PRIMERS: Polydopamine Radioimmunotherapy with Image-Guided Monitoring and Enhanced Release System
Abstract
1. Introduction
2. Materials and Methods
2.1. Formation and Characterization of PDA Nanobowls
2.2. Coating PDA Nanobowls with Gadolinium and Characterization
2.3. Loading Doxorubicin (DOX) into Gadolinium-Coated PDA Nanobowls and Release Study of DOX
2.4. Loading AntiCD40 in Gadolinium-Coated PDA Nanobowl and Release Study of AntiCD40
2.5. MR Imaging
2.6. In Vitro Cytotoxicity Assay
2.7. TC-1 Cell Culture and Tumor Growth in C57BL6 Mice
2.8. Human Umbilical Vein Endothelial Cells (HUVEC) Cell Culture
3. Results and Discussions
3.1. Preparation and Characterization of PRIMERS Precursor Polydopamine Bowl-Shaped Mesoporous Nanoparticles (PDA Nanobowls)
3.2. Functionalization of PDA Nanobowls
3.2.1. Gadolinium Coating on the PDA Mesoporous Nanobowls
3.2.2. PRIMERS: Loading Anti-Cancer Drug in Gadolinium-Coated PDA Nanobowl and Drug Release Profile In Vitro
3.2.3. PRIMERS Loading AntiCD40 into Gadolinium-Coated PDA Nanobowls and In Vitro Release Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Acter, S.; Moreau, M.; Ivkov, R.; Viswanathan, A.; Ngwa, W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. Nanomaterials 2023, 13, 1656. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Sapio, L.; Naviglio, S. Innovation through Tradition: The Current Challenges in Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 5296. [Google Scholar] [CrossRef]
- Oh, C.M.; Lee, D.; Kong, H.J.; Lee, S.; Won, Y.J.; Jung, K.W.; Cho, H. Causes of death among cancer patients in the era of cancer survivorship in Korea: Attention to the suicide and cardiovascular mortality. Cancer Med. 2020, 9, 1741–1752. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.M.; Banerjee, A.; Layek, B. A Recent Review on Cancer Nanomedicine. Cancers 2023, 15, 2256. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2, 3–44. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, K.; Zhang, J.; Duan, X.; Sun, Q.; Men, K. Multifunctional nanoparticle for cancer therapy. MedComm 2023, 4, e187. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, T.; Qin, S.; Huang, Z.; Zhou, L.; Shi, J.; Nice, E.C.; Xie, N.; Huang, C.; Shen, Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J. Hematol. Oncol. 2022, 15, 132. [Google Scholar] [CrossRef]
- Ngwa, W.; Kumar, R.; Moreau, M.; Dabney, R.; Herman, A. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids. Front. Oncol. 2017, 7, 208. [Google Scholar] [CrossRef]
- Brar, H.K.; Jose, J.; Wu, Z.; Sharma, M. Tyrosine Kinase Inhibitors for Glioblastoma Multiforme: Challenges and Opportunities for Drug Delivery. Pharmaceutics 2023, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Hallan, S.S.; Sguizzato, M.; Esposito, E.; Cortesi, R. Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics 2021, 13, 549. [Google Scholar] [CrossRef] [PubMed]
- Yasmin-Karim, S.; Ziberi, B.; Wirtz, J.; Bih, N.; Moreau, M.; Guthier, R.; Ainsworth, V.; Hesser, J.; Makrigiorgos, G.M.; Chuong, M.D.; et al. Boosting the Abscopal Effect Using Immunogenic Biomaterials With Varying Radiation Therapy Field Sizes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, W.; Boateng, F.; Kumar, R.; Irvine, D.J.; Formenti, S.; Ngoma, T.; Herskind, C.; Veldwijk, M.R.; Hildenbrand, G.L.; Hausmann, M.; et al. Smart Radiation Therapy Biomaterials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Hagan, C.T.t.; Mi, Y.; Knape, N.M.; Wang, A.Z. Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjug. Chem. 2020, 31, 2668–2678. [Google Scholar] [CrossRef]
- Moreau, M.; Acter, S.; Ngema, L.M.; Bih, N.; Sy, G.; Keno, L.S.; Chow, K.F.; Sajo, E.; Nebangwa, O.; Walker, J.; et al. Pre-Clinical Investigations of the Pharmacodynamics of Immunogenic Smart Radiotherapy Biomaterials (iSRB). Pharmaceutics 2023, 15, 2778. [Google Scholar] [CrossRef]
- Hao, Y.; Yasmin-Karim, S.; Moreau, M.; Sinha, N.; Sajo, E.; Ngwa, W. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: A preclinical study. Phys. Med. Biol. 2016, 61, N697–N707. [Google Scholar] [CrossRef]
- Kerr, C.P.; Grudzinski, J.J.; Nguyen, T.P.; Hernandez, R.; Weichert, J.P.; Morris, Z.S. Developments in Combining Targeted Radionuclide Therapies and Immunotherapies for Cancer Treatment. Pharmaceutics 2023, 15, 128. [Google Scholar] [CrossRef]
- Moreau, M.; Richards, G.; Yasmin-Karim, S.; Narang, A.; Deville, C., Jr.; Ngwa, W. A liquid immunogenic fiducial eluter for image-guided radiotherapy. Front. Oncol. 2022, 12, 1020088. [Google Scholar] [CrossRef]
- Bhutani, M.S.; Herman, J.M. Endoscopic Ultrasound-Guided Fiducial Placement for Gastrointestinal Malignancies. Gastroenterol. Hepatol. 2019, 15, 167–170. [Google Scholar]
- Ayo, A.; Laakkonen, P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.; Jain, S.; Hounsell, A.; O’Sullivan, J. Fiducial Marker Guided Prostate Radiotherapy: A review. Br. J. Radiol. 2016, 89, 20160296. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, H.; Navaser, M.; Mofid, B.; Mahdavi, S.R.; Mohammadi, R.; Tavakol, A. Fiducial markers in prostate cancer image-guided radiotherapy. Med. J. Islam. Repub. Iran 2019, 33, 15. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Shimohira, M.; Murai, T.; Nishimura, J.; Iwata, H.; Ogino, H.; Hashizume, T.; Shibamoto, Y. Percutaneous fiducial marker placement prior to stereotactic body radiotherapy for malignant liver tumors: An initial experience. J. Radiat. Res. 2016, 57, 174–177. [Google Scholar] [CrossRef]
- Prabhakar, N.; Peurla, M.; Shenderova, O.; Rosenholm, J.M. Fluorescent and Electron-Dense Green Color Emitting Nanodiamonds for Single-Cell Correlative Microscopy. Molecules 2020, 25, 5897. [Google Scholar] [CrossRef]
- Van Hest, J.J.H.A.; Agronskaia, A.V.; Fokkema, J.; Montanarella, F.; Puig, A.G.; de Mello Donega, C.; Meijerink, A.; Blab, G.A.; Gerritsen, H.C. Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy. J. Microsc. 2019, 274, 13–22. [Google Scholar] [CrossRef]
- Niitsuma, J.-i.; Oikawa, H.; Kimura, E.; Ushiki, T.; Sekiguchi, T. Cathodoluminescence investigation of organic materials. J. Electron Microsc. 2005, 54, 325–330. [Google Scholar] [CrossRef]
- Hauser, A.K.; Mitov, M.I.; Daley, E.F.; McGarry, R.C.; Anderson, K.W.; Hilt, J.Z. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 2016, 105, 127–135. [Google Scholar] [CrossRef]
- Acter, S.; Vidallon, M.L.P.; Crawford, S.; Tabor, R.F.; Teo, B.M. Bowl-Shaped Mesoporous Polydopamine Nanoparticles for Size-Dependent Endocytosis into HeLa Cells. ACS Appl. Nano Mater. 2021, 4, 9536–9546. [Google Scholar] [CrossRef]
- Acter, S.; Jahan, N.; Vidallon, M.L.P.; Teo, B.M.; Tabor, R.F. Mesoporous Polydopamine Nanobowls Toward Combined Chemo- and Photothermal Cancer Therapy. Part. Part. Syst. Charact. 2022, 39, 2200015. [Google Scholar] [CrossRef]
- Acter, S.; Vidallon, M.L.P.; King, J.P.; Teo, B.M.; Tabor, R.F. Photothermally responsive Pickering emulsions stabilised by polydopamine nanobowls. J. Mater. Chem. B 2021, 9, 8962–8970. [Google Scholar] [CrossRef]
- Juárez Olguín, H.; Calderón Guzmán, D.; Hernández García, E.; Barragán Mejía, G. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxidative Med. Cell. Longev. 2016, 2016, 9730467. [Google Scholar] [CrossRef]
- Post, M.R.; Sulzer, D. The chemical tools for imaging dopamine release. Cell Chem. Biol. 2021, 28, 748–764. [Google Scholar] [CrossRef]
- Bedhiafi, T.; Idoudi, S.; Alhams, A.A.; Fernandes, Q.; Iqbal, H.; Basineni, R.; Uddin, S.; Dermime, S.; Merhi, M.; Billa, N. Applications of polydopaminic nanomaterials in mucosal drug delivery. J. Control. Release 2023, 353, 842–849. [Google Scholar] [CrossRef]
- Acter, S.; Vidallon, M.L.P.; Crawford, S.; Tabor, R.F.; Teo, B.M. Efficient Cellular Internalization and Transport of Bowl-Shaped Polydopamine Particles. Part. Part. Syst. Charact. 2020, 37, 2000166. [Google Scholar] [CrossRef]
- Guan, B.Y.; Yu, L.; Lou, X.W. Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311. [Google Scholar] [CrossRef]
- Lu, Z.; Douek, A.M.; Rozario, A.M.; Tabor, R.F.; Kaslin, J.; Follink, B.; Teo, B.M. Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery. J. Mater. Chem. B 2020, 8, 961–968. [Google Scholar] [CrossRef]
- Dominguez, A.L.; Lustgarten, J. Targeting the tumor microenvironment with anti-neu/anti-CD40 conjugated nanoparticles for the induction of antitumor immune responses. Vaccine 2010, 28, 1383–1390. [Google Scholar] [CrossRef]
- Sadraeian, M.; Khoshnood Mansoorkhani, M.J.; Mohkam, M.; Rasoul-Amini, S.; Hesaraki, M.; Ghasemi, Y. Prevention and Inhibition of TC-1 Cell Growth in Tumor Bearing Mice by HPV16 E7 Protein in Fusion with Shiga Toxin B-Subunit from shigella dysenteriae. Cell J. 2013, 15, 176–181. [Google Scholar]
- Kim, J.; Lee, S.; Lee, Y.K.; Seong, B.; Kim, H.M.; Kyeong, S.; Kim, W.; Ham, K.; Pham, X.H.; Hahm, E.; et al. In Vitro Tracking of Human Umbilical Vein Endothelial Cells Using Ultra-Sensitive Quantum Dot-Embedded Silica Nanoparticles. Int. J. Mol. Sci. 2023, 24, 5794. [Google Scholar] [CrossRef]
- Mueller, R.; Moreau, M.; Yasmin-Karim, S.; Protti, A.; Tillement, O.; Berbeco, R.; Hesser, J.; Ngwa, W. Imaging and Characterization of Sustained Gadolinium Nanoparticle Release from Next Generation Radiotherapy Biomaterial. Nanomaterials 2020, 10, 2249. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhu, D.; Hua, T.; Zhao, B. Contrast-enhanced magnetic resonance (MR) T1 mapping with low-dose gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) is promising in identifying clear cell renal cell carcinoma histopathological grade and differentiating fat-poor angiomyolipoma. Quant. Imaging Med. Surg. 2020, 10, 988–998. [Google Scholar] [CrossRef]
- Byun, J.; Cho, S.; Moon, J.; Kim, H.; Kang, H.; Jung, J.; Lim, E.-K.; Jeong, J.; Park, H.G.; Cho, W.K.; et al. Zwitterionic Polydopamine/Protein G Coating for Antibody Immobilization: Toward Suppression of Nonspecific Binding in Immunoassays. ACS Appl. Bio Mater. 2020, 3, 3631–3639. [Google Scholar] [CrossRef]
- Alfieri, M.L.; Weil, T.; Ng, D.Y.W.; Ball, V. Polydopamine at biological interfaces. Adv. Colloid Interface Sci. 2022, 305, 102689. [Google Scholar] [CrossRef]
- Mavridi-Printezi, A.; Guernelli, M.; Menichetti, A.; Montalti, M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. Nanomaterials 2020, 10, 2276. [Google Scholar] [CrossRef]
- Harati, J.; Tao, X.; Shahsavarani, H.; Du, P.; Galluzzi, M.; Liu, K.; Zhang, Z.; Shaw, P.; Shokrgozar, M.A.; Pan, H.; et al. Polydopamine-Mediated Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human Adipose-Derived Stem Cells (hASCs). Front. Bioeng. Biotechnol. 2022, 10, 934179. [Google Scholar] [CrossRef]
- Yasmin-Karim, S.; Wood, J.; Wirtz, J.; Moreau, M.; Bih, N.; Swanson, W.; Muflam, A.; Ainsworth, V.; Ziberi, B.; Ngwa, W. Optimizing In Situ Vaccination During Radiotherapy. Front. Oncol. 2021, 11, 711078. [Google Scholar] [CrossRef]
- Wood, J.; Yasmin-Karim, S.; Mueller, R.; Viswanathan, A.N.; Ngwa, W. Single Radiotherapy Fraction with Local Anti-CD40 Therapy Generates Effective Abscopal Responses in Mouse Models of Cervical Cancer. Cancers 2020, 12, 1026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acter, S.; Ngema, L.M.; Moreau, M.; China, D.; Viswanathan, A.; Ding, K.; Choonara, Y.E.; Yasmin-Karim, S.; Ngwa, W. PRIMERS: Polydopamine Radioimmunotherapy with Image-Guided Monitoring and Enhanced Release System. Pharmaceutics 2024, 16, 1481. https://doi.org/10.3390/pharmaceutics16111481
Acter S, Ngema LM, Moreau M, China D, Viswanathan A, Ding K, Choonara YE, Yasmin-Karim S, Ngwa W. PRIMERS: Polydopamine Radioimmunotherapy with Image-Guided Monitoring and Enhanced Release System. Pharmaceutics. 2024; 16(11):1481. https://doi.org/10.3390/pharmaceutics16111481
Chicago/Turabian StyleActer, Shahinur, Lindokuhle M. Ngema, Michele Moreau, Debarghya China, Akila Viswanathan, Kai Ding, Yahya E. Choonara, Sayeda Yasmin-Karim, and Wilfred Ngwa. 2024. "PRIMERS: Polydopamine Radioimmunotherapy with Image-Guided Monitoring and Enhanced Release System" Pharmaceutics 16, no. 11: 1481. https://doi.org/10.3390/pharmaceutics16111481
APA StyleActer, S., Ngema, L. M., Moreau, M., China, D., Viswanathan, A., Ding, K., Choonara, Y. E., Yasmin-Karim, S., & Ngwa, W. (2024). PRIMERS: Polydopamine Radioimmunotherapy with Image-Guided Monitoring and Enhanced Release System. Pharmaceutics, 16(11), 1481. https://doi.org/10.3390/pharmaceutics16111481