Therapeutic Implications of Renin–Angiotensin System Modulators in Alzheimer’s Dementia
Abstract
:1. The Role of the Renin–Angiotensin System in Alzheimer’s Dementia (Neuroprotection and Neurodegeneration)
2. The Effects of ACE Inhibitors in AD Pathology
Mechanism of AD Pathogenesis | Mechanism of Protection | Effect | Reference |
---|---|---|---|
Cognitive decline | Inhibition of brain RAS | Decrease in ACE activity Reduction of cognitive decline | [26,34] |
Cholinergic hypothesis | Inhibition of Ang II formation Suppression of MDA levels → alleviation of oxidative stress at brain level | Improvement of cognitive functions → Prevention of scopolamine-induced amnesia | [20,26,34,35] |
Formation of Aβ peptide aggregates in the brain [46] | Increase in neprilysin activity | Favoring the potentiation of Aβ degradation | [21] |
Compound | Effect on Biological Pathway | Disease Model and Species | Reference |
---|---|---|---|
Captopril Perindopril | Prevention of neuroinflammation and neurodegeneration due to decreased NO synthesis | In vitro studies | [6] |
Perindopril | Interference with astrocytes and microglia | In vitro studies | [6] |
Enalapril | Inhibition of the formation of neurotoxic zinc-bound Aβ(1-16) | In vitro studies | [6] |
Enalapril Perindopril | Antioxidant activity → Attenuation of ischemic brain edema Prevention of cognitive impairment caused by oxidative stress | In vivo studies | [6,36,37] |
Enalapril | Cortical cholinergic deficit was not restored due to its low ability to cross the BBB | In vivo studies | [6,42] |
Perindopril | Improvement of cognitive performance | In vivo study | [40] |
Perindopril | Significant improvement in cognitive functions | In vivo model of LPS-induced neuroinflammation | [34] |
Ramipril Captopril | Prevention of deterioration of cognitive functions | In vivo model of dementia induced by scopolamine | [41] |
Lisinopril | Positive effects in learning and memory enhancement, cerebral cholinergic activity, attenuation of inflammation, and reduction of oxidative stress ← modulation of PPAR-γ | In vivo model of murine model of intracerebroventricular streptozotocin-induced dementia of AD | [38] |
Enhancement in addressing learning and memory deficits as well as climbing impairment ← marked decrease in ROS levels within the thoraces of AD flies | In vivo study—Drosophila melanogaster model of AD | [39] | |
Captopril | Decrease in Ang II synthesis, not only peripherally but also in the brain Improvement of mental activity | Clinical trials—male patients treated for 24 weeks | [21] |
ACEI | Improvement of cognitive performance only in the first 9 months of therapy but not thereafter | Clinical trials | [43] |
3. The Effects of Ang II AT1R Antagonists in AD Pathology
3.1. Telmisartan
3.2. Candesartan
3.3. Losartan
3.4. Olmesartan
3.5. Valsartan
3.6. Irbesartan
3.7. Azilsartan
3.8. Eprosartan
Compound | Effect on Biological Pathway | Disease Model and Species | Reference |
---|---|---|---|
Valsartan | Reduction of the oligomerization of Aβ peptides into high-molecular-weight oligomeric peptides | In vitro study | [103] |
Increase in dendritic spine density | In vitro study—developing and mature hippocampal neurons | [104] | |
Attenuation of spatial memory impairment related to Aβ accumulation | In vivo study—Tg2576 mice | [103] | |
Alleviation of oxidative stress Restoration of cholinergic function | In vivo study—rats treated with aluminum trichloride and D-galactose | [105] | |
Reduction of oxidative/nitrosative stress Potentiation of the brain’s defensive antioxidant system | In vivo study—rats intracerebroventricular-injected with streptozotocin | [106] | |
Improvement in episodic memory No influence on other tests of cognitive function | Clinical trial—elderly hypertensive patients | [108,109] | |
Irbesartan | Reduction of the endothelial permeability Restoration of the occluding expression | In vitro study— LPS-stimulated human brain microvascular endothelial cells | [110] |
Reduction of the BBB permeability Restoration of the occluding expression Reduction of the expression of some inflammatory mediators Improvement of the depressive-like behavior | In vivo study—LPS-treated mice model | [110] | |
Increase in brain 5-HT levels Decrease in oxidative stress | In vivo study—mouse model undergoing various chronic mild stress procedures | [112] | |
Mitigation of cognitive impairment Reversal of the amyloidogenesis | In vivo study—AD-like pathology induced by aluminum in rats | [113] | |
Azilsartan | Prevention and reversal of cerebrovascular remodeling and dysfunction Decrease in blood glucose level | In vivo study—diabetic GK rats | [115] |
AT2R stimulation → Prevention of cognitive impairment | In vivo study—mouse model of vascular dementia | [116] | |
Improvement in cognitive decline Decrease in TNF-α, MDA, acetylcholinesterase, and Aβ-42 levels | In vivo study—aluminum chloride-induced neurotoxicity model of rats | [117] | |
Eprosartan | Modest overall improvement in the Mini-Mental State Examination score | Clinical trial OSCAR—hypertensive patients over 50 years old | [118] |
4. Neuroprotective Effects of Renin Inhibitors
- A review article from 2020 discusses the development of renin inhibitors from several decades ago to the present day, including both peptides and nonpeptides. The article notes that, despite extensive research, renin inhibitors are still struggling to find a niche in antihypertensive therapy [132].
- A Cochrane systematic review from 2020 compared the effectiveness of renin inhibitors to ACEIs for primary hypertension. The review found that renin inhibitors reduce blood pressure more than placebo, with the magnitude of this effect thought to be similar to that for ACEIs. However, the direct involvement of renin inhibitors in neurodegenerative diseases is not discussed [133].
5. Perspectives in the Prevention and Treatment of AD (General and RAS-Related)
6. Remarkable Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
ACE | Angiotensin-converting enzyme |
ACEI | Angiotensin-converting enzyme inhibitor |
Ach | Acetylcholine |
AD | Alzheimer’s dementia |
Ang | Angiotensin |
APP | Amyloid precursor protein |
ARB | Angiotensin II AT1R blocker |
Arg-1 | Arginase-1 |
Aβ | β-amyloid |
BBB | Blood–brain barrier |
CBF | Cerebral blood flow |
CNS | Central nervous system |
COX-2 | Cyclooxigenase-2 |
CSF | Cerebrospinal fluid |
DM | Diabetes mellitus |
FDA | Food and Drug Administration |
FDG | Fluorodeoxyglucose |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
GPCR | G protein-coupled receptor |
IL | Interleukin |
IRAP | Insulin-regulated aminopeptidase |
JNK | C-Jun N-terminal kinase |
LPS | Lipopolysaccharide |
LTP | Long-term potentiation |
MAPK | Mitogen-activated protein kinase |
MDA | Malondialdehyde |
MLC | Myosin light chain |
MLCK | Myosin light chain kinase |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF | Nuclear factor |
NO | Nitric oxide |
iNOS | Inducible nitric oxide synthase |
NRTK | Non-receptor tyrosine kinase |
PET | Positron emission tomography |
PPAR-γ | Peroxisome proliferator-activated receptor-γ |
R | Receptor |
RAS | Renin–angiotensin system |
mRNA | Messenger ribonucleic acid |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
T2DM | Type 2 diabetes mellitus |
TGF-β1 | Transforming growth factor-β1 |
TNF-α | Tumor necrosis factor-α |
References
- Kazim, S.F.; Iqbal, K. Chapter 2—Neural Regeneration as a Disease-Modifying Therapeutic Strategy for Alzheimer’s Disease. In Neuroprotection in Alzheimer’s Disease; Gozes, I., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–29. [Google Scholar]
- Raskin, J.; Cummings, J.; Hardy, J.; Schuh, K.; Dean, R.A. Neurobiology of Alzheimer’s Disease: Integrated Molecular, Physiological, Anatomical, Biomarker, and Cognitive Dimensions. Curr. Alzheimer Res. 2015, 12, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Varshney, V.; Garabadu, D. Ang (1–7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats. Neuropeptides 2021, 86, 102122. [Google Scholar] [CrossRef] [PubMed]
- Vasincu, A.; Rusu, R.N.; Ababei, D.C.; Larion, M.; Bild, W.; Stanciu, G.D.; Solcan, C.; Bild, V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology 2022, 11, 440. [Google Scholar] [CrossRef] [PubMed]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef]
- Gouveia, F.; Camins, A.; Ettcheto, M.; Bicker, J.; Falcão, A.; Cruz, M.T.; Fortuna, A. Targeting Brain Renin-Angiotensin System for the prevention and treatment of Alzheimer’s disease: Past, present and future. Ageing Res. Rev. 2022, 77, ARR101612. [Google Scholar] [CrossRef]
- Sun, M.K.; Alkon, D.L. Neuro-regeneration Therapeutic for Alzheimer’s Dementia: Perspectives on Neurotrophic Activity. Trends Pharmacol. Sci. 2019, 40, 655–668. [Google Scholar] [CrossRef]
- Farooqui, A. Molecular Aspects of Neurodegeneration and Classification of Neurological Disorders; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–40. [Google Scholar]
- McFall, A.; Nicklin, S.A.; Work, L.M. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell. Signal. 2020, 76, 109809. [Google Scholar] [CrossRef]
- Phillips, M.I.; de Oliveira, E.M. Brain renin angiotensin in disease. J. Mol. Med. 2008, 86, 715–722. [Google Scholar] [CrossRef]
- Wong Zhang, D.E.; Sobey, C.G.; De Silva, T.M. Chapter 31—The role of angiotensin peptides in the brain during health and disease. In Angiotensin; Pilowsky, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 749–773. [Google Scholar]
- Liu, J.; Liu, S.; Matsumoto, Y.; Murakami, S.; Sugakawa, Y.; Kami, A.; Tanabe, C.; Maeda, T.; Michikawa, M.; Komano, H.; et al. Angiotensin type 1a receptor deficiency decreases amyloid β-protein generation and ameliorates brain amyloid pathology. Sci. Rep. 2015, 5, 12059. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Abiodun, O.A.; Ola, M.S. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J. Biol. Sci. 2020, 27, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.G.; Yu, Y.; Zhang, Z.H.; Weiss, R.M.; Felder, R.B. Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats. Hypertension 2008, 52, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Labandeira-Garcia, J.L.; Rodríguez-Perez, A.I.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Lanciego, J.L.; Guerra, M.J. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front. Aging Neurosci. 2017, 9, 129. [Google Scholar] [CrossRef]
- Su, Q.; Huo, C.J.; Li, H.B.; Liu, K.L.; Li, X.; Yang, Q.; Song, X.A.; Chen, W.S.; Cui, W.; Zhu, G.Q.; et al. Renin-angiotensin system acting on reactive oxygen species in paraventricular nucleus induces sympathetic activation via AT1R/PKCγ/Rac1 pathway in salt-induced hypertension. Sci. Rep. 2017, 7, 43107. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, H.; Chinnathambi, S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020, 438, 198–214. [Google Scholar] [CrossRef]
- Scotti, L.; Bassi, L.; Soranna, D.; Verde, F.; Silani, V.; Torsello, A.; Parati, G.; Zambon, A. Association between renin-angiotensin-aldosterone system inhibitors and risk of dementia: A meta-analysis. Pharmacol. Res. 2021, 166, 105515. [Google Scholar] [CrossRef]
- Kehoe, P.G.; Miners, S.; Love, S. Angiotensins in Alzheimer’s disease—friend or foe? Trends Neurosci. 2009, 32, 619–628. [Google Scholar] [CrossRef]
- Wright, J.W.; Harding, J.W. The brain RAS and Alzheimer’s disease. Exp. Neurol. 2010, 223, 326–333. [Google Scholar] [CrossRef]
- Wright, J.W.; Harding, J.W. The brain renin–angiotensin system: A diversity of functions and implications for CNS diseases. Pflügers Arch.-Eur. J. Physiol. 2012, 465, 133–151. [Google Scholar] [CrossRef]
- Ho, J.K.; Nation, D.A. Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies. Neurosci. Biobehav. Rev. 2018, 92, 209–225. [Google Scholar] [CrossRef]
- Royea, J.; Lacalle-Aurioles, M.; Trigiani, L.J.; Fermigier, A.; Hamel, E. AT2R’s (Angiotensin II Type 2 Receptor’s) Role in Cognitive and Cerebrovascular Deficits in a Mouse Model of Alzheimer Disease. Hypertension 2020, 75, 1464–1474. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, P.G.; Wilcock, G.K. Is inhibition of the renin-angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol. 2007, 6, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Wzgarda, A.; Kleszcz, R.; Prokop, M.; Regulska, K.; Regulski, M.; Paluszczak, J.; Stanisz, B.J. Unknown face of known drugs—what else can we expect from angiotensin converting enzyme inhibitors? Eur. J. Pharmacol. 2017, 797, 9–19. [Google Scholar] [CrossRef]
- Guo, S.; Som, A.T.; Arai, K.; Lo, E.H. Effects of angiotensin-II on brain endothelial cell permeability via PPARalpha regulation of para- and trans-cellular pathways. Brain Res. 2019, 1722, 146353. [Google Scholar] [CrossRef]
- Tian, M.; Lin, X.; Wu, L.; Lu, J.; Zhang, Y.; Shi, J. Angiotensin II triggers autophagy and apoptosis in PC12 cell line: An in vitro Alzheimer’s disease model. Brain Res. 2019, 1718, 46–52. [Google Scholar] [CrossRef]
- Khurana, V.; Goswami, B. Angiotensin converting enzyme (ACE). Clin. Chim. Acta 2022, 524, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Valencia, S.; Shamoon, L.; Romero, A.; De la Cuesta, F.; Sanchez-Ferrer, C.F.; Peiro, C. Angiotensin-(1–7), a protective peptide against vascular aging. Peptides 2022, 152, 170775. [Google Scholar] [CrossRef]
- Kunvariya, A.D.; Dave, S.A.; Modi, Z.J.; Patel, P.K.; Sagar, S.R. Exploration of multifaceted molecular mechanism of angiotensin-converting enzyme 2 (ACE2) in pathogenesis of various diseases. Heliyon 2023, 9, e15644. [Google Scholar] [CrossRef]
- Jackson, L.; Eldahshan, W.; Fagan, S.; Ergul, A. Within the Brain: The Renin Angiotensin System. Int. J. Mol. Sci. 2018, 19, 876. [Google Scholar] [CrossRef]
- Faraco, G.; Iadecola, C. Hypertension: A harbinger of stroke and dementia. Hypertension 2013, 62, 810–817. [Google Scholar] [CrossRef]
- Goel, R.; Bhat, S.A.; Rajasekar, N.; Hanif, K.; Nath, C.; Shukla, R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacol. Biochem. Behav. 2015, 133, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Ohrui, T.; Matsui, T.; Yamaya, M.; Arai, H.; Ebihara, S.; Maruyama, M.; Sasaki, H. Angiotensin-converting enzyme inhibitors and incidence of Alzheimer’s disease in Japan. J. Am. Geriatr. Soc. 2004, 52, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Panahpour, H.; Dehghani, G.A.; Bohlooli, S. Enalapril attenuates ischaemic brain oedema and protects the blood-brain barrier in rats via an anti-oxidant action. Clin. Exp. Pharmacol. Physiol. 2014, 41, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska-Sadowska, E.; Zera, T.; Kowara, M.; Cudnoch-Jedrzejewska, A. Chapter 2—The contribution of angiotensin peptides to cardiovascular neuroregulation in health and disease. In Angiotensin; Pilowsky, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 21–75. [Google Scholar]
- Singh, B.; Sharma, B.; Jaggi, A.S.; Singh, N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: Possible involvement of PPAR-γ agonistic property. J. Renin Angiotensin Aldosterone Syst. 2013, 14, 124–136. [Google Scholar] [CrossRef]
- Thomas, J.; Smith, H.; Smith, C.A.; Coward, L.; Gorman, G.; De Luca, M.; Jumbo-Lucioni, P. The Angiotensin-Converting Enzyme Inhibitor Lisinopril Mitigates Memory and Motor Deficits in a Drosophila Model of Alzheimer’s Disease. Pathophysiology 2021, 28, 307–319. [Google Scholar] [CrossRef]
- Yamada, K.; Horita, T.; Takayama, M.; Takahashi, S.; Takaba, K.; Nagata, Y.; Suzuki, N.; Kanda, T. Effect of a centrally active angiotensin converting enzyme inhibitor, perindopril, on cognitive performance in chronic cerebral hypo-perfusion rats. Brain Res. 2011, 1421, 110–120. [Google Scholar] [CrossRef]
- Ababei, D.C.; Bild, V.; Ciobică, A.; Lefter, R.M.; Rusu, R.N.; Bild, W. A Comparative Study on the Memory-Enhancing Actions of Oral Renin-Angiotensin System Altering Drugs in Scopolamine-Treated Mice. Am. J. Alzheimer’s Dis. Other Dement. 2019, 34, 329–336. [Google Scholar] [CrossRef]
- Ongali, B.; Nicolakakis, N.; Tong, X.K.; Aboulkassim, T.; Imboden, H.; Hamel, E. Enalapril Alone or Co-Administered with Losartan Rescues Cerebrovascular Dysfunction, but not Mnemonic Deficits or Amyloidosis in a Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 51, 1183–1195. [Google Scholar] [CrossRef]
- Fazal, K.; Perera, G.; Khondoker, M.; Howard, R.; Stewart, R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer’s disease. BJPsych Open 2017, 3, 158–164. [Google Scholar] [CrossRef]
- Vadhan, J.D.; Speth, R.C. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther. 2021, 218, 107684. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, H.-F.; Li, X.W.J.; Xing, C.-M. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: A meta-analysis. J. Clin. Neurosci. 2016, 33, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.-W.; Yuan, Y.-H.; Chen, N.-H. The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 96, 109745. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Iwanami, J.; Horiuchi, M. Roles of Brain Angiotensin II in Cognitive Function and Dementia. Int. J. Hypertens. 2012, 2012, 169649. [Google Scholar] [CrossRef]
- Savaskan, E.; Hock, C.; Olivieri, G.; Bruttel, S.; Rosenberg, C.; Hulette, C.; Müller-Spahn, F. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol. Aging 2001, 22, 541–546. [Google Scholar] [CrossRef]
- Laurent, S. Antihypertensive drugs. Pharmacol. Res. 2017, 124, 116–125. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Ishrat, T. The Brain AT2R-a Potential Target for Therapy in Alzheimer’s Disease and Vascular Cognitive Impairment: A Comprehensive Review of Clinical and Experimental Therapeutics. Mol. Neurobiol. 2020, 57, 3458–3484. [Google Scholar] [CrossRef] [PubMed]
- Israili, Z.H. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J. Hum. Hypertens. 2000, 14 (Suppl. S1), S73–S86. [Google Scholar] [CrossRef] [PubMed]
- Royea, J.; Hamel, E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer’s disease therapeutic targets. Geroscience 2020, 42, 1237–1256. [Google Scholar] [CrossRef]
- Pang, T.; Wang, J.; Benicky, J.; Sánchez-Lemus, E.; Saavedra, J.M. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J. Neuroinflamm. 2012, 9, 102. [Google Scholar] [CrossRef]
- Wang, J.; Pang, T.; Hafko, R.; Benicky, J.; Sanchez-Lemus, E.; Saavedra, J.M. Telmisartan ameliorates glutamate-induced neurotoxicity: Roles of AT(1) receptor blockade and PPARγ activation. Neuropharmacology 2014, 79, 249–261. [Google Scholar] [CrossRef]
- Torika, N.; Asraf, K.; Danon, A.; Apte, R.N.; Fleisher-Berkovich, S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS ONE 2016, 11, e0155823. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Li, J.; Ma, C.; Huang, C.; Li, Z.Q. Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochem. Pharmacol. 2020, 171, 113674. [Google Scholar] [CrossRef] [PubMed]
- Elkahloun, A.G.; Rodriguez, Y.; Alaiyed, S.; Wenzel, E.; Saavedra, J.M. Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation. Mol. Neurobiol. 2019, 56, 3193–3210. [Google Scholar] [CrossRef] [PubMed]
- Torika, N.; Asraf, K.; Cohen, H.; Fleisher-Berkovich, S. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer’s disease mice. Brain Behav. Immun. 2017, 64, 80–90. [Google Scholar] [CrossRef]
- Mogi, M.; Li, J.M.; Tsukuda, K.; Iwanami, J.; Min, L.J.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem. Biophys. Res. Commun. 2008, 375, 446–449. [Google Scholar] [CrossRef]
- Tsukuda, K.; Mogi, M.; Iwanami, J.; Min, L.J.; Sakata, A.; Jing, F.; Iwai, M.; Horiuchi, M. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension 2009, 54, 782–787. [Google Scholar] [CrossRef]
- Haraguchi, T.; Iwasaki, K.; Takasaki, K.; Uchida, K.; Naito, T.; Nogami, A.; Kubota, K.; Shindo, T.; Uchida, N.; Katsurabayashi, S.; et al. Telmisartan, a partial agonist of peroxisome proliferator-activated receptor gamma, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia. Brain Res. 2010, 1353, 125–132. [Google Scholar] [CrossRef]
- Kishi, T.; Hirooka, Y.; Sunagawa, K. Telmisartan protects against cognitive decline via up-regulation of brain-derived neurotrophic factor/tropomyosin-related kinase B in hippocampus of hypertensive rats. J. Cardiol. 2012, 60, 489–494. [Google Scholar] [CrossRef]
- Min, L.J.; Mogi, M.; Shudou, M.; Jing, F.; Tsukuda, K.; Ohshima, K.; Iwanami, J.; Horiuchi, M. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension 2012, 59, 1079–1088. [Google Scholar] [CrossRef]
- Prathab Balaji, S.; Vijay Chand, C.; Justin, A.; Ramanathan, M. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling. Pharmacol. Biochem. Behav. 2015, 137, 60–68. [Google Scholar] [CrossRef]
- Shindo, T.; Takasaki, K.; Uchida, K.; Onimura, R.; Kubota, K.; Uchida, N.; Irie, K.; Katsurabayashi, S.; Mishima, K.; Nishimura, R.; et al. Ameliorative effects of telmisartan on the inflammatory response and impaired spatial memory in a rat model of Alzheimer’s disease incorporating additional cerebrovascular disease factors. Biol. Pharm. Bull. 2012, 35, 2141–2147. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, M.; Safar, M.M.; Abdelsalam, R.M.; Zaki, H.F. Telmisartan Protects Against Aluminum-Induced Alzheimer-like Pathological Changes in Rats. Neurotox. Res. 2020, 37, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Ogrodnik, M.; Wenzel, J.; Stölting, I.; Huber, L.; Will, O.; Peschke, E.; Matschl, U.; Hövener, J.B.; Schwaninger, M.; et al. Telmisartan prevents high-fat diet-induced neurovascular impairments and reduces anxiety-like behavior. J. Cereb. Blood Flow Metab. 2021, 41, 2356–2369. [Google Scholar] [CrossRef] [PubMed]
- Wincewicz, D.; Braszko, J.J. Angiotensin II AT1 receptor blockade by telmisartan reduces impairment of spatial maze performance induced by both acute and chronic stress. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Noda, A.; Fushiki, H.; Murakami, Y.; Sasaki, H.; Miyoshi, S.; Kakuta, H.; Nishimura, S. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques. Nucl. Med. Biol. 2012, 39, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Teo, K.; Anderson, C.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: A randomised controlled trial. Lancet 2008, 372, 1174–1183. [Google Scholar] [CrossRef]
- Yusuf, S.; Teo, K.K.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P.; Anderson, C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 2008, 358, 1547–1559. [Google Scholar] [CrossRef]
- Anderson, C.; Teo, K.; Gao, P.; Arima, H.; Dans, A.; Unger, T.; Commerford, P.; Dyal, L.; Schumacher, H.; Pogue, J.; et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: Analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011, 10, 43–53. [Google Scholar] [CrossRef]
- Kume, K.; Hanyu, H.; Sakurai, H.; Takada, Y.; Onuma, T.; Iwamoto, T. Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer’s disease. Geriatr. Gerontol. Int. 2012, 12, 207–214. [Google Scholar] [CrossRef]
- Imabayashi, E.; Matsuda, H.; Yoshimaru, K.; Kuji, I.; Seto, A.; Shimano, Y.; Ito, K.; Kikuta, D.; Shimazu, T.; Araki, N. Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer’s disease. Brain Behav. 2011, 1, 63–69. [Google Scholar] [CrossRef]
- Liu, C.H.; Sung, P.S.; Li, Y.R.; Huang, W.K.; Lee, T.W.; Huang, C.C.; Lee, T.H.; Chen, T.H.; Wei, Y.C. Telmisartan use and risk of dementia in type 2 diabetes patients with hypertension: A population-based cohort study. PLoS Med. 2021, 18, e1003707. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, Y.; Zhao, Y.; Dong, Y.; Cui, Y.; Sun, S.; Gong, G.; Zhang, H.; Chai, Q.; Wang, J.; et al. Telmisartan and Rosuvastatin Synergistically Ameliorate Dementia and Cognitive Impairment in Older Hypertensive Patients with Apolipoprotein E Genotype. Front. Aging Neurosci. 2020, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Zhang, P.; Hou, Y.; Pieper, A.A.; Leverenz, J.B.; Cummings, J. Population-based Discovery and Ethnically Mixed Mendelian Randomization Validation Identifies Telmisartan as a Candidate Drug for Alzheimer’s Disease in African Americans. Alzheimer’s Dement. 2022, 18, e066634. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, Y.; Tu, W.; Campbell, N.; Pieper, A.A.; Leverenz, J.B.; Gao, S.; Cummings, J.; Cheng, F. Population-based discovery and Mendelian randomization analysis identify telmisartan as a candidate medicine for Alzheimer’s disease in African Americans. Alzheimer’s Dement. 2023, 19, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
- Wharton, W.; Goldstein, F.C.; Tansey, M.G.; Brown, A.L.; Tharwani, S.D.; Verble, D.D.; Cintron, A.; Kehoe, P.G. Rationale and Design of the Mechanistic Potential of Antihypertensives in Preclinical Alzheimer’s (HEART) Trial. J. Alzheimer’s Dis. 2018, 61, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choi, N.Y.; Lee, K.Y.; Lee, Y.J.; Koh, S.H. Candesartan Restores the Amyloid Beta-Inhibited Proliferation of Neural Stem Cells by Activating the Phosphatidylinositol 3-Kinase Pathway. Dement. Neurocogn. Disord. 2017, 16, 64–71. [Google Scholar] [CrossRef]
- Torika, N.; Asraf, K.; Apte, R.N.; Fleisher-Berkovich, S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci. Ther. 2018, 24, 231–242. [Google Scholar] [CrossRef]
- Elkahloun, A.G.; Hafko, R.; Saavedra, J.M. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease. Alzheimer’s Res. Ther. 2016, 8, 5. [Google Scholar] [CrossRef]
- Hewedy, W.A.; El-Hadidy, W.F. Neuroprotective effect of renin angiotensin system blockers on experimentally induced Alzheimer’s disease in rats. Int. J. Basic Clin. Pharmacol. 2016, 4, 853–859. [Google Scholar] [CrossRef]
- Tota, S.; Kamat, P.K.; Awasthi, H.; Singh, N.; Raghubir, R.; Nath, C.; Hanif, K. Candesartan improves memory decline in mice: Involvement of AT1 receptors in memory deficit induced by intracerebral streptozotocin. Behav. Brain Res. 2009, 199, 235–240. [Google Scholar] [CrossRef]
- Bhat, S.A.; Goel, R.; Shukla, R.; Hanif, K. Angiotensin Receptor Blockade Modulates NFκB and STAT3 Signaling and Inhibits Glial Activation and Neuroinflammation Better than Angiotensin-Converting Enzyme Inhibition. Mol. Neurobiol. 2016, 53, 6950–6967. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Goel, R.; Shukla, S.; Shukla, R.; Hanif, K. Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Mol. Neurobiol. 2018, 55, 5282–5298. [Google Scholar] [CrossRef] [PubMed]
- Villapol, S.; Balarezo, M.G.; Affram, K.; Saavedra, J.M.; Symes, A.J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain 2015, 138, 3299–3315. [Google Scholar] [CrossRef] [PubMed]
- Trigiani, L.J.; Royea, J.; Lacalle-Aurioles, M.; Tong, X.K.; Hamel, E. Pleiotropic Benefits of the Angiotensin Receptor Blocker Candesartan in a Mouse Model of Alzheimer Disease. Hypertension 2018, 72, 1217–1226. [Google Scholar] [CrossRef]
- Hajjar, I.; Hart, M.; Chen, Y.L.; Mack, W.; Milberg, W.; Chui, H.; Lipsitz, L. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: A double-blind randomized clinical trial. Arch. Intern. Med. 2012, 172, 442–444. [Google Scholar] [CrossRef]
- Hajjar, I.; Hart, M.; Milberg, W.; Novak, V.; Lipsitz, L. The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition. BMC Geriatr. 2009, 9, 48. [Google Scholar] [CrossRef]
- Hajjar, I.; Okafor, M.; Wan, L.; Yang, Z.; Nye, J.A.; Bohsali, A.; Shaw, L.M.; Levey, A.I.; Lah, J.J.; Calhoun, V.D.; et al. Safety and biomarker effects of candesartan in non-hypertensive adults with prodromal Alzheimer’s disease. Brain Commun. 2022, 4, fcac270. [Google Scholar] [CrossRef]
- Danielyan, L.; Klein, R.; Hanson, L.R.; Buadze, M.; Schwab, M.; Gleiter, C.H.; Frey, W.H. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 2010, 13, 195–201. [Google Scholar] [CrossRef]
- Drews, H.J.; Yenkoyan, K.; Lourhmati, A.; Buadze, M.; Kabisch, D.; Verleysdonk, S.; Petschak, S.; Beer-Hammer, S.; Davtyan, T.; Frey, W.H., 2nd; et al. Intranasal Losartan Decreases Perivascular Beta Amyloid, Inflammation, and the Decline of Neurogenesis in Hypertensive Rats. Neurotherapeutics 2019, 16, 725–740. [Google Scholar] [CrossRef]
- Drews, H.J.; Klein, R.; Lourhmati, A.; Buadze, M.; Schaeffeler, E.; Lang, T.; Seferyan, T.; Hanson, L.R.; Frey Ii, W.H.; de Vries, T.; et al. Losartan Improves Memory, Neurogenesis and Cell Motility in Transgenic Alzheimer’s Mice. Pharmaceuticals 2021, 14, 166. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Tong, X.K.; Imboden, H.; Hamel, E. Losartan improves cerebrovascular function in a mouse model of Alzheimer’s disease with combined overproduction of amyloid-β and transforming growth factor-β1. J. Cereb. Blood Flow Metab. 2017, 37, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Ongali, B.; Nicolakakis, N.; Tong, X.K.; Aboulkassim, T.; Papadopoulos, P.; Rosa-Neto, P.; Lecrux, C.; Imboden, H.; Hamel, E. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol. Dis. 2014, 68, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, P.G.; Turner, N.; Howden, B.; Jarutyte, L.; Clegg, S.L.; Malone, I.B.; Barnes, J.; Nielsen, C.; Sudre, C.H.; Wilson, A.; et al. Safety and efficacy of losartan for the reduction of brain atrophy in clinically diagnosed Alzheimer’s disease (the RADAR trial): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2021, 20, 895–906. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, B.; Yang, S.; Zhou, D.; Wang, J. Olmesartan Prevents Oligomerized Amyloid β (Aβ)-Induced Cellular Senescence in Neuronal Cells. ACS Chem. Neurosci. 2021, 12, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Tsukuda, K.; Li, J.M.; Iwanami, J.; Min, L.J.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan. Neuropharmacology 2007, 53, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Sato, N.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Niisato, K.; Kano, M.; Ogihara, T.; Rakugi, H.; Morishita, R. Angiotensin receptor blocker prevented beta-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension 2009, 54, 1345–1352. [Google Scholar] [CrossRef]
- Pelisch, N.; Hosomi, N.; Ueno, M.; Nakano, D.; Hitomi, H.; Mogi, M.; Shimada, K.; Kobori, H.; Horiuchi, M.; Sakamoto, H.; et al. Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 2011, 24, 362–368. [Google Scholar] [CrossRef]
- Nakagawa, T.; Hasegawa, Y.; Uekawa, K.; Senju, S.; Nakagata, N.; Matsui, K.; Kim-Mitsuyama, S. Transient Mild Cerebral Ischemia Significantly Deteriorated Cognitive Impairment in a Mouse Model of Alzheimer’s Disease via Angiotensin AT1 Receptor. Am. J. Hypertens. 2017, 30, 141–150. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Chen, L.; Zhao, Z.; Zhao, W.; Qian, X.; Humala, N.; Seror, I.; Bartholomew, S.; Rosendorff, C.; et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Investig. 2007, 117, 3393–3402. [Google Scholar] [CrossRef]
- Sohn, Y.I.; Lee, N.J.; Chung, A.; Saavedra, J.M.; Scott Turner, R.; Pak, D.T.; Hoe, H.S. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking. Biochem. Biophys. Res. Commun. 2013, 439, 464–470. [Google Scholar] [CrossRef]
- Yang, W.N.; Hu, X.D.; Han, H.; Shi, L.L.; Feng, G.F.; Liu, Y.; Qian, Y.H. The effects of valsartan on cognitive deficits induced by aluminum trichloride and d-galactose in mice. Neurol. Res. 2014, 36, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Arjmand Abbassi, Y.; Mohammadi, M.T.; Sarami Foroshani, M.; Raouf Sarshoori, J. Captopril and Valsartan May Improve Cognitive Function Through Potentiation of the Brain Antioxidant Defense System and Attenuation of Oxidative/Nitrosative Damage in STZ-Induced Dementia in Rat. Adv. Pharm. Bull. 2016, 6, 531–539. [Google Scholar] [CrossRef] [PubMed]
- El-Din Hussein, A.S.; Abou-El Nour, R.K.E.; Khorshid, O.A.; Osman, A.S. Study of the possible effect of sacubitril/valsartan combination versus valsartan on the cognitive function in Alzheimer’s disease model in rats. Int. J. Immunopathol. Pharmacol. 2023, 37, 3946320231161469. [Google Scholar] [CrossRef] [PubMed]
- Fogari, R.; Mugellini, A.; Zoppi, A.; Marasi, G.; Pasotti, C.; Poletti, L.; Rinaldi, A.; Preti, P. Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur. J. Clin. Pharmacol. 2004, 59, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Katada, E.; Uematsu, N.; Takuma, Y.; Matsukawa, N. Comparison of effects of valsartan and amlodipine on cognitive functions and auditory p300 event-related potentials in elderly hypertensive patients. Clin. Neuropharmacol. 2014, 37, 129–132. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, J.; Qin, H.; Liu, L.; Di, C.; Zhuang, Q.; Yin, H. Irbesartan suppresses lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) dysfunction by inhibiting the activation of MLCK/MLC. Int. Immunopharmacol. 2021, 98, 107834. [Google Scholar] [CrossRef]
- Schupp, M.; Janke, J.; Clasen, R.; Unger, T.; Kintscher, U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 2004, 109, 2054–2057. [Google Scholar] [CrossRef]
- Ayyub, M.; Najmi, A.K.; Akhtar, M. Protective Effect of Irbesartan an Angiotensin (AT1) Receptor Antagonist in Unpredictable Chronic Mild Stress Induced Depression in Mice. Drug Res. 2017, 67, 59–64. [Google Scholar] [CrossRef]
- Mishra, S.; Prusty, S.K.; Sahu, P.K.; Das, D. Irbesartan protects against aluminium chloride induced amyloidogenesis and cognitive impairment. J. Krishna Inst. Med. Sci. 2022, 11, 18–30. [Google Scholar]
- Wang, J.G.; Zhang, M.; Feng, Y.Q.; Ma, C.S.; Wang, T.D.; Zhu, Z.M.; Kario, K. Is the newest angiotensin-receptor blocker azilsartan medoxomil more efficacious in lowering blood pressure than the older ones? A systematic review and network meta-analysis. J. Clin. Hypertens. 2021, 23, 901–914. [Google Scholar] [CrossRef]
- Abdelsaid, M.; Coucha, M.; Ergul, A. Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes. Transl. Res. 2014, 164, 424–432. [Google Scholar] [CrossRef]
- Iwanami, J.; Mogi, M.; Tsukuda, K.; Wang, X.L.; Nakaoka, H.; Kan-no, H.; Chisaka, T.; Bai, H.Y.; Shan, B.S.; Kukida, M.; et al. Direct angiotensin II type 2 receptor stimulation by compound 21 prevents vascular dementia. J. Am. Soc. Hypertens. 2015, 9, 250–256. [Google Scholar] [CrossRef]
- Alzahrani, Y.M.; Alim, A.S.M.A.; Kamel, F.O.; Ramadan, W.S.; Alzahrani, Y.A. Possible combined effect of perindopril and Azilsartan in an experimental model of dementia in rats. Saudi Pharm. J. 2020, 28, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Hanon, O.; Berrou, J.P.; Negre-Pages, L.; Goch, J.H.; Nádházi, Z.; Petrella, R.; Sedefdjian, A.; Sévenier, F.; Shlyakhto, E.V.; Pathak, A. Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: Primary results of the Observational Study on Cognitive function And Systolic Blood Pressure Reduction open-label study. J. Hypertens. 2008, 26, 1642–1650. [Google Scholar] [CrossRef]
- Hanon, O.; Lee, Y.S.; Pathak, A. Association between eprosartan-based hypertension therapy and improvement in cognitive function score: Long-term follow-up from the OSCAR observational study. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 366–373. [Google Scholar] [CrossRef]
- Barthold, D.; Joyce, G.; Diaz Brinton, R.; Wharton, W.; Kehoe, P.G.; Zissimopoulos, J. Association of combination statin and antihypertensive therapy with reduced Alzheimer’s disease and related dementia risk. PLoS ONE 2020, 15, e0229541. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Kim, S.; Jo, Y.; Kim, Y.; Ye, B.S.; Yu, Y.M. Neuroprotective effect of angiotensin II receptor blockers on the risk of incident Alzheimer’s disease: A nationwide population-based cohort study. Front. Aging Neurosci. 2023, 15, 1137197. [Google Scholar] [CrossRef] [PubMed]
- Li, N.C.; Lee, A.; Whitmer, R.A.; Kivipelto, M.; Lawler, E.; Kazis, L.E.; Wolozin, B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis. BMJ 2010, 340, b5465. [Google Scholar] [CrossRef]
- Kuan, Y.C.; Huang, K.W.; Yen, D.J.; Hu, C.J.; Lin, C.L.; Kao, C.H. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers reduced dementia risk in patients with diabetes mellitus and hypertension. Int. J. Cardiol. 2016, 220, 462–466. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Huang, C.C.; Chan, W.L.; Huang, P.H.; Chiang, C.H.; Chen, T.J.; Chung, C.M.; Lin, S.J.; Chen, J.W.; Leu, H.B. Angiotensin-receptor blockers and risk of Alzheimer’s disease in hypertension population—A nationwide cohort study. Circ. J. 2013, 77, 405–410. [Google Scholar] [CrossRef]
- Edwards, J.D.; Ramirez, J.; Callahan, B.L.; Tobe, S.W.; Oh, P.; Berezuk, C.; Lanctôt, K.; Swardfager, W.; Nestor, S.; Kiss, A.; et al. Antihypertensive Treatment is associated with MRI-Derived Markers of Neurodegeneration and Impaired Cognition: A Propensity-Weighted Cohort Study. J. Alzheimer’s Dis. 2017, 59, 1113–1122. [Google Scholar] [CrossRef]
- Moran, C.; Xie, K.; Poh, S.; Chew, S.; Beare, R.; Wang, W.; Callisaya, M.; Srikanth, V. Observational Study of Brain Atrophy and Cognitive Decline Comparing a Sample of Community-Dwelling People Taking Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Over Time. J. Alzheimer’s Dis. 2019, 68, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Ouk, M.; Wu, C.Y.; Rabin, J.S.; Edwards, J.D.; Ramirez, J.; Masellis, M.; Swartz, R.H.; Herrmann, N.; Lanctôt, K.L.; Black, S.E.; et al. Associations between brain amyloid accumulation and the use of angiotensin-converting enzyme inhibitors versus angiotensin receptor blockers. Neurobiol. Aging 2021, 100, 22–31. [Google Scholar] [CrossRef]
- Ho, J.K.; Nation, D.A. Memory is preserved in older adults taking AT1 receptor blockers. Alzheimer’s Res. Ther. 2017, 9, 33. [Google Scholar] [CrossRef]
- Nation, D.A.; Ho, J.; Yew, B. Older Adults Taking AT1-Receptor Blockers Exhibit Reduced Cerebral Amyloid Retention. J. Alzheimer’s Dis. 2016, 50, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Ouk, M.; Wu, C.Y.; Rabin, J.S.; Jackson, A.; Edwards, J.D.; Ramirez, J.; Masellis, M.; Swartz, R.H.; Herrmann, N.; Lanctôt, K.L.; et al. The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer’s disease: The importance of blood-brain barrier penetration and APOE ε4 carrier status. Alzheimer’s Res. Ther. 2021, 13, 43. [Google Scholar] [CrossRef]
- Ding, J.; Davis-Plourde, K.L.; Sedaghat, S.; Tully, P.J.; Wang, W.; Phillips, C.; Pase, M.P.; Himali, J.J.; Gwen Windham, B.; Griswold, M.; et al. Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: A meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 2020, 19, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Ramya, K.; Suresh, R.; Kumar, H.Y.; Kumar, B.R.P.; Murthy, N.B.S. Decades-old renin inhibitors are still struggling to find a niche in antihypertensive therapy. A fleeting look at the old and the promising new molecules. Bioorg. Med. Chem. 2020, 28, 115466. [Google Scholar] [CrossRef]
- Wang, G.M.; Li, L.J.; Tang, W.L.; Wright, J.M. Renin inhibitors versus angiotensin converting enzyme (ACE) inhibitors for primary hypertension. Cochrane Database Syst. Rev. 2020, 10, Cd012569. [Google Scholar] [CrossRef] [PubMed]
- Ghalayini, J.; Boulianne, G.L. Deciphering mechanisms of action of ACE inhibitors in neurodegeneration using Drosophila models of Alzheimer’s disease. Front. Neurosci. 2023, 17, 1166973. [Google Scholar] [CrossRef]
- Lee, S.H.; Gomes, S.M.; Ghalayini, J.; Iliadi, K.G.; Boulianne, G.L. Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Rescue Memory Defects in Drosophila-Expressing Alzheimer’s Disease-Related Transgenes Independently of the Canonical Renin Angiotensin System. eNeuro 2020, 7, ENEURO.0235-20.2020. [Google Scholar] [CrossRef]
- Bakhle, Y.S. How ACE inhibitors transformed the renin-angiotensin system. Br. J. Pharmacol. 2020, 177, 2657–2665. [Google Scholar] [CrossRef]
- Ma, K.; Zheng, Z.R.; Meng, Y. Pathogenesis of Chronic Kidney Disease Is Closely Bound up with Alzheimer’s Disease, Especially via the Renin-Angiotensin System. J. Clin. Med. 2023, 12, 1459. [Google Scholar] [CrossRef]
- van Paassen, P.; de Zeeuw, D.; Navis, G.; de Jong, P.E. Renal and systemic effects of continued treatment with renin inhibitor remikiren in hypertensive patients with normal and impaired renal function. Nephrol. Dial. Transplant. 2000, 15, 637–643. [Google Scholar] [CrossRef]
- Parameswari, R.P.; Ramesh, G.; Chidambaram, S.B.; Thangavelu, L. Oxidative stress mediated neuroinflammation induced by chronic sleep restriction as triggers for Alzheimer’s disease. Alzheimer’s Dement. 2022, 18, e059016. [Google Scholar] [CrossRef]
- Dong, Y.F.; Kataoka, K.; Toyama, K.; Sueta, D.; Koibuchi, N.; Yamamoto, E.; Yata, K.; Tomimoto, H.; Ogawa, H.; Kim-Mitsuyama, S. Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension 2011, 58, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; O’Callaghan, E.L.; Hazelwood, L.; Germain, S.; Castrop, H.; Schnermann, J.; Bassi, J.K. Distribution of cells expressing human renin-promoter activity in the brain of a transgenic mouse. Brain Res. 2008, 1243, 78–85. [Google Scholar] [CrossRef]
- Weir, M.R. Renin inhibitors: Novel agents for renoprotection or a better angiotensin receptor blocker for blood pressure lowering? Curr. Opin. Nephrol. Hypertens. 2007, 16, 416–421. [Google Scholar] [CrossRef]
- Shinohara, K.; Liu, X.; Morgan, D.A.; Davis, D.R.; Sequeira-Lopez, M.L.; Cassell, M.D.; Grobe, J.L.; Rahmouni, K.; Sigmund, C.D. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension 2016, 68, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.D.; Wu, C.L.; Lin, T.K.; Chuang, Y.C.; Yang, D.I. Renin inhibitor aliskiren exerts neuroprotection against amyloid beta-peptide toxicity in rat cortical neurons. Neurochem. Int. 2012, 61, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Rahuel, J.; Rasetti, V.; Maibaum, J.; Rüeger, H.; Göschke, R.; Cohen, N.C.; Stutz, S.; Cumin, F.; Fuhrer, W.; Wood, J.M.; et al. Structure-based drug design: The discovery of novel nonpeptide orally active inhibitors of human renin. Chem. Biol. 2000, 7, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.L.; Samant, N.P. Current druggable targets for therapeutic control of Alzheimer’s disease. Contemp. Clin. Trials 2021, 109, 106549. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, B.B.; Sahu, P.K. Chapter 4—Targeting renin–angiotensin system: A strategy for drug development against neurological disorders. In Angiotensin; Pilowsky, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 107–150. [Google Scholar]
- Saavedra, J.M. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol. Res. 2017, 125, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
Effect on Biological Pathway | Disease Model and Species | Reference |
---|---|---|
Detected in cultured rat primary cerebellar granule cells exposed to glutamate Absent from human SK-N-SH neuroblasts exposed to IL-1β | In vitro models of neurotoxicity induced by IL-1β and glutamate exposure | [53,54] |
Reduced expression of NO, TNF-α, IL-1β activity | In vitro study—BV2 cells stimulated with LPS | [55] |
Reduced expression of IL-1β, TNF-α, NF-κB, IL-10 activity | In vitro study—BV2 cells stimulated by soluble Aβ oligomer | [56] |
Neuroprotective effects through other mechanisms besides AT1R blockade or PPAR-γ activation Prevention of the increase in LPS-induced inflammatory markers | In vitro study—BV2 cells lacking AT1R expression or PPAR-γ activation | [57] |
Reduction of cortical and hippocampal amyloid burden as well as glial activation | In vivo study—5XFAD mice, intranasal administration short-term (1–2 months) and long-term (5 months) | [55,58] |
Reduction of Aβ deposition Improvement of cognitive decline induced by Aβ Reduction of the expression of TNF-α and iNOS | In vivo study—ddY mice intracerebroventricular-injected with Aβ1–40 | [59,60] |
Beneficial effects on learning and memory decline produced by aluminum Reductions in MDA, TNF-α, NF-κβ, Aβ1-42, phosphorylated tau protein levels | In vivo study—rats treated with aluminum chloride | [66] |
Neuroprotective effects → Preventing and attenuating cognitive impairment associated with obesity, DM, and acute and chronic stress | In vivo studies | [63,67,68] |
Poor penetration of the brain, but enough to block AT1Rs | In vivo study—pharmacokinetic brain PET study in rhesus macaques | [69] |
Non-significant difference in cognitive impairment occurring in studied groups | Clinical trials (the ONTARGET and TRANSCEND trials)—high-vascular-risk patients treated with telmisartan, ramipril, a combination of the two, or placebo | [70,71,72] |
No change or improved performance, as well as improvement in regional cerebral blood flow in multiple regions of the brain, compared to amlodipine | Clinical trial—the effects of telmisartan vs. amlodipine on cognition and cerebral blood flow in 20 patients with hypertension and probable AD | [73] |
Ability to inhibit the short-term decline of glucose metabolism in the anterior olfactory nucleus of the olfactory tract in AD patients’ brains | Clinical trial—FDG-PET study on four hypertensive AD patients regarding brain glucose metabolism | [74] |
Lower risk of dementia diagnosis or dementia diagnosis with ischemic stroke as a competing risk and with all-cause mortality as a competing risk | Clinical trial—in hypertensive patients with T2DM | [75] |
Synergistic effect between telmisartan and rosuvastatin to reduce the risk of dementia occurrence and the cognitive impairment evolution | Randomized clinical trial—hypertensive patients with/without the APOE ɛ4 allele | [76] |
Greater beneficial effects and a reduced incidence of AD in African Americans, but not in non-Hispanic White or European Americans | Clinical trial | [77,78] |
Effect on Biological Pathway | Disease Model and Species | Reference |
---|---|---|
Restoration of the proliferation of neural stem cells previously inhibited by the Aβ25-35 oligomer | In vitro study | [80] |
Decrease in the expression of iNOS, NO, COX-2, TNF-α Promotion of the expression of Arg-1 Enhancement of Aβ1-42 uptake by microglia | In vitro study—BV2 cells stimulated with LPS | [81] |
Neuroprotective effects → preventing alterations in several transcripts that were up- or downregulated by glutamate | In vitro study—primary neuronal cultures treated with glutamate in excitotoxic concentrations | [82] |
Significant decrease in the expression levels of amyloid burden, but only in the hippocampus layer, not in the cortical layers of treated animals | In vivo study—5XFAD mice | [81] |
Improvement of spatial memory Decrease in oxidative stress Restoration of acetylcholinesterase activity | In vivo study—mouse model of memory impairment induced by intracerebral administration of streptozotocin | [83,84] |
Prevention of neuroinflammation induced by LPS Increase in AT2R expression Prevention of neuroinflammation and astrocyte and microglial activation in the brain | In vivo study—rat model of chronic hypertension | [85,86] |
Reduction of neuroinflammation Restoration of function of the endothelial and smooth muscle No significant impact on impaired cognitive function and amyloid plaque load | In vivo study—APP mice | [88] |
Reduction of inflammation Restoration of central endothelial function Lack of AT2R inhibition with prevention of neuronal degeneration → Improvement in executive function | Randomized clinical trial—hypertensive patients over 65 years old with early cognitive impairment | [89,90] |
Lower brain amyloid deposition Increase in Aβ40 and Aβ42 in CSF No significant modifications on tau protein levels Enhancement of the connectivity in subcortical brain networks | Randomized clinical trial—non-hypertensive adults with prodromal AD | [91] |
Compound | Effect on Biological Pathway | Disease Model and Species | Reference |
---|---|---|---|
Losartan | Decrease in Aβ plaques, IL-12 p40/p70, IL-1β and GM-CSF Increase in IL-10 → Neuroprotective and anti-inflammatory effects | In vivo study—APP/PS1 transgenic mouse model of AD | [92,93] |
Reduction of Aβ plaques Improvement in neurological deficits and neuroinflammation Increase in choroid plexus cell proliferation, neurogenesis, cell survival, and IL-10 levels in the brain Decreased mortality | In vivo study—rat model of chronic hypertension | [93] | |
Prevention of the onset of cognitive dysfunction (learning and memory deficits) and dilatory deficits Soluble Aβ species or plaque load were not decreased Decrease in cerebrovascular and cortical AT1R elevated levels | In vivo study—APP transgenic mice | [96] | |
No decrease in the rate of brain atrophy in the studied patients | Randomized placebo-controlled trial (the RADAR trial)—clinically diagnosed mild-to-moderate AD patients (aged 55 years or older) | [97] | |
Olmesartan | Protective effects in Aβ-induced cellular senescence and neurotoxicity Reduction of ROS, MDA, and senescence biomarkers levels | In vitro study—M17 neuronal cells | [98] |
Attenuation of cognitive decline and improvement of cognitive function Increase in mRNA expression of methyl methanesulfonate sensitive 2 Decrease in superoxide anion production in the brain | In vivo study—high-salt and high-cholesterol diet-fed mice | [99] | |
Reduction of oxidative stress in microvessels Attenuation of the cerebrovascular and cognitive impairment | In vivo study—APP23 mice | [100] | |
Prevention of vascular dysregulation Improvement of cognitive function | In vivo study—intracerebrovascular Aβ1-40 injected mice | [100] | |
Attenuation of cognitive decline Decrease in BBB microvessels permeability Reduction of hippocampal levels of Ang II | In vivo study—Dahl salt-sensitive rats fed with a high-salt diet | [101] | |
Prevention of BBB disruption Reduction of oxidative stress Significant improvements in cognitive impairment | In vivo study—5XFAD mice | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ababei, D.-C.; Bild, V.; Macadan, I.; Vasincu, A.; Rusu, R.-N.; Blaj, M.; Stanciu, G.D.; Lefter, R.-M.; Bild, W. Therapeutic Implications of Renin–Angiotensin System Modulators in Alzheimer’s Dementia. Pharmaceutics 2023, 15, 2290. https://doi.org/10.3390/pharmaceutics15092290
Ababei D-C, Bild V, Macadan I, Vasincu A, Rusu R-N, Blaj M, Stanciu GD, Lefter R-M, Bild W. Therapeutic Implications of Renin–Angiotensin System Modulators in Alzheimer’s Dementia. Pharmaceutics. 2023; 15(9):2290. https://doi.org/10.3390/pharmaceutics15092290
Chicago/Turabian StyleAbabei, Daniela-Carmen, Veronica Bild, Ioana Macadan, Alexandru Vasincu, Răzvan-Nicolae Rusu, Mihaela Blaj, Gabriela Dumitrița Stanciu, Radu-Marian Lefter, and Walther Bild. 2023. "Therapeutic Implications of Renin–Angiotensin System Modulators in Alzheimer’s Dementia" Pharmaceutics 15, no. 9: 2290. https://doi.org/10.3390/pharmaceutics15092290
APA StyleAbabei, D.-C., Bild, V., Macadan, I., Vasincu, A., Rusu, R.-N., Blaj, M., Stanciu, G. D., Lefter, R.-M., & Bild, W. (2023). Therapeutic Implications of Renin–Angiotensin System Modulators in Alzheimer’s Dementia. Pharmaceutics, 15(9), 2290. https://doi.org/10.3390/pharmaceutics15092290