templates. Burn. Trauma 2014, 2, 153–161. [Google Scholar] [CrossRef]
- Jin, S.; Newton, M.A.A.; Cheng, H.; Zhang, Q.; Gao, W.; Zheng, Y.; Lu, Z.; Dai, Z.; Zhu, J. Progress of Hydrogel Dressings with Wound Monitoring and Treatment Functions. Gels 2023, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Alberts, A.; Moldoveanu, E.-T.; Niculescu, A.-G.; Grumezescu, A.M. Hydrogels for Wound Dressings: Applications in Burn Treatment and Chronic Wound Care. J. Compos. Sci. 2025, 9, 133. [Google Scholar] [CrossRef]
- van Sprang, J.F.; Smits, I.P.; Nooten, J.C.; Fransen, P.S.P.K.; Söntjens, S.H.; van Houtem, M.H.; Janssen, H.M.; Rutten, M.G.; Schotman, M.J.; Dankers, P.Y.W. From natural to synthetic hydrogels: How much biochemical complexity is required for mechanotransductor? J. Mater. Chem. B 2025, 13, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Dong, L.; Zhao, B.; Huang, S.; Lu, Y.; Zhang, X.; Hu, X.; Huang, Y.; He, W.; Xu, Y.; et al. Tunable sulfated alginate-based hydrogel platform with enhanced anti-inflammatory and antioxidant capacity for promoting burn wound repair. J. Nanobiotechnology 2023, 21, 387. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, C.; Wan, Y.; Majid, M.; Abbas, S.Q.; Wang, Y. In vitro and in vivo evaluation of alginate hydrogel-based wound dressing loaded with green chemistry cerium oxide nanoparticles. Front. Chem. 2023, 11, 1298808. [Google Scholar] [CrossRef]
- Aldakheel, F.M.; Mohsen, D.; El Sayed, M.M.; Alawam, K.A.; Binshaya, A.S.; Alduraywish, S.A. Silver Nanoparticles Loaded on Chitosan-g-PVA Hydrogel for the Wound-Healing Applications. Molecules 2023, 7, 3241. [Google Scholar] [CrossRef]
- Mo, Y.; Zhou, T.; Li, W.; Niu, Y.; Sheu, C. Advances in Nanohybrid Hydrogels for Wound Healing: From Functional Mechanisms to Translational Prospects. Gels 2025, 7, 483. [Google Scholar] [CrossRef]
- Clegg, J.R.; Adebowale, K.; Zhao, Z.; Mitragotri, S. Hydrogels in the Clinic: An Update. Bioeng. Transl. Med. 2024, 9, e10680. [Google Scholar] [CrossRef]
- Nephew, S. A Hydrogel Wound Dressing to Promote Autolytic Debridement. Smith+Nephew. 2024. Available online: https://smith-nephew.stylelabs.cloud/api/public/content/d7594c3f8782430b8d72b4e26aecc900?v=165ad16e (accessed on 8 May 2016).
- Tickle, J. Positive Clinical and Patient Outcomes with a Next-Generation Foam Dressing. Wounds UK 2016, 12, 56. Available online: https://wounds-uk.com/journal-articles/positive-clinical-and-patient-outcomes-with-a-next-generation-foam-dressing (accessed on 8 May 2016).
- Slivnik, M.; Preložnik, M.N.; Fir, M.; Jazbar, J.; Lipovec, N.Č.; Locatelli, I.; Lauzon, H.L.; Rovan, V.U. A randomized, placebo-controlled study of chitosan gel for the treatment of chronic diabetic foot ulcers (the CHITOWOUND study). BMJ Open Diabetes Res. Care 2024, 12, 004195. [Google Scholar] [CrossRef]
- Verdú-Soriano, J.; de Cristino-Espinar, M.; Luna-Morales, S.; Dios-Guerra, C.; Casado-Díaz, A.; Quesada-Gómez, J.M.; Dorado, G.; Berenguer-Pérez, M.; Vílchez, S.; Esquena, J.; et al. EHO-85, Novel Amorphous Antioxidant Hydrogel, Containing Olea europaea Leaf Extract—Rheological Properties, and Superiority over a Standard Hydrogel in Accelerating Early Wound Healing: A Randomized Controlled Trial. Pharmaceutics 2023, 15, 1925. [Google Scholar] [CrossRef]
- Schmiedova, I.; Ozanova, Z.; Stastna, E.; Kiselakova, L.; Lipovy, B.; Forostyak, S. Case Report: Freeze-Dried Human Amniotic Membrane Allograft for the Treatment of Chronic Wounds: Results of a Multicentre Observational Study. Front. Bioeng. Biotechnol. 2021, 9, 649446. [Google Scholar] [CrossRef] [PubMed]
- Hebebrand, M. FDA Approves Collagen-Based DermiSphere Hydrogel. Dermatology Times. 2025. Available online: https://www.dermatologytimes.com/view/fda-approves-collagen-based-dermisphere-hydrogel (accessed on 8 January 2025).
- Rippon, M.G.; Rogers, A.A.; Ousey, K.J. A Multicentre, Clinical Evaluation of a Hydro-Responsive Wound Dressing: The Glasgow Experience. J. Wound Care 2017, 26, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, Q.; Li, H.; Chen, M.; Jin, Y.; Liu, D. Self-Assembled Peptide Hydrogels in Regenerative Medicine. Gels 2023, 9, 653. [Google Scholar] [CrossRef] [PubMed]
- Nanda, D.; Behera, D.; Pattnaik, S.S.; Behera, A.K. Advances in natural polymer-based hydrogels: Synthesis, applications, and future directions in biomedical and environmental fields. Discov. Polym. 2025, 2, 6. [Google Scholar] [CrossRef]
- Rajeswar, K.D.; Roy, A.; Haque, A.; Hasan, N.; Deep, M.P.; Kumar, M.; Singh, S.; Kumari, S.; Sharma, S.; Kumar, A.; et al. Overcoming The Limitations of Hydrogels: Exploring Superior Materials for Mechanical and Functional Efficiency. Int. J. Pharm. Sci. 2024, 2, 1392–1406. [Google Scholar] [CrossRef]
- Sung, H.; Chang, W.; Ma, C.; Lee, M. Crosslinking of biological tissues using genipin and/or carbodiimide. J. Biomed. Mater. Res. Part A 2003, 64, 427–438. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wand, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855. [Google Scholar] [CrossRef]
- Rudich, A.; Sapru, S.; Shoseyov, O. Biocompatible, Resilient, and Tough Nanocellulose Tunable Hydrogels. Nanomaterials 2023, 13, 853. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, Z.; Yang, L.; Lv, D.; Sun, R.; Zhang, T.; Li, Y.; Bao, Q.; Zhang, M.; Wang, L.; et al. Towards intelligent wound care: Hydrogel-based wearable monitoring and therapeutic platforms. Polymers 2025, 17, 1881. [Google Scholar] [CrossRef]
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Al Maruf, D.S.A.; Akin-Ige, F.; Amin, S. Stimuli-responsive hydrogels for skin wound healing and regeneration. Emergent Mater. 2025, 8, 1339–1356. [Google Scholar] [CrossRef]
- Han, X.; Saengow, C.; Ju, L.; Ren, W.; Ewodt, R.H.; Irudayaraj, J. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing. Nat. Commun. 2024, 15, 3435. [Google Scholar] [CrossRef]
- Ren, W.; Sands, M.; Han, X.; Tsipursky, M.; Irudayaraj, J. Hydrogel-Based Oxygen and Drug Delivery Dressing for Improved Wound Healing. ACS Omega 2024, 9, 24095–24104. [Google Scholar] [CrossRef]
- Simionescu, B.C.; Ivanov, D. Natural and Synthetic Polymers for Designing Composite Materials. In Handbook of Bioceramics and Biocomposites; Antoniac, I., Ed.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Rana, M.M.; De la Hoz Siegler, H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024, 10, 216. [Google Scholar] [CrossRef]
- Bovone, G.; Dudaryeva, O.Y.; Marco-Dufort, B.; Tibbitt, M.W. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater. Sci. Eng. 2021, 7, 4048–4076. [Google Scholar] [CrossRef] [PubMed]
- Bojorges, H.; López-Rubio, A.; Martínez-Abad, A.; Fabra, M.J. Overview of alginate extraction processes: Impact on alginate molecular structure and techno-functional properties. Trends Food Sci. Technol. 2023, 140, 104142. [Google Scholar] [CrossRef]
- Alemzadeh, E.; Oryan, A.; Mohammadi, A.A. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 555–567. [Google Scholar] [CrossRef]
- Mayumi, K.; Liu, C.; Yasuda, Y.; Ito, K. Softness, elasticity, and toughness of polymer networks with slide-ring cross-links. Gels 2021, 7, 91. [Google Scholar] [CrossRef]
- Hwang, C.M.; Sant, S.; Masaeli, M.; Kachouie, N.N.; Zamanian, B.; Lee, S.-H.; Khademhosseini, A. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication 2010, 2, 035003. [Google Scholar] [CrossRef]
- Chelu, M.; Calderon Moreno, J.M.; Musuc, A.M.; Popa, M. Natural regenerative hydrogels for wound healing. Gels 2024, 10, 547. [Google Scholar] [CrossRef]
- Dong, Z.; Yuan, Q.; Huang, K.; Xu, W.; Liu, G.; Gu, Z. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv. 2019, 9, 17737–17744. [Google Scholar] [CrossRef]
- Wei, L.; Huang, J. Recent progress in hydrogel synthesis and biomedical applications. Gels 2025, 11, 456. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Aslam, M.A.; Abdullah, M.F.B.; Al-Arjan, W.S.; Stojanovic, G.M.; Hasan, A. Hydrogels: Classifications, fundamental properties, applications, and scopes in recent advances in tissue engineering and regenerative medicine—A comprehensive review. Arab. J. Chem. 2024, 17, 105968. [Google Scholar] [CrossRef]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.; Müller, M.; König, F.; Meyer, N.; Gattlen, J.; Pieles, U.; Peters, K.; Kreikemeyer, B.; Mathes, S.; Saxer, S. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition. R. Soc. Open Sci. 2018, 5, 171562. [Google Scholar] [CrossRef]
- Sedighi, M.; Shrestha, N.; Mahmoudi, Z.; Khademi, Z.; Ghasempour, A.; Dehghan, H.; Talebi, S.F.; Toolabi, M.; Préat, V.; Chen, B.; et al. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers 2023, 15, 1160. [Google Scholar] [CrossRef]
- Guan, T.; Li, J.; Chen, C.; Liu, Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. Adv. Sci. 2022, 9, e2104165. [Google Scholar] [CrossRef] [PubMed]
- Milne, C.; Song, R.; Johnson, M.; Zhao, C.; Santoro Ferrer, F.; Sigen, A.; Lyu, J.; Wang, W. Dual-Modified Hyaluronic Acid for Tunable Double Cross-Linked Hydrogel Adhesives. Biomacromolecules 2024, 25, 2645–2655. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, H.; Wang, Q.; Zhang, Y.; Li, M.; Chen, L. Comparative Analysis of the Structures and Properties of Cellulose Hydrogels Prepared Using Different Solvent Systems. Cellulose 2025, 32, 2337–2351. [Google Scholar] [CrossRef]
- Paoletti, L.; Ferrigno, G.; Zoratto, N.; Secci, D.; Di Meo, C.; Matricardi, P. Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers. Gels 2024, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Jiang, H.; Li, J.; Ji, N.; Dai, L.; He, J.; Qin, Y. A dual physical crosslinking starch-based hydrogel exhibiting high strength, fatigue resistance, excellent biocompatibility, and biodegradability. Food Chem. X 2023, 18, 100728. [Google Scholar] [CrossRef]
- Markov, P.A.; Krachkovsky, N.S.; Durnev, E.A.; Martinson, E.A.; Litvinets, S.G.; Popov, S.V. Mechanical Properties, Structure, Bioadhesion, and Biocompatibility of Pectin Hydrogels. J. Biomed. Mater. Res. Part A 2017, 105, 2572–2581. [Google Scholar] [CrossRef]
- Elvitigala, K.C.M.L.; Mubarok, W.; Sakai, S. Tuning the Crosslinking and Degradation of Hyaluronic Acid/Gelatin Hydrogels Using Hydrogen Peroxide for Muscle Cell Sheet Fabrication. Soft Matter 2023, 19, 5880–5887. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Z.; Xie, Y.; Cai, W.; Zhu, X.; Jia, Y.; Zhang, Z.; Xu, F.; Huang, G. Engineering Strong and Tough Collagen Hydrogels and Tissue Constructs via Twisting and Crosslinking. Cell Rep. Phys. Sci. 2025, 6, 102454. [Google Scholar] [CrossRef]
- Strunk, T.; Joshi, A.; Moeinkhah, M.; Renzelmann, T.; Dierker, L.; Grotheer, D.; Graupner, N.; Mussig, J.; Bruggemann, D. Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds. ACS Appl. Bio Mater. 2024, 7, 2357–2369. [Google Scholar] [CrossRef]
- Li, D.; Liang, R.; Wang, Y.; Zhou, Y.; Cai, W. Preparation of Silk Fibroin-Derived Hydrogels and Applications in Skin Regeneration. Health Sci. Rep. 2024, 7, e2295. [Google Scholar] [CrossRef]
- Lee, K.; Mooney, D. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Lee, C.; Shin, J.; Lee, J.S.; Byun, E.; Ryu, J.H.; Um, S.H.; Kim, D.I.; Lee, H.; Cho, S.W. Bionsipired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 2013, 14, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhou, Y.; Peng, J.; Xu, C.; Xu, Q.; Xing, M.; Chang, J. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Mater. 2019, 11, 66. [Google Scholar] [CrossRef]
- Silva, J.M.; Caridade, S.G.; Oliveira, N.M.; Reis, R.L.; Mano, J.F. Chitosan–Alginate Multilayered Films with Gradients of Physicochemical Cues. J. Mater. Chem. B 2015, 3, 4555–4568. [Google Scholar] [CrossRef]
- Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsä-Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Hytönen, V.P. 3D-Printable bioactivated nanocellulose-alginate hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 21959–21970. [Google Scholar] [CrossRef]
- Zhao, N.; Yuan, W. Functionally integrated bioglass microspheres-composited double-network hydrogel with good tissue adhesion and electrical conductivity for efficient wound treatment and health detection. Compos. Part B 2022, 242, 110095. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, J.; Li, Y.; Lv, X.; Zhou, H.; Wang, H.; Xu, Y.; Wang, C.; Wang, J.; Liu, Z. ROS-scavenging hydrogel to promote healing of bacteria-infected diabetic wounds. Biomaterials 2020, 258, 120286. [Google Scholar] [CrossRef]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Duan, J.; Diao, Y.; Chen, Y.; Liang, X.; Li, H.; Miao, Y.; Gao, Q.; Gui, L.; Wang, X.; et al. ROS-responsive capsules engineered from EGCG-zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact. Mater. 2021, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Qi, J.; Hu, L.; Ouyang, D.; Wang, H.; Sun, Q.; Lin, L.; You, L.; Tang, B. Cannabidiol-containing alginate-based hydrogel as novel multifunctional wound dressing for promoting wound healing. Biomater. Adv. 2022, 134, 112560. [Google Scholar] [CrossRef]
- Ma, M.; Yu, Y. Research and application progress of chitosan-based hemostatic materials—Review. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2021, 29, 1685–1689. [Google Scholar] [PubMed]
- Fadeeva, I.V.; Trofimchuk, E.S.; Forysenkova, A.A.; Ahmed, A.I.; Gnezdilov, O.I. Composite polyvinylpyrrolidone-sodium alginate—Hydroxyapatite hydrogel films for bone repair and wound dressing applications. Polymers 2021, 13, 3989. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Fu, Y.N.; Wei, Y.; Zhao, L.; Tao, L. Self-Adapting Hydrogel to Improve the Therapeutic Effect in Wound-Healing. ACS Appl. Mater. Interfaces 2018, 10, 26046–26055. [Google Scholar] [CrossRef]
- Tang, Q.; Luo, C.; Lu, B.; Fu, Q.; Yin, H.; Qin, Z.; Lyu, D.; Zhang, L.; Fang, Z.; Zhu, Y.; et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal ephitelium regeneration. Acta Biomater. 2017, 61, 101–113. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym. 2020, 230, 115658. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, B.L.; Wu, H.; Liang, Y.P.; Ma, P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for nanocompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784. [Google Scholar] [CrossRef]
- Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation. Biomacromolecules 2018, 19, 288–297. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, J.; Ran, L. An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydr. Polym. 2018, 201, 522–531. [Google Scholar] [CrossRef]
- Xuan, H.; Wu, S.; Fei, S.; Li, B.; Yang, Y.; Yuan, H. Injectable nanofiber-polysaccharide self-healing hydrogels for wound healing. Mater. Sci. Eng. C 2021, 128, 112264. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, Z.; Xu, R.; Wei, S.; Xiong, F.; Cui, W.; Li, B.; Xue, Y.; Xuan, H.; Yuan, H. A spray-filming, tissue-adhesive, and bioactive polysaccharide self-healing hydrogel for skin regeneration. Mater. Des. 2022, 217, 110669. [Google Scholar] [CrossRef]
- Lee, F.; Bae, K.; Kurisawa, M. Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomed. Mater. 2015, 11, 014101. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013, 92, 1262–1279. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.; Kim, J.H.; Cho, J.H.; Jin, Y.; Kim, S.; Min, S.; Kim, S.K.; Choi, D.; Cho, S.W. Tissue Tapes-Phenolic Hyaluronic Acid Hydrogels Patches for Off-the-Shelf Therapy. Adv. Funct. Mater. 2019, 29, 1903863. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, F.; Li, Z.; Lin, S.; Chen, L.; Liu, L.; Chen, Y. Hydrogel Cross-Linged with Dynamic Covalent Bonding and Micellization for Promoting Burn Wound Healing. ACS Appl. Mater. Interfaces 2018, 10, 25194–25202. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, Y.; Xie, Q.; Fan, C.; Hilborn, J.; Dai, J.; Ossipov, D. Moldable Hyaluronan Hydrogel Enabled by Dynamic Meta-Bisphosphonate Coordination Chemistry for Wound Healing. Adv. Healthc. Mater. 2017, 7, 1700973. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Li, Z.; Organ, C.L.; Park, C.M.; Yang, C.T.; Pacheco, A.; Wang, D.; Lefer, D.J.; Xian, M. pH-Controlled Hydrogen Sulfide Release for Myocardical Ischemia-Reperfusion Injury. J. Am. Chem. Soc. 2016, 138, 6336–6339. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, A.; Zhou, Y.; Zheng, S.; Yang, Y.; An, Y.; Xu, K.; He, H.; Kang, J.; Luckanagul, J.; et al. Novel H2S-Releasing hydrogel for wound repair via in situ polarization for M2 macrophages. Biomaterials 2019, 222, 119398. [Google Scholar] [CrossRef]
- Xu, Q.; Aa, S.; Gao, Y.; Guo, L.; Creagh-Flynn, J.; Zhou, D.; Greiser, U.; Dong, Y.; Wang, F.; Tai, H.; et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018, 75, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Golland, B.; Tronci, G.; Thornton, P.D. A redox-responsive hyaluronic acid-based hydrogel for chronica wound management. J. Mater. Chem. B 2019, 7, 7494–7501. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Su, J.; Zhang, X.; Wang, J.; Tu, Q. Preparation of a multifunctional wound dressing based on a natural deep eutectic solvent. ACS Sustain. Chem. Eng. 2020, 8, 14243–14252. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; Huang, T.; Ren, Y.; Tu, Q. Preparation of sodium hyaluronate/dopamine/AgNPs hydrogel based on the natural eutectic solvent as an antibacterial wound dressing. Int. J. Biol. Macromol. 2021, 191, 60–70. [Google Scholar] [CrossRef]
- Qian, C.; Higashigaki, T.; Asoh, T.A.; Uyama, H. Anisotropic conductive hydrogels with high water content. ACS Appl. Mater. Interfaces 2020, 12, 27518–27525. [Google Scholar] [CrossRef]
- Pang, L.; Tian, P.; Cui, X.; Wu, X.; Zhao, X.; Wang, H.; Pan, H. In situ photo-crosslinking hydrogel accelerates diabetic wound healing through restored hypoxia-inducible factor 1-alpha pathway and regulated inflammation. ACS Appl. Mater. Interfaces 2021, 13, 29363–29379. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, M.; Liu, M.; Yu, Y.; Xu, X.; Li, J. Fabrication of double-network hydrogels with universal adhesion and superior extensibility and cytocompatibility by one-pot method. Biomacromolecules 2020, 21, 4699–4708. [Google Scholar] [CrossRef]
- Mao, H.; Zhao, S.; He, Y.; Feng, M.; Wu, L.; He, Y.; Gu, Z. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr. Polym. 2022, 285, 119254. [Google Scholar] [CrossRef]
- Hu, Y.; Wen, C.; Song, L.; Zhao, N.; Xu, F.J. Multifunctional Hetero-Nanostructures of Hydroxyl-Rich Polycation Wrapped Cellulose-Gold Hybrids for Combined Cancer Therapy. J. Control. Release 2017, 255, 154–163. [Google Scholar] [CrossRef]
- Capanema, N.; Mansur, H.; Caires, A.; Carvalho, S.; Oliveira, L.; Mansur, H. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 2017, 106, 1218–1234. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Chen, X.; Chen, X.; Li, S.; Yuan, G.; Zhou, T.; Li, J.; Jia, Y.; Xiong, D.; Tan, H. Covalent Chitosan-Cellulose Hydroges via Schiff-Base Reaction Containing Macromolecular Microgels for pH-Sensitive Drug Delivery and Wound Dressing. Macromol. Chem. Phys. 2019, 220, 1900399. [Google Scholar] [CrossRef]
- Wang, C.W.; Niu, H.Y.; Ma, X.Y.; Hong, H.; Yuan, Y.; Liu, C.S. Bionspired, Injectabel, Quaternized Hydroxylethyl Cellulose Composite Hydrogel Coordinated by Mesocellular Silica Foam for Rapid, Nanocompressible Hemostasis and Wound Healing. ACS Appl. Mater. Interfaces 2019, 11, 34595–34608. [Google Scholar] [CrossRef]
- Guamba, E.; Vispo, N.S.; Whitehead, D.C.; Singh, A.K.; Santos-Oliveira, R.; Niebieskikwiat, D.; Zamora-Ledezma, C.; Alexis, F. Cellulose-based hydrogels towards an antibacterial wound dressing. Biomater. Sci. 2023, 11, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.; Loh, E.Y.X.; Fauzi, M.B.; Ng, M.H.; Amin, M. In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv. Transl. Res. 2019, 9, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogel for biomedical applications. Drug Deliv. Transl. Res. 2019, 209, 130–144. [Google Scholar] [CrossRef]
- Huang, W.J.; Wang, Y.X.; Huang, Z.Q.; Wang, X.L.; Chen, L.Y.; Zhang, Y.; Zhang, L.N. On-Demand Dissolvanle Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystla for Deep Thickness Burn Wound Healing. ACS Appl. Mater. Interfaces 2018, 10, 41076–41088. [Google Scholar] [CrossRef]
- Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 2000, 69, 1–25. [Google Scholar] [CrossRef]
- Fang, H.; Chen, J.; Lin, L.; Liu, F.; Tian, H.; Chen, X. A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H2O2-Responsive Gene Delivery System. ACS Appl. Mater. Interfaces 2019, 11, 47785–47797. [Google Scholar] [CrossRef]
- Liu, J.Y.; Li, Y.; Hu, Y.; Cheng, G.; Ye, E.Y.; Shen, C.A.; Xu, F.J. Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process. Mater. Sci. Eng. C 2018, 83, 160–168. [Google Scholar] [CrossRef]
- Sun, G.; Shen, Y.I.; Kusuma, S.; Fox-Talbot, K.; Steenbergen, C.J.; Gerecht, S. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 2011, 32, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhang, X.; Shen, Y.I.; Sebastian, R.; Dickinson, L.E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J.W.; Gerecht, S. Dextran hydrogel scaffolds enhanced angiogenic response and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. USA 2011, 108, 20976–20981. [Google Scholar] [CrossRef]
- Wang, P.; Huang, S.B.; Hu, Z.C.; Yang, W.; Lan, Y.; Zhu, J.Y.; Hancharou, A.; Guo, R.; Tang, B. In situ formatted anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater. 2019, 100, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.F.; Chen, W.T.; Zhang, Y.; Dai, X.M.; Zhang, X.G.; Wu, Z.M. An Antifouling Hydrogel Containing Silver Nanoparticles for Modulating the Therapeutic Immune Response in Chronic Wound Healing. Langmuir 2019, 35, 1837–1845. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Jiang, M.; Liu, Q.; Yan, S.N.; Feng, L.B.; Lan, Y.; Shan, G.Q.; Xue, W.; Guo, R. Enhanced healing activity of burn infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater. Sci. 2018, 6, 2472–2486. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, N.A.; Abugharbieh, A.; Yasmeen, F.; Buabeng, E.; Mathew, S.; Samaroo, D.; Cheng, H.P. The Crosslinking of Polysaccarides with Polyamide and Dextran-Polyallylamine Antibacterial Hydrogels. Int. J. Biol. Macromol. 2015, 72, 88–93. [Google Scholar] [CrossRef]
- Zhu, T.X.; Mao, J.J.; Cheng, Y.; Liu, H.R.; Lv, L.; Ge, M.Z.; Li, S.H.; Huang, J.Y.; Chen, Z.; Li, H.Q.; et al. Recent Progress of Polysaccarude-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. [Google Scholar] [CrossRef]
- Wang, R.; Hu, H.; Cai, Q.; Zhao, N.; Zhu, Y.; Xu, F.J. Versatile functionalization of amylopectin for effective biomedical applications. Sci. China Chem. 2015, 58, 1461–1470. [Google Scholar] [CrossRef]
- Batool, S.; Hussain, Z.; Niazi, M.B.K.; Liaqat, U.; Afzal, M. Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. J. Drug Deliv. Sci. Technol. 2019, 52, 403–414. [Google Scholar] [CrossRef]
- Villanueva, M.E.; Diez, A.M.D.; Gonzalez, J.A.; Perez, C.J.; Orrego, M.; Piehl, L.; Teves, S.; Copello, G.J. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 16280–16288. [Google Scholar] [CrossRef]
- Salehi, H.; Mehrasa, M.; Nasri-Nasrabadi, B.; Doostmohammadi, M.; Seyedebrahimi, R.; Davari, N.; Rafienia, M.; Hosseinabadi, M.E.; Agheb, M.; Siavash, M. Effects of nanozeolite/starch thermoplastic hydrogels on wound healing. J. Res. Med. Sci. 2017, 22, 110–118. [Google Scholar] [CrossRef]
- Xu, K.; Sun, X.; Chong, C.; Ren, L.; Tan, L.; Sun, H.; Wang, X.; Li, L.; Xia, J.; Zhang, R.; et al. Green starch-based hydrogels with excellent injectability, self-healing, adhesion, photothermal effect, and antibacterial activity for promoting wound healing. ACS Appl. Mater. Interfaces 2024, 16, 2027–2040. [Google Scholar] [CrossRef]
- Roman-Benn, A.; Contador, C.A.; Li, M.-W.; Lam, H.-M.; AhHen, K.; Ulloa, P.E.; Ravanal, M.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem. Adv. 2023, 2, 100192. [Google Scholar] [CrossRef]
- Kocaaga, B.; Güner, F.S.; Kurkcuoglu, O. Molecular dynamics simulations can predict the optimum drug loading amount in pectin hydrogels for controlled release. Mater. Today Commun. 2022, 31, 103268. [Google Scholar] [CrossRef]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Dinler-Doganay, G.; Batirel, S.; Güner, F.S. Pectin-zeolite-based wound dressings with controlled albumin release. Polymers 2022, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Güner, O.Z.; Kocaaga, B.; Batirel, S.; Kurkcuoglu, O.; Güner, F.S. 2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 703–711. [Google Scholar] [CrossRef]
- An, H.; Yang, Y.; Zhou, Z.; Bo, Y.; Wang, Y.; He, Y.; Wang, D.; Qin, J. Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta Biomater. 2021, 131, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Davydova, G.A.; Chaikov, L.L.; Melnik, N.N.; Gainutdinov, R.V.; Selezneva, I.I.; Perevedentseva, E.V.; Mahamadiev, M.T.; Proskurin, V.A.; Yakovsky, D.S.; Mohan, A.G.; et al. Polysaccharide composite alginate–pectin hydrogels as a basis for developing wound-healing materials. Polymers 2024, 16, 287. [Google Scholar] [CrossRef] [PubMed]
- Giusto, G.; Vercelli, C.; Comino, F.; Caramello, V.; Tursi, M.; Gandini, M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement. Altern. Med. 2017, 17, 266. [Google Scholar] [CrossRef]
- Abedinia, A.; Nafchi, A.M.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. Poultry gelatin: Characteristics, developments, challenges and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020, 109, 855. [Google Scholar] [CrossRef]
- Klotz, B.J.; Gawlitta, D.; Rosenberg, A.J.; Malda, J.; Melchels, F. Gelatin-Methacytoyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends Biotechnol. 2016, 34, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Campiglio, C.E.; Contessi Negrini, N.; Farè, S.; Draghi, L. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials 2019, 12, 2476. [Google Scholar] [CrossRef]
- Chin, J.S.; Madden, L.; Chew, S.Y.; Becker, D.L. Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Adv. Drug Deliv. Rev. 2019, 149, 2–18. [Google Scholar] [CrossRef]
- Chen, H.; Guo, L.; Wicks, J.; Ling, C.; Zhao, X.; Yan, Y.; Qi, J.; Cui, W.; Deng, L. Quickly promoting angiogenesis by using DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. J. Mater. Chem. B 2016, 4, 3770–3781. [Google Scholar] [CrossRef]
- Malone-Povolny, M.J.; Maloney, S.E.; Schoenfisch, M.H. Nitric Oxide Therapy for Diabetic Wound Healing. Adv. Healthc. Mater. 2019, 8, 1801210. [Google Scholar] [CrossRef]
- Whittam, A.J.; Maan, Z.N.; Duscher, D.; Wong, V.W.; Barrera, J.A.; Januszyk, M.; Gurtner, G.C. Challenges and Opportunities in Drug Delivery for Wound Healing. Adv. Wound Care 2016, 5, 79–88. [Google Scholar] [CrossRef]
- Takei, T.; Yoshihara, R.; Danjo, S.; Fukuhara, Y.; Evans, C.; Tomimatsu, R.; Ohzuno, Y.; Yoshida, M. Hydrophobically-modified gelatin hydrogel as a carrier hydrophilic drugs and hydrophobic drugs. Int. J. Biol. Macromol. 2020, 149, 140–147. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, W.; Liu, H.; Huang, S.; Bian, L.; Guo, R. Injectabel supramolecular gelatin hydrogel loading of resveratrol and histatin-1 for burn wound therapy. Biomater. Sci. 2020, 8, 4810–4820. [Google Scholar] [CrossRef]
- Manon-Jensen, T.; Kjeld, N.G.; Karsdal, M.A. Collagen-mediated hemostasis. J. Thromb. Haemost. 2016, 14, 438–448. [Google Scholar] [CrossRef]
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; et al. The Collagen Suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater. 2019, 31, e1801651. [Google Scholar] [CrossRef]
- Zaferani, A.; Talsma, D.T.; Yazdani, S.; Celie, J.W.; Aikio, M.; Heljasvaara, R.; Navis, G.J.; Pihlajaniemi, T.; van den Born, J. Basement membrane zone collagens XV and XVIII/proteoglycans mediate leukocyte influx in renal ischemia/reperfusion. PLoS ONE 2014, 9, e106732. [Google Scholar] [CrossRef] [PubMed]
- Silvipriya, K.S.; Kumar, K.; Bhat, A.; Kumar, B.D.; John, A.; Lakshmanan, P. Collagen: Animal sources and biomedical application. J. Appl. Pharm. Sci. 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Ying, H.; Zhou, J.; Wang, M.; Su, D.; Ma, Q.; Lv, G.; Chen, J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C 2019, 101, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Speer, D.P.; Chvapil, M.; Eskelson, C.D.; Ulreich, J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J. Biomed. Mater. Res. 1980, 14, 753–764. [Google Scholar] [CrossRef]
- Ge, B.; Wang, H.; Li, J.; Liu, H.; Yin, Y.; Zhang, N.; Qin, S. Comprehensive assessment of Nile Tilapia skin (Oreochromis niloticus) collagen hydrogels for wound dressings. Mar. Drugs 2020, 18, 178. [Google Scholar] [CrossRef]
- Jridi, M.; Bardaa, S.; Moalla, D.; Rebaii, T.; Souissi, N.; Sahnoun, Z.; Nasri, M. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. Int. J. Biol. Macromol. 2015, 77, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, P.; Liu, Y.; Zhu, C.; Fan, D. Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing. Int. J. Biol. Macromol. 2020, 155, 625–635. [Google Scholar] [CrossRef]
- Lei, H.; Zhu, C.; Fan, D. Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair. Carbohydr. Polym. 2020, 239, 116249. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Song, T.; Zhang, B.; Li, D.; Xiao, Y.; Zhang, X. A chitosan-based multifunctional hydrogel containing in situ rapidly bioreduced silver nanoparticles for accelerating infected wound healing. J. Mater. Chem. B 2022, 10, 2135–2147. [Google Scholar] [CrossRef]
- Olivetti, C.E.; Alvarez Echazú, M.I.; Perna, O.; Perez, C.J.; Mitarotonda, R.; De Marzi, M.; Desimone, M.F.; Alvarez, G.S. Dodecenylsuccinic anhydride-modified collagen hydrogels loaded with simvastatin as skin wound dressings. J. Biomed. Mater. Res. A 2019, 107, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Mostafavinia, A.; Abdollahifar, M.-A.; Amini, A.; Ghoreishi, S.K.; Chien, S.; Hamblin, M.R.; Bayat, S.; Bayat, M. Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats. Biomed. Pharm. 2020, 123, 109776. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.V.S.; EzEldeen, M.; Ugarte-Berzal, E.; Martens, E.; Malengier-Devlies, B.; Vandooren, J.; Vranckx, J.J.; Matthys, P.; Opdenakker, G. Physiological fibrin hydrogel modulates immune cells and molecules and accelerates mouse skin wound healing. Front. Immunol. 2023, 14, 1170153. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Liu, X.; Wan, J.; Zuo, S.; Pan, T.; Liu, Y.; Sun, F.; Gao, M.; Yu, X.; et al. Hyaluronic acid-based dual network hydrogel with sustained release of platelet-rich plasma as a diabetic wound dressing. Carbohydr. Polym. 2023, 314, 120924. [Google Scholar] [CrossRef]
- Cheesbrough, A.; Harley, P.; Riccio, F.; Wu, L.; Song, W.; Lieberam, I. A scalable human iPSC-based neuromuscular disease model on suspended biobased elastomer nanofiber scaffolds. Biofabrication 2023, 15, 045020. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, Y.; Guo, Z.; Fan, X.; Pan, Q.; Gao, W.; Luo, K.; Pu, Y.; He, B. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease. Bioact. Mater. 2024, 33, 71–84. [Google Scholar] [CrossRef]
- Mirjalili, F.; Mahmoodi, M. Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model. Int. J. Biol. Macromol. 2023, 225, 588–604. [Google Scholar] [CrossRef]
- Jing, Z.; Yuan, W.; Wang, J.; Ni, R.; Qin, Y.; Mao, Z.; Wei, F.; Song, C.; Zheng, Y.; Cai, H.; et al. Simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact. Mater. 2024, 33, 223–241. [Google Scholar] [CrossRef]
- Nelson, D.W.; Gilbert, R.J. Extracellular matrix-mimetic hydrogels for treating neural tissue injury: A focus on fibrin, hyaluronic acid, and elastin-like polypeptide hydrogels. Adv. Healthc. Mater. 2021, 10, e2101329. [Google Scholar] [CrossRef]
- Chouhan, D.; Lohe, T.U.; Samudrala, P.K.; Mandal, B.B. In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv. Healthc. Mater. 2018, 7, e1801092. [Google Scholar] [CrossRef]
- Indrakumar, S.; Joshi, A.; Dash, T.K.; Mishra, V.; Tandon, B.; Chatterjee, K. Photopolymerized silk fibroin gel for advanced burn wound care. Int. J. Biol. Macromol. 2023, 233, 123569. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Shen, X.; Xie, C.; Zhang, L.; Huang, H.; Xu, H.; Zhang, Y. Silk gel recruits specific cell populations for scarless skin regeneration. Appl. Mater. Today 2021, 23, 101004. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Yan, Y.; He, C.; Li, X. Fabrication of injectable hydrogels from silk fibroin and angiogenic peptides for vascular growth and tissue regeneration. Chem. Eng. J. 2021, 418, 129308. [Google Scholar] [CrossRef]
- Liu, L.; Ding, Z.; Yang, Y.; Zhang, Z.; Lu, Q.; Kaplan, D.L. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater. Sci. 2021, 9, 5227–5236. [Google Scholar] [CrossRef]
- Wu, L.; Tian, K.; Ding, Z.; Liu, Y.; Yan, H.; Yang, Y.; Kaplan, D.L. MSC-laden composite hydrogels for inflammation and angiogenic regulation for skin flap repair. Adv. Ther. 2022, 5, 210–231. [Google Scholar] [CrossRef]
- Lee, G.; Ko, Y.-G.; Bae, K.H.; Kurisawa, M.; Kwon, O.K.; Kwon, O.H. Green tea catechin-grafted silk fibroin hydrogels with reactive oxygen species scavenging activity for wound healing applications. Biomater. Res. 2022, 26, 62. [Google Scholar] [CrossRef]
- Tang, P.; Han, L.; Li, P.; Wang, K.; Xu, D.; Ren, F.; Zhou, J. Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl. Mater. Interfaces 2019, 11, 7703–7714. [Google Scholar] [CrossRef]
- Bhar, B.; Chakraborty, B.; Nandi, S.K.; Mandal, B.B. Silk-based phyto-hydrogel formulation expedites key events of wound healing in full-thickness skin defect model. Int. J. Biol. Macromol. 2022, 203, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Binaymotlagh, R.; Chronopoulou, L.; Haghighi, F.H.; Fratoddi, I.; Palocci, C. Peptide-based hydrogels: New materials for biosensing and biomedical applications. Materials 2022, 15, 5871. [Google Scholar] [CrossRef]
- Song, Y.; Wu, C.; Zhang, X.; Bian, W.; Liu, N.; Yin, S.; Yang, M.F.; Luo, M.; Tang, J.; Yang, X. A short peptide potentially promotes the healing of skin wound. Biosci. Rep. 2019, 39, BSR20181734. [Google Scholar] [CrossRef] [PubMed]
- Amantana, A.; Moulton, H.M.; Cate, M.L.; Reddy, M.T.; Whitehead, T.; Hassinger, J.N.; Youngblood, D.S.; Iversen, P.L. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide—Morpholino oligomer conjugate. Bioconjug. Chem. 2007, 18, 1325–1331. [Google Scholar] [CrossRef]
- Hajareh Haghighi, F.; Binaymotlagh, R.; Fratoddi, I.; Chronopoulou, L.; Palocci, C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023, 9, 953. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Gavel, P.K.; Parmar, H.S.; Tripathi, V.; Kumar, N.; Biswas, A.; Das, A.K. Investigations of Anti-Inflammatory Activity of a Peptide-Based Hydrogel Using Rat Air Pouch Model. ACS Appl. Mater. Interfaces 2019, 11, 2849–2859. [Google Scholar] [CrossRef]
- Gavel, P.K.; Dev, D.; Parmar, H.S.; Bhasin, S.; Das, A.K. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl. Mater. Interfaces 2018, 10, 10729–10740. [Google Scholar] [CrossRef]
- Acar, H.; Srivastava, S.; Chung, E.J.; Schnorenberg, M.R.; Barrett, J.C.; LaBelle, J.L.; Tirrell, M. Self-assembling peptide-based building blocks in medical applications. Adv. Drug Deliv. Rev. 2017, 110–111, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today 2016, 11, 41–60. [Google Scholar] [CrossRef]
- Stephanopoulos, N.; Ortony, J.H.; Stupp, S.I. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 2013, 61, 912–930. [Google Scholar] [CrossRef]
- Gavel, P.K.; Kumar, N.; Parmar, H.S.; Das, A.K. Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing. ACS Appl. Bio Mater. 2020, 3, 3326–3336. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.H.; Lee, J.S.; Park, C.B. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications. Small 2015, 11, 3623–3640. [Google Scholar] [CrossRef]
- Trier, A.M.; Mack, M.R.; Kim, B.S. The Neuroimmune Axis in Skin Sensation, Inflammation, and Immunity. J. Immunol. 2019, 202, 2829–2835. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.; Wu, X.; Zhang, N.; Zhang, Y.; Ouyang, S.; Song, X.; Fang, X.; Seeram, R.; Xue, W.; et al. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration. ACS Appl. Mater. Interfaces 2016, 8, 2348–2359. [Google Scholar] [CrossRef]
- Md Fadilah, N.I.; Mohd Abdul Kader Jailani, M.S.; Badrul Hisham, M.A.I.; Sunthar Raj, N.; Shamsuddin, S.A.; Ng, M.H.; Fauzi, M.B.; Maarof, M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J. Tissue Eng. 2022, 13, 20417314221114273. [Google Scholar] [CrossRef] [PubMed]
- Grek, C.L.; Prasad, G.M.; Viswanathan, V.; Armstrong, D.G.; Gourdie, R.G.; Ghatnekar, G.S. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. Wound Repair Regen. 2015, 23, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Vaikunth, S.S.; Lang, S.A.; Sheikh, A.Q.; Lim, F.Y.; Crombleholme, T.M.; Narmoneva, D.A. Tissue-engineered provisional matrix as a novel approach to enhance diabetic wound healing. Wound Repair Regen. 2012, 20, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Carrejo, N.C.; Moore, A.N.; Silva, T.L.L.; Leach, D.G.; Li, I.C.; Walker, D.R.; Hartgerink, J.D. Multidomain Peptide Hydrogel Accelerates Healing of Full-Thickness Wounds in Diabetic Mice. ACS Biomater. Sci. Eng. 2018, 4, 1386–1396. [Google Scholar] [CrossRef]
- Nidadavolu, L.S.; Stern, D.; Lin, R.; Wang, Y.Z.; Li, Y.; Wu, Y.Q.; Marin, S.; Antonio, M.J.; Yenokyan, G.; Boronina, T.; et al. Valsartan nano-filaments alter mitochondrial energetics and promote faster healing in diabetic rat wounds. Wound Repair Regen. 2021, 29, 927–937. [Google Scholar] [CrossRef]
- Gao, Y.F.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, J.H.; Kim, S.H.; Jung, Y. Skin Regeneration with Self-Assembled Peptide Hydrogels Conjugated with Substance P in a Diabetic Rat Model. Tissue Eng. Part A 2017, 24, 21–33. [Google Scholar] [CrossRef]
- Kang, H.J.; Chen, N.; Dash, B.C.; Hsia, H.C.; Berthiaume, F. Self-Assembled Nanomaterials for Chronic Skin Wound Healing. Adv. Wound Care 2021, 10, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Mandla, S.; Huyer, L.D.; Wang, Y.F.; Radisic, M. Macrophage Polarization with Angiopoietin-1 Peptide QHREDGS. ACS Biomater. Sci. Eng. 2019, 5, 4542–4550. [Google Scholar] [CrossRef]
- Wan, T.; Li, L.C.; Zhu, Z.Y.; Liu, S.Y.; Zhao, Y.Q.; Yu, M.S. Scorpion Venom Active Polypeptide May Be a New External Drug of Diabetic Ulcer. Evid.-Based Complement. Altern. Med. 2017, 2017, 5161565. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Bejenaru, L.E.; Bejenaru, C.; Blendea, A.; Mogoşanu, G.D.; Biţă, A.; Boia, E.R. Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications. Polymers 2025, 17, 2026. [Google Scholar] [CrossRef]
- Vanisri, K.R.; Aadhi, S.; SIvaramakrishnan, S.; Hinduja; Ramula, M. Comparative Study of Subcuticular Sutures and Adhesive Glue for Elective Thyroid Surgeries: Single Institutional Study. IOSR J. Dent. Med. Sci. 2025, 24, 1–4. [Google Scholar]
Phase | Description | Timeframe |
---|---|---|
Hemostasis | Blood clotting begins immediately to stop bleeding. | Seconds to hours |
Inflammation | White blood cells clean the wound and fight infection. | 1–14 days |
Proliferation | New tissue and blood vessels form; epithelial cells cover the wound. | 4 days to several weeks |
Remodeling | Collagen is reorganized, and the wound strengthens and closes. | Weeks to months |
Category | Factor | Impact on Healing |
---|---|---|
Intrinsic | Age | Slower cell regeneration and reduced immune response |
Nutrition | Deficiencies (protein, vitamins A and C, zinc) impair tissue repair | |
Chronic Diseases | Conditions like diabetes or cardiovascular disease delay healing | |
Immune Status | Immunocompromised individuals experience slower healing | |
Genetics | Certain genetic conditions affect collagen production or inflammation | |
Hormonal Imbalance | Stress hormones (e.g., cortisol) can suppress healing | |
Extrinsic | Infection | Extends inflammation and causes further tissue damage |
Oxygenation | Poor blood flow or hypoxia limits cell activity and vessel formation | |
Mechanical Stress | Movement or pressure disrupts tissue repair | |
Temperature and Moisture | Optimal warmth/moisture aids healing; extremes hinder it | |
Medications | Drugs like steroids and chemotherapy impair the healing process | |
Smoking and Alcohol | Reduce circulation and weaken immune response |
Feature | Acute Wounds | Chronic Wounds |
---|---|---|
Onset | Sudden (e.g., trauma, surgery, burns) | Gradual or persistent (e.g., ulcers, pressure injuries) |
Healing timeline | Predictable, typically within 2–4 weeks | Prolonged, often >6 weeks; may stagnate or worsen |
Healing phases | Progresses through normal stages: hemostasis → remodeling | Disrupted or stalled in inflammation or proliferation |
Etiology | Usually an isolated injury | Multifactorial: poor perfusion, infection, comorbidities |
Infection risk | Lower, short-term exposure | Higher, often biofilm-associated and resistant |
Tissue environment | Healthy surrounding tissue | Often ischemic, necrotic, or fibrotic |
Clinical management | Standard wound care protocols | Requires advanced, multidisciplinary interventions |
Type of Dressing | Source/Material/Methods | Advantages | Disadvantages |
---|---|---|---|
Dry gauze dressings | Cotton or synthetic fibers |
| |
Non-adherent films | Polymer-based (PE, silicone) |
|
|
Hydrocolloids | Gel-forming agents (CMC) |
| |
Basic antimicrobial ointments | Topical agents (antibiotics) |
|
|
Foam dressings | Polyurethane foam |
|
|
Alginate dressings | Seaweed-derived polysaccharides |
| |
Impregnated gauze | Gauze with additives (petrolatum, iodine) |
|
|
Natural substances and Poultices | Honey, resin salve, poultices, and herbal remedies |
| |
Debridement techniques | Surgical, mechanical or enzymatic method |
| |
Compression and Offloading | Mechanical |
|
|
Vacuum/NPWT | Mechanical suction via sealed dressing system |
|
|
Oxygen therapy | Delivers oxygen via a hyperbaric chamber |
|
|
Surgical closure | Primary/Secondary/Tertiary closure Skin grafting, flap surgery |
|
|
Pain management | Pharmacological |
|
|
Holistic Systems | Herbs, diet, traditional remedies, and meditation techniques |
|
Product | Hydrogel Composition | Indication | Key Outcomes/Features |
---|---|---|---|
DermaSyn™, Purilon®, Intrasite™ | CMC/alginate, amorphous | Ulcers, burns | Faster closure, pain relief [148] |
AQUACEL® Foam | Hydrofiber/foam hybrid | Chronic/acute wounds | Moisture control, fewer change [149] |
ChitoCare gel | Chitosan | DFU, chronic ulcers | Granulation, faster healing [150] |
EHO-85 gel | Plant extract-based | Mixed etiology | area reduction [151] |
AmnioGraft®, NuCel | Decellularized amnion | Burns/Chronic | Rapid epithelization, low scarring [152] |
DermiSphere hDRT | Collagen hydrogel | Deep/full-thickness | FDA-cleared, tissue integration [153] |
HydroClean® (polyacrylate-based) | Polyacrylate hydrogel | Leg ulcers | Superior debridement/granulation [154] |
Type | Hydrogel | Source | Key Benefits in Wound Healing | Mechanical Properties | Degradation Rate | Refs. |
---|---|---|---|---|---|---|
Polysaccharide-Based | Alginate | Brown seaweed | Moisture retention, hemostasis, easy gelation | Variable stiffness; e.g., alginate β-sheet hybrid hydrogels span ~0.6–205 kPa | Up to ~20% dissolution within 7 days in buffer | [178] |
Chitosan | Crustacean shells | Antimicrobial, hemostatic, promotes healing | Composite gels (e.g., with silk fibroin/HA) show elastic modulus ~1.8 kPa; up to ~15 kPa | Degradation slowed by composite integration; specific rates depend on formulation | [179,180] | |
Hyaluronic Acid | Connective tissue ECM | Cell migration, anti-inflammatory, hydration | Enhanced via double cross-linking, offering improved strength and tunability. | Can be tailored through chemical modification and cross-link density adjustments. | [181] | |
Cellulose | Bacterial (G. xylinus) | Maintains a moist environment | LiCl/DMAc–derived cellulose hydrogels showed high compressive and tensile strength | Volume shrinkage during regeneration correlated with mechanical robustness | [182] | |
Dextran | Bacterial polysaccharide | Biocompatible scaffold | Enhanced when multivalent crosslinkers (NPGDA, TMPTA, PETA) are used; IPN systems exhibit significantly greater stiffness. | Higher crosslink density (e.g., via increased dextran-MA) leads to reduced swelling and controlled degradation. | [183] | |
Starch | Plant-derived | Absorbs exudate, maintains moist environment | ~1096 kPa compressive strength; >85% recovery after 20 load–unload cycles | ~81–86% weight loss after 180 days under soil biodegradation conditions | [184] | |
Pectin | Plant cell walls | Moisture retention, biocompatible | Young’s modulus ranged from 6 to 100 kPa; higher pectin concentration increases stiffness | Faster degradation in PBS compared to DMEM and fibroblast cultures; medium influences rate | [185] | |
Protein-Based | Gelatin | Animal collagen | Cell adhesion, biodegradable | Young’s modulus of 7.16 kPa for hydrogels crosslinked with H2O2 and HRP for 60 min | Modulated by H2O2 exposure time; suitable for muscle cell sheet applications | [186] |
Collagen | Animal connective tissue | Tissue regeneration, cellular support | Twisting and crosslinking enhanced mechanical strength and toughness significantly. | Degradation slowed with increased crosslinking and densification of collagen fibers. | [187] | |
Fibrin | Blood plasma protein | Hemostasis, natural tissue scaffold | Enhanced with increasing dextran-MA concentration—yielding reduced swelling and smaller mesh sizes | Tunable: higher Dex-MA content suggests slower degradation via denser network structure | [188] | |
Silk Fibroin | Silkworm cocoons | Mechanical strength, cell support | Tailorable mechanical properties suitable for skin tissue engineering applications. | Slower degradation with higher β-sheet content; influenced by processing conditions. | [189] | |
Peptide-Based | Self-Assembling Peptides | Natural short peptides | Promote angiogenesis, endothelial growth, tissue regeneration | Stiffness (elastic modulus) ranged from 0.6 to 205 kPa, modulated by sequence, concentration, and buffer. | Up to 20% dissolution after 7 days in buffer; enzymatic and bacterial degradation were slower. | [178] |
Risk Factor | Description | Clinical Implication |
---|---|---|
Immunological Reactions | Natural polymers—especially those derived from animal sources like collagen or chitosan—may contain residual proteins, endotoxins, or other impurities that trigger immune responses. | These reactions can lead to localized inflammation, delayed wound healing, or even rejection of the hydrogel material. |
Source Variability | The composition of natural polymers varies significantly based on origin, harvesting method, and processing. For instance, polysaccharides from marine or plant sources may differ in purity, molecular weight, or bioactivity. | Such variability can compromise reproducibility, alter mechanical properties, and lead to inconsistent therapeutic performance across batches. |
Sterilization Challenges | Natural hydrogels are highly sensitive to conventional sterilization techniques like heat, gamma radiation, or ethylene oxide. These methods can degrade the polymer structure or alter its bioactivity. | Ineffective or damaging sterilization may reduce shelf stability, compromise mechanical integrity, or result in unsafe clinical products. |
Degradation Products | As natural hydrogels break down, they may release acidic or immunogenic byproducts, depending on the polymer type and degradation pathway. Without proper characterization, these can negatively interact with the surrounding tissue. | This necessitates comprehensive toxicological profiling and clearance studies to ensure that degradation does not interfere with healing or trigger adverse responses. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintilei, P.S.; Binaymotlagh, R.; Chronopoulou, L.; Palocci, C. The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies. Pharmaceutics 2025, 17, 1243. https://doi.org/10.3390/pharmaceutics17101243
Pintilei PS, Binaymotlagh R, Chronopoulou L, Palocci C. The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies. Pharmaceutics. 2025; 17(10):1243. https://doi.org/10.3390/pharmaceutics17101243
Chicago/Turabian StylePintilei, Paula Stefana, Roya Binaymotlagh, Laura Chronopoulou, and Cleofe Palocci. 2025. "The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies" Pharmaceutics 17, no. 10: 1243. https://doi.org/10.3390/pharmaceutics17101243
APA StylePintilei, P. S., Binaymotlagh, R., Chronopoulou, L., & Palocci, C. (2025). The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies. Pharmaceutics, 17(10), 1243. https://doi.org/10.3390/pharmaceutics17101243