Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Lines
2.3. Cell Viability
2.4. Live/Dead Staining Determination
2.5. ROS and GSH Levels in Cells
2.6. Investigation of In Vitro Apoptosis
2.7. Synthesis of CuO2
2.8. Preparation of CuO2@Cu-TA@DSF/DHA
2.9. Characterization of CuO2@Cu-TA@DSF/DHA
2.10. Cellular Uptake CuO2@Cu-TA@DSF/DHA
2.11. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis
2.12. Western Blot Analysis
2.13. Statistical Analysis
3. Results and Discussion
3.1. Study on Anticancer of Drug Combination on PANC-1 Cells and BxPC-3 Cells
3.2. Preparation and Determination of CuO2@Cu-TA@DSF/DHA
3.3. Characterization of CuO2@Cu-TA@DSF/DHA
3.4. Synergistic Anticancer Effect of CuO2@Cu-TA@DSF/DHA In Vitro
3.5. Study on Anticancer Mechanism In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stoop, T.F.; Theijse, R.T.; Seelen, L.W.F.; Groot Koerkamp, B.; van Eijck, C.H.J.; Wolfgang, C.L.; van Tienhoven, G.; van Santvoort, H.C.; Molenaar, I.Q.; Wilmink, J.W.; et al. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Cannon, B.A.; Castro-Sanchez, A.; Barragan-Carrillo, R.; de la Rosa Pacheco, S.; Platas, A.; Fonseca, A.; Vega, Y.; Bojorquez-Velazquez, K.; Bargallo-Rocha, J.E.; Mohar, A.; et al. Adherence to adjuvant tamoxifen in mexican young women with breast cancer. Patient Prefer. Adherence 2021, 15, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K. Molecular approaches using body fluid for the early detection of pancreatic cancer. Diagnostics 2021, 11, 375. [Google Scholar] [CrossRef]
- Li, J.; Fu, C.; Zhao, S.; Pu, Y.; Yang, F.; Zeng, S.; Yang, C.; Gao, H.; Chen, L. The progress of PET/MRI in clinical management of patients with pancreatic malignant lesions. Front. Oncol. 2023, 13, 920896. [Google Scholar] [CrossRef]
- Hong, J.C.; Czito, B.G.; Willett, C.G.; Palta, M. A current perspective on stereotactic body radiation therapy for pancreatic cancer. OncoTargets Ther. 2016, 9, 6733–6739. [Google Scholar] [CrossRef]
- Latchana, N.; Davis, L.; Coburn, N.G.; Mahar, A.; Liu, Y.; Hammad, A.; Kagedan, D.; Elmi, M.; Siddiqui, M.; Earle, C.C.; et al. Population-based study of the impact of surgical and adjuvant therapy at the same or a different institution on survival of patients with pancreatic adenocarcinoma. BJS Open 2019, 3, 85–94. [Google Scholar] [CrossRef]
- Khan, S.; Jaggi, M.; Chauhan, S.C. Revisiting stroma in pancreatic cancer. Oncoscience 2015, 2, 819. [Google Scholar] [CrossRef]
- Hartupee, C.; Nagalo, B.M.; Chabu, C.Y.; Tesfay, M.Z.; Coleman-Barnett, J.; West, J.T.; Moaven, O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front. Immunol. 2024, 15, 1287459. [Google Scholar] [CrossRef]
- Henze, J.; Tacke, F.; Hardt, O.; Alves, F. Enhancing the efficacy of CAR T cells in the tumor microenvironment of pancreatic cancer. Cancers 2020, 12, 1389. [Google Scholar] [CrossRef]
- Wei, L.; Sun, J.; Wang, X.; Huang, Y.; Huang, L.; Han, L.; Zheng, Y.; Xu, Y.; Zhang, N.; Yang, M. Noncoding RNAs: An emerging modulator of drug resistance in pancreatic cancer. Front. Cell Dev. Biol. 2023, 11, 1226639. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in cancer: Rationale and strategies. Nat. Rev. Drug. Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.P. A Preview of Selected Articles. Stem Cells Transl. Med. 2018, 7, 839. [Google Scholar] [CrossRef] [PubMed]
- Ameziane-El-Hassani, R.; Dupuy, C. Detection of reactive oxygen species in cells undergoing oncogene-induced senescence. Oncogene-Induc. Senescence Methods Protoc. 2017, 1534, 139–145. [Google Scholar]
- Glorieux, C.; Xia, X.; He, Y.Q.; Hu, Y.; Cremer, K.; Robert, A.; Liu, J.; Wang, F.; Ling, J.; Chiao, P.J.; et al. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biol. 2021, 38, 101780. [Google Scholar] [CrossRef]
- Plotnikov, E.Y.; Zorov, D.B. Pros and cons of the use of mitochondria-targeted antioxidants. Antioxidants 2019, 8, 316. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Sun, X. Reactive oxygen species-based nanomaterials for cancer therapy. Front. Chem. 2021, 9, 650587. [Google Scholar] [CrossRef]
- Durand, N.; Storz, P. Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev. Anticancer Ther. 2017, 17, 19–31. [Google Scholar] [CrossRef]
- Asantewaa, G.; Harris, I.S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 2021, 68, 292–299. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, X.; Yu, C.; Xu, G.; Nie, X.; Cheng, Y.; Luan, Y.; Song, Q. Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy. Acta Biomater. 2023, 159, 300–311. [Google Scholar] [CrossRef]
- Li, B.; Bu, S.; Sun, J.; Guo, Y.; Lai, D. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest. Acta Biochim. Biophys. Sin. 2018, 50, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Maldonado, J.; Grundmann, O. Drug-drug interactions of artemisinin-based combination therapies in malaria treatment: A narrative review of the literature. J. Clin. Pharmacol. 2022, 62, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.Q.; Huang, J.F.; Niu, K.; Zhou, J.; Wang, N.N.; Liu, Y. B7-H3 but not PD-L1 is involved in the antitumor effects of dihydroartemisinin in non-small cell lung cancer. Eur. J. Pharmacol. 2023, 950, 175746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shi, L.; Ma, H.; Li, H.; Li, Y.; Lu, Y.; Wang, Q.; Li, W. Dihydroartemisinin induces apoptosis in human gastric cancer cell line BGC-823 through activation of JNK1/2 and p38 MAPK signaling pathways. J. Recept. Signal Transduct. 2017, 37, 174–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhou, B. Zinc Protoporphyrin-9 Potentiates the Anticancer Activity of Dihydroartemisinin. Antioxidants 2023, 12, 250. [Google Scholar] [CrossRef]
- Huang, D.; Xu, D.; Chen, W.; Wu, R.; Wen, Y.; Liu, A.; Lin, L.; Lin, X.; Wang, X. Fe-MnO2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed. Pharmacother. 2023, 161, 114431. [Google Scholar] [CrossRef]
- Bader, S.; Wilmers, J.; Pelzer, M.; Jendrossek, V.; Rudner, J. Activation of the anti-oxidant Keap1/Nrf2 pathway modulates the efficacy of dihydroartemisinin-based monotherapy and combinatory therapy with ionizing radiation. Free Radic. Biol. Med. 2021, 168, 44–54. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, W.; Qiao, L.; Gao, M.; Zhou, M.; Zhang, H.; Sun, Q.; Yao, W.; Yang, T.; Ren, X.; et al. Biomimetic nanophotosensitizer amplifies immunogenic pyroptosis and triggers synergistic cancer therapy. Adv. Healthc. Mater. 2023, 12, 2301641. [Google Scholar] [CrossRef]
- Siddharth, S.; Kuppusamy, P.; Wu, Q.; Nagalingam, A.; Saxena, N.K.; Sharma, D. Metformin enhances the anti-cancer efficacy of sorafenib via suppressing MAPK/ERK/Stat3 axis in hepatocellular carcinoma. Int. J. Mol. Sci. 2022, 23, 8083. [Google Scholar] [CrossRef]
- Zeng, M.; Wu, B.; Wei, W.; Jiang, Z.; Li, P.; Quan, Y.; Hu, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol. 2021, 87, 159–172. [Google Scholar] [CrossRef]
- Park, Y.M.; Go, Y.Y.; Shin, S.H.; Cho, J.G.; Woo, J.S.; Song, J.J. Anti-cancer effects of disulfiram in head and neck squamous cell carcinoma via autophagic cell death. PLoS ONE 2018, 13, e0203069. [Google Scholar] [CrossRef] [PubMed]
- Kannappan, V.; Ali, M.; Small, B.; Rajendran, G.; Elzhenni, S.; Taj, H.; Wang, W.; Dou, Q.P. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front. Mol. Biosci. 2021, 8, 741316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, C.; Ren, X.; Jing, Q.; Gao, Y.; Yang, C.; Shen, Y.; Zhou, Y.; Hu, W.; Jin, F.; et al. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis. Redox Biol. 2024, 69, 103007. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yu, L.; Jiang, Q.; Huo, M.; Lin, H.; Wang, L.; Chen, Y.; Shi, J. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J. Am. Chem. Soc. 2019, 141, 11531–11539. [Google Scholar] [CrossRef] [PubMed]
- Yip, N.C.; Fombon, I.S.; Liu, P.; Brown, S.; Kannappan, V.; Armesilla, A.L.; Xu, B.; Cassidy, J.; Darling, J.L.; Wang, W. Disulfiram modulated ROS-MAPK and NF-κB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer. 2011, 104, 1564–1574. [Google Scholar] [CrossRef]
- Zönnchen, J.; Gantner, J.; Lapin, D.; Barthel, K.; Eschen-Lippold, L.; Erickson, J.L.; Villanueva, S.L.; Zantop, S.; Kretschmer, C.; Joosten, M.H.A.J.; et al. EDS1 complexes are not required for PRR responses and execute TNL-ETI from the nucleus in nicotiana benthamiana. New Phytol. 2022, 236, 2249–2264. [Google Scholar] [CrossRef]
- Awasthi, A.; Raju, M.B.; Rahman, M.A. Current insights of inhibitors of p38 mitogen-activated protein kinase in inflammation. Med. Chem. 2021, 17, 555–575. [Google Scholar] [CrossRef]
- Mohanan, A.; Washimkar, K.R.; Mugale, M.N. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119676. [Google Scholar] [CrossRef]
- Song, T.; Yang, G.; Zhang, H.; Li, M.; Zhou, W.; Zheng, C.; You, F.; Wu, C.; Liu, Y.; Song, H. Enhanced ferroptosis therapy with a “nano-destructor” by disrupting intracellular redox and iron homeostasis. Nano Today 2023, 51, 101896. [Google Scholar] [CrossRef]
- Li, Q.; Chao, Y.; Liu, B.; Xiao, Z.; Yang, Z.; Wu, Y.; Liu, Z. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials 2022, 291, 121880. [Google Scholar] [CrossRef]
- Tang, Z.; Jiang, S.; Tang, W.; He, Q.; Wei, H.; Jin, C.; Wang, S.; Zhang, H. H2O2 self-supplying and GSH-depleting nanocatalyst for copper metabolism-based synergistic chemodynamic therapy and chemotherapy. Mol. Pharm. 2023, 20, 1717–1728. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Kristufek, S.L.; Pan, S.; Richardson, J.J.; Caruso, F. Phenolic building blocks for the assembly of functional materials. Angew. Chem. Int. Ed. 2019, 58, 1904–1927. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhu, F.; Zhang, Z.; Cheng, Y.; Wang, Z.; Li, Y. Stimuli-responsive polydopamine-based smart materials. Chem. Soc. Rev. 2021, 50, 8319–8343. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lin, Z.; Ju, Y.; Rahim, M.A.; Richardson, J.J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278. [Google Scholar] [CrossRef]
- Geng, H.; Zhong, Q.Z.; Li, J.; Lin, Z.; Cui, J.; Caruso, F.; Hao, J. Metal ion-directed functional metal–phenolic materials. Chem. Rev. 2022, 122, 11432–11473. [Google Scholar] [CrossRef]
- Witkowska, M.; Golusińska-Kardach, E.; Golusiński, W.; Florek, E. Polydopamine-Based Material and Their Potential in Head and Neck Cancer Therapy-Current State of Knowledge. Int. J. Mol. Sci. 2023, 24, 4890. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, Z.; Penna, M.; Pan, S.; Ju, Y.; Li, S.; Han, Y.; Chen, J.; Lin, G.; Richardson, J.J.; et al. Particle engineering enabled by polyphenol-mediated supramolecular networks. Nat. Commun. 2020, 11, 4804. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zong, L.; Chen, X.; Chen, K.; Jiang, Z.; Nan, L.; Li, X.; Li, W.; Shan, T.; et al. Reactive oxygen species and targeted therapy for pancreatic cancer. Oxidative Med. Cell. Longev. 2016, 2016, 1616781. [Google Scholar] [CrossRef]
- Zhou, L.; Jing, Y.; Liu, Y.; Liu, Z.; Gao, D.; Chen, H.; Song, W.; Wang, T.; Fang, X.; Qin, W.; et al. Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics. 2018, 8, 663–675. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Y.; Shen, J.; Cai, Z.; Zhao, C.; Chen, H.; Luo, X.; Hu, N.; Cui, W.; Huang, W. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Sci Adv. 2022, 8, eabl6449. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X.; Wei, Z.; Feng, W.; Li, L.; Ma, L.; Li, F.; Zhou, J. Customized Photothermal Therapy of Subcutaneous Orthotopic Cancer by Multichannel Luminescent Nanocomposites. Adv Mater. 2021, 33, e2008615. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Cao, L.; Jiang, C.; Che, Y.; Zhang, S.; Takahashi, S.; Wang, G.; Gonzalez, F.J. Farnesoid X Receptor Regulation of the NLRP3 Inflammasome Underlies Cholestasis-Associated Sepsis. Cell Metab. 2017, 25, 856–867.e5. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Yang, Z.; Pang, X.; Zhan, C.; Tian, J.; Wang, Z.; Che, X. Self-sufficient copper peroxide loaded pKa-tunable nanoparticles for lysosome-mediated chemodynamic therapy. Nano Today 2022, 42, 101337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, Z.; Xie, Z.; You, S.; Chen, Y.; Zhang, Y.; Zhang, J.; Zhao, N.; Deng, X.; Sun, S. Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells. Pharmaceutics 2024, 16, 1614. https://doi.org/10.3390/pharmaceutics16121614
Zhang J, Li Z, Xie Z, You S, Chen Y, Zhang Y, Zhang J, Zhao N, Deng X, Sun S. Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells. Pharmaceutics. 2024; 16(12):1614. https://doi.org/10.3390/pharmaceutics16121614
Chicago/Turabian StyleZhang, Jiaru, Zuoping Li, Zhenzhen Xie, Shiwan You, Yanbing Chen, Yuling Zhang, Jing Zhang, Na Zhao, Xiling Deng, and Shiguo Sun. 2024. "Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells" Pharmaceutics 16, no. 12: 1614. https://doi.org/10.3390/pharmaceutics16121614
APA StyleZhang, J., Li, Z., Xie, Z., You, S., Chen, Y., Zhang, Y., Zhang, J., Zhao, N., Deng, X., & Sun, S. (2024). Building of CuO2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells. Pharmaceutics, 16(12), 1614. https://doi.org/10.3390/pharmaceutics16121614