Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications
Abstract
:1. Introduction
2. Antibacterial Substances Secreted by Bacillus licheniformis
2.1. Bacteriocins
2.1.1. Class I: Heat-Stable Lanthionine-Containing Peptides Smaller Than 5 kDA | ||||
---|---|---|---|---|
Substance(s) Specific/Unspecific Name | Producing Strain | Molecular Mass | Activity Assay | Reference |
Sublichenin | B. licheniformis MCC 2512 | 3.348 kDa | Kocuria rhizophila ATCC 9341 Pediococcus lolii MCC 2972 Enterococcus durans B20G1 Enterococcus faecalis MF3 E. faecalis MM2 E. faecalis CHL1 E. faecalis CHL3 E. faecalis CHL E. faecalis MCC 3063 E. faecalis MCC 2773 Enterococcus faecium MCC 2763 Entercoccus avium CS32 Enterococcus cecorum 1-40a Lactobacillus plantarum MCC 2774 Listeria monocytogenes Staphylococcus aureus Staphylococcus aureus (MRSA) | [49] |
Escherichia coli Klebsiella pneumoniae | ||||
Lichenicidin | Bacillus licheniformis DSM 13 (also produced by ATCC 14580, VK21,WIT 562, 564 and 566 strains, IMF20, IMF66, IMF69 and IMF80, I89) | 3 kDa and 3.25 kDa | Bacillus cereus DSM 31 Bacillus halodurans DSM 18197 Bacillus megaterium KM (ATCC 13632) Bacillus subtilis 168 (DSM 402) Bacillus spec. HIL Y-85,54728 Enterococcus faecium BM 4147–1 Enterococcus faecium L4001 Lactobacillus sake 790 E2 Lactococcus lactis NCTC 497 Micrococcus luteus DSM 1790 Micrococcus luteus ATCC 4698 Staphylococcus aureus ATCC 33592 (MRSA) S. aureus ATCC 29213 (MSSA) S. aureus 1450/94 S. aureus Cowan (ATCC 12598) S. aureus Newman (NCTC 8178) S. aureus SG511 S. aureus Wood 46 (ATCC 10832) Staphylococcus carnosus TM300 Staphylococcus gallinarum Tü 928 Staphylococcus saprophyticus DSM 20229 Staphylococcus simulans 22 S. aureus LT440/09 (community acquired MRSA) S. aureus LT420/09 (MRSA) S. aureus LT819/09 (MRSA, Rhine-Hessen epidemic strain) Enterococcus faecalis Streptococcus agalactiae B. subtilis L1 Rhodococcus sp. strain SS2 M. luteus B1314 B. megaterium VKM41 B. pumilus 2001 B. globigii I B. amyloliquefaciens I M. smegmatis 1171 M. phlei 1291 | [50,51,52,53,54,55] |
2.1.2. Class II: heat-stable non-lanthionine peptides smaller than 10 kDa | ||||
2.1.2.1. Peptides active only against Gram-positive microorganisms | ||||
Bacillocin 490 | B. licheniformis 490/5 | 2 kDa | Bacillus licheniformis 5 A2 Listeria innocua Staphylococcus epidermidis Bacillus anthracis 7700 Bacillus subtilis AZ56 Bacillus cereus 6A2 Bacillus stearothermophilus 9A19 Bacillus smithii PRO/S | [28] |
Bacteriocin-like substance | Bacillus licheniformis H1 | 3.5 kDa | E. faecalis ATCC 19433 L. monocytogenes ATCC 19111 B. cereus ATCC 14579 B. subtilis ATCC 6633 Lactobacillus species ATCC 33198 Lactobacillus fermentum | [56] |
P. fluorescens | ||||
Bacteriocin-like antibacterial peptides | B. licheniformis AnBa9 | <10 kDa | Staphylococcus aureus GCS1 Bacillus cereus GCS2 Staphylococcus epidermidis GCS4 Kurthia gibsonii GCS6 Micrococcus luteus GCS7 Streptococcus mitis GCS9 Bacillus subtilis B-4219 L. lactis B-1821 Staphylococcus epidermidis B-4268 Bacilus smithii NRS-173 Lactobacillus acidophilus B-4495 Micrococcus luteus B-287 Pediococcus acidilactici B-14958 Leuconostoc mesenteriodes | [35] |
Lichenin | B. licheniformis 26L10/3RA | 1.4 kDa | Streptococcus bovis SB3 Streptococcus bovis 26 Ruminococcus avefaciens OF-2 Ruminococcus avefaciens C94 Ruminococcus albus B119 Ruminococcus albus A-6 Butyrivibrio fibrisolvens OR 12 Eubacterium ruminantium GA-195 Lactobacillus casei ED-108 | [32] |
Bacteriocin BL8 | B. licheniformis BTHT8 | 1.4 kDa | Clostridium perfringens Staphylococcus aureus Bacillus cereus Bacillus circulans Bacillus pumilus | [57] |
BSCY2 | B.licheniformis CY2 | 6.5 kDa | B.subtilis 6633 | [58] |
Licheniocin 50.2 | B. licheniformis VPS50.2 | 3.25 kDa | Bacillus subtilis ATCC 6633 B. subtilis 168 B. subtilis W23 Enterococcus faecalis ATCC 29212 Enterococcus saccharolyticus ATCC 43076 Lactobacillus plantarum LMG92088 Lactobacillus zeae Lactococcus lactis IL1403 Listeria monocytogenes ATCC 19111 Micrococcus luteus ATCC 7468 Staphylococcus aureus ATCC 25923 Staph. aureus ATCC 33591 Streptococcus agalactiae ATCC 12386 | [59] |
2.1.2.2. Peptides active against both Gram-positive and Gram-negative microorganisms | ||||
Bacteriocin like inhibitory substance (BLIS) | Bacillus licheniformis IITRHR2 (FJ447354) | 1.2 kDa | Bacillus cereus MTCC 1305 Bacillus subtilis MTCC 736 Bifidobacterium bifidum NCDC 235 Enterococcus faecalis MTCC 439 Enterococcus faecalis NCDC1 14 Lactobacillus casei NCDC017 Lactobacillus lactis NCDC094 Leuconostoc mesenteroides NCDC 219 Listeria monocytogenes MTCC 387 Listeria monocytogenes MTCC1 143 Pediococcus pentosaceus NCDC 273 Staphylococcus thermophilus NCDC 074 | [60] |
Escherichia coli MTCC 1687 Pseudomonas aeruginosa MTCC 9027 Shigella flexneri MTCC 1457 Shigella sonnei MTCC 2957 | ||||
Bacteriocin MKU3 | B. licheniformis MKU3 | 1.5 kDa | Bacillus subtilis B4219 Bacillus smithii NRS173 Lactobacillus acidophilus B4495 Lactobacillus fermentum B1840 Lactobacillus lactis B1821 Staphylococcus epidermidis B4268 Micrococcus luteus B287 Leuconostoc mesenteriodes B1118 Pediococcus acidilactici B14958 Staphylococcus aureus GCS1 Bacillus cereus GCS2 Bacillus cereus GCS3 Staphylococcus epidermidis GCS4 Staphylococcus epidermidis GCS5 Kurthia gibsonii GCS6 Micrococcus luteus GCS7 Bacillus subtilis GCS8 Streptococcus fecalis GCS9 Bacillus cereus GCS10 Bacillus cereus GCS11 Lactobacillus acidophilus GCS12 | [34] |
Escherichia coli DH5a | ||||
Bacteriocin-like substance | B. licheniformis B116 | 4 kDa | B. cereus CGMCC1.230 Listeria monocytogenes CVCC1599 Micrococcus luteus CMCC28001 S. aureus CMCC26003 S. aureus CICC21601 S. aureus CVCC1885 Streptococcus equi subsp. zooepidemicus CVCC1903 | [61] |
E. coli CVCC245 E. coli CICC21525 E. coli CVCC195 E. coli CVCC249 S. enterica ser. Pullorum CVCC79301 S. enterica ser. typhimurium CVCC541d | ||||
ppABP | B. licheniformis Me1 (MCC 2016) | Between 3 and 3.5 kDa | L. innocua FB 21 L. murrayi FB 69 M. luteus ATCC 9341 L. monocytogenes Scott A Staph. aureus FRI 722 B. cereus F 4433 K. rhizophila ATCC 9341 | [62,63,64] |
Salm. typhimurium MTCC 1251, FB 231 Salm. paratyphi FB 254 E. coli CFR 02 Y. enterocolitica MTCC 859 Shigella flexineri (clinical isolate) | ||||
Licheniformins A,B,C | B. licheniformis NCTC 7072 | 3.8–4.8 kDa | Mycobacterium phlei Staphylococcus aureus | [37,65] |
E. coli | ||||
Antimicrobial compound | Bacillus licheniformis MCC2514 | 6.5 kDa | M. luteus ATCC9341 S. aureus FRI722 | [31] |
Klebsiella sp. A. hydrophila NRRL B445 | ||||
2.1.3. Class III: heat-stable and heat-labile proteins larger than 10 kDa | ||||
BLIS_SXAU06 | B. licheniformis SXAU06 | 14 kDa | S. aureus S. epidermidis M. luteus L. monocytogenes | [66] |
BL-DZ1 (BL00275) | B. licheniformis strain D1 | 14 kDa | Bacillus pumilus TiO1 Candida albicans BH | [67] |
Pseudomonas aeruginosa PAO1 (biofouling) | ||||
YbdN Protein | B. licheniformis (seaweed isolate) | 30.7 kDa | MRSA 9551 MRSA J2407 VRE 788 VRE 1349 L. monocytogenes NCTC 7973, NCTC 10357 | [68] |
Chitinase | B. licheniformis MY75 (also produced by Mb-2, TP–1, S213, SSCL-10, B307 strains) | 55 (67,68/62/60,65,66) kDa | G. saubinetii A. niger (Phoma medicaginis) | [69,70,71,72,73,74,75] |
Antifungal Protein F2 | B. licheniformis BS-3 | 31 kDa | Aspergillus niger Magnaporthe oryzae Rhizoctonia solani Fusarium oxysporum | [76] |
Antimicrobials protein | B. licheniformis JS | 16 kDa | Bacillus cereus Bacillus subtilis | [77] |
Shigella dysenteriae Salmonella typhimurium | ||||
AMS | B. licheniformis T6-5 | 20 kDa | Desulfovibrio alaskensis NCIMB 1349 | [36,78] |
AMS | B. licheniformis H2O-1 | Between 90 and 120 kDa | Desulfovibrio alaskensis NCIMB 1349 SRB-containing consortium T6-lab | [36,78] |
2.1.4. Class IV: complex with a single lipid or carbohydrate moiety | ||||
F4, F5 and F6 | B. licheniformis BFP011 | Less than 45 kDa | B. amyloliquefaciens TISTR 1045 B. licheniformis TISTR 1010 B. subtilis ATCC 6633 B. subtilis TISTR 008 B. pumilus TISTR 905 B. cereus ATCC 11778 B. megaterium (clinical isolate) S. aureus ATCC 25923 | [79] |
E. coli O157: H7 V. cholerae (clinical isolate) K. pneumonia ATCC 17736 S. typhi ATCC 5784 | ||||
Ieodoglucomides A and B | B. licheniformis 09IDYM23 | ND | S. aureus B. subtilis B. cereus | [80] |
E. coli P. aeruginosa S. typhi | ||||
Ieodoglucomide C and ieodoglycolipid | B. licheniformis 09IDYM23 | ND | Staphylococcus aureus Bacillus subtilis Bacillus cereus | [81] |
Escherichia coli Pseudomonas aeruginosa Salmonella typhi | ||||
2.1.5. Class V: bacteriocins with undetermined molecular weight | ||||
Antipathogenic Metabolites | Bacillus licheniformis (Upper arm skin isolate) | ND | Staph. aureus ATCC 6538 | [82] |
Kl. Pneumoniae subsp. pneumonia CMSOGH | ||||
Antipathogenic Metabolites | Bacillus licheniformis (Upper arm skin isolate) | ND | Kl. Pneumoniae subsp. pneumoniae | [83] |
Antimicrobial substance | B. licheniformis A-1-5B-AP | ND | Prevotella intermedia 1/P Streptococcus mutans ATCC 35668 Micrococcus luteus DSM 1790 | [84] |
Porphyromonas gulae 3/H | ||||
Bacteriocin | B. licheniformis HJ2020 MT192715.1 | ND | Staphylococcus aureus Bacillus cereus Bacillus subtilis | [85] |
Escherichia coli 0157:H7 Salmonella typhi Pseudomonas aeruginosa |
2.1.1. Class I: Heat-Stable Lanthionine-Containing Peptides Smaller Than 5 kDa
2.1.2. Class II: Heat-Stable Non-Lanthionine Peptides Smaller Than 10 kDa
B. licheniformis Secreted Peptides Active Only against Gram-Positive Microorganisms
B. licheniformis Secreted Peptides Active against Both Gram-Positive and Gram-Negative Microorganisms
B. licheniformis Peptide Activity against Fungal Pathogens
Amoebolytic Substances from B. licheniformis
2.1.3. Class III: Heat-Stable and Heat-Labile Proteins Larger Than 10 kDa
2.1.4. Class IV: Complex with a Lipid Moiety or Carbohydrate Moiety
2.1.5. Class V: Bacteriocins with Undetermined Molecular Weight
2.2. Non-Ribosomal Biosynthesized Peptides
2.2.1. Bacitracin
2.2.2. Cyclic Lipopeptides (Biosurfactants)
Surfactin Homologues
Lichenysins
Licheniformins
Fengycins
2.2.3. Other Lipopeptides
2.3. Exopolysaccharides
3. Antimicrobial Substances of B. licheniformis Active against Mycobacteria
4. Prospects for Using Natural Substance in the Treatment of Tuberculosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal Transfer of Antibiotic Resistance Genes in Clinical Environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- Shleeva, M.O.; Kudykina, Y.K.; Vostroknutova, G.N.; Suzina, N.E.; Mulyukin, A.L.; Kaprelyants, A.S. Dormant Ovoid Cells of Mycobacterium Tuberculosis Are Formed in Response to Gradual External Acidification. Tuberculosis 2011, 91, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Trutneva, K.A.; Shleeva, M.O.; Demina, G.R.; Vostroknutova, G.N.; Kaprelyans, A.S. One-Year Old Dormant, “Non-Culturable” Mycobacterium Tuberculosis Preserves Significantly Diverse Protein Profile. Front. Cell Infect. Microbiol. 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Kaprelyants, A.; Salina, E.; Makarov, V. How to Kill Dormant Mycobacterium Tuberculosis. Int. J. Mycobacteriol. 2018, 7, 399–400. [Google Scholar]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the Use of Bacillus Species for Industrial Production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Stoica, R.-M.; Moscovici, M.; Tomulescu, C.; Casarica, A.; Babeanu, N.; Popa, O.; Kahraman, H.A. Antimicrobial Compounds of the Genus Bacillus: A Review. Rom. Biotechnol. Lett. 2019, 24, 1111–1119. [Google Scholar] [CrossRef]
- Lawton, E.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Two-Peptide Lantibiotics: A Medical Perspective. Mini-Rev. Med. Chem. 2007, 7, 1236–1247. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A Viable Alternative to Antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Nishie, M.; Nagao, J.I.; Sonomoto, K. Antibacterial Peptides “Bacteriocins”: An Overview of Their Diverse Characteristics and Applications. Biocontrol Sci. 2012, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial Activities of Bacteriocins: Application in Foods and Pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef] [Green Version]
- Magashi, A.M.; Bukar, A.; Omola, E.M.; Halima, B.A.; Hadiza, M.S. Bacteriocin and its application—A review. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2019, 5, 242–256. [Google Scholar]
- Yang, H.; Sun, Y.; Cai, R.; Chen, Y.; Gu, B. The Impact of Dietary Fiber and Probiotics in Infectious Diseases. Microb. Pathog. 2020, 140, 103931. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Olea, H.; Reyes-Ballesteros, B.; Chavez-Santoscoy, R.A. Potential Application of the Probiotic Bacillus Licheniformis as an Adjuvant in the Treatment of Diseases in Humans and Animals: A Systematic Review. Front. Microbiol. 2022, 13, 993451. [Google Scholar] [CrossRef]
- Hallaj-Nezhadi, S.; Hamdipour, R.; Shahrvirani, M.; Zare tin, R.; Chapeland-leclerc, F.; Ruprich-Robert, G.; Esnaashari, S.; Elyasi Far, B.; Dilmaghani, A. Antimicrobial Activity of Bacillus sp. Isolated Strains of Wild Honey. BMC Complement. Med. Ther. 2022, 22, 78. [Google Scholar] [CrossRef]
- Joerger, R.D. Alternatives to Antibiotics: Bacteriocins, Antimicrobial Peptides and Bacteriophages. Poult. Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef]
- Seal, B.S.; Drider, D.; Oakley, B.B.; Brüssow, H.; Bikard, D.; Rich, J.O.; Miller, S.; Devillard, E.; Kwan, J.; Bertin, G.; et al. Microbial—Derived Products as Potential New Antimicrobials. Vet. Res. 2018, 49, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial Peptides: Premises and Promises. Int. J. Antimicrob. Agents 2004, 24, 536–547. [Google Scholar] [CrossRef]
- Todorov, S.D.; Ivanova, I.V.; Popov, I.; Weeks, R.; Chikindas, M.L. Bacillus Spore-Forming Probiotics: Benefits with Concerns? Crit. Rev. Microbiol. 2022, 48, 513–530. [Google Scholar] [CrossRef]
- Nesemann, G.; Präve, P.; Sukatsch, D.; Vértesy, L. Ein Polyen-Antibiotikum Aus Bakterien [A Polyene Antibiotic from Bacteria]. Naturwissenschaften 1972, 59, 81–82. [Google Scholar] [CrossRef]
- Girija, V.; Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Gopi, N.; Del, M.; Herrera, V.; Chen, J.; Santhanam, P. In Vitro Antagonistic Activity and the Protective Effect of Probiotic Bacillus Licheniformis Dahb1 in Zebrafish Challenged with GFP Tagged Vibrio Parahaemolyticus Dahv2. Microb. Pathog. 2018, 114, 274–280. [Google Scholar] [CrossRef]
- Rohith, H.S.; Halami, M.P. In Vitro Validation Studies for Adhesion Factor and Adhesion Efficiency of Probiotic Bacillus Licheniformis MCC 2514 and Bifidobacterium Breve NCIM 5671 on HT—29 Cell Lines. Arch. Microbiol. 2021, 203, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Kim, M.; Jeon, H.; Kim, K. Screening and Selection of Bacteria Inhibiting White Spot Syndrome Virus Infection to Litopenaeus Vannamei. Biochem. Biophys. Rep. 2019, 19, 100663. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.-Y.; Horng, Y.-B.; Wu, C.-H.; Chang, C.-Y.; Chang, Y.-C.; Tsai, P.-S.; Jeng, C.-R.; Cheng, Y.-H.; Chang, H.-W. Evaluation of Antiviral Activity of Bacillus Licheniformis—Fermented Products against Porcine Epidemic Diarrhea Virus. AMB Express 2019, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-W.; Chao, T.-Y.; Chang, H.-W.; Cheng, Y.-H.; Wu, C.-H.; Chang, Y.-C. The Effects of Bacillus Licheniformis—Fermented Products on the Microbiota and Clinical Presentation of Cats with Chronic Diarrhea. Animals 2022, 12, 2187. [Google Scholar] [CrossRef] [PubMed]
- Barba-Vidal, E.; Roll, V.F.B.; Castillejos, L.; Guerra-Ordaz, A.A.; Manteca, X.; Mallo, J.J.; Martin-Orúe, S.M. Response to a Salmonella Typhimurium Challenge in Piglets Supplemented with Protected Sodium Butyrate or Bacillus Licheniformis: Effects on Performance, Intestinal Health and Behavior. Transl. Anim. Sci. 2017, 1, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Pahumunto, N.; Dahlen, G.; Teanpaisan, R. Evaluation of Potential Probiotic Properties of Lactobacillus and Bacillus Strains Derived from Various Sources for Their Potential Use in Swine Feeding. Probiotics Antimicrob. Proteins 2021, 15, 479–490. [Google Scholar] [CrossRef]
- Shanthi, S.; Jayaseelan, B.D.; Velusamy, P.; Vijayakumar, S.; Chih, C.T.; Vaseeharan, B. Biosynthesis of Silver Nanoparticles Using a Probiotic Bacillus Licheniformis Dahb1 and Their Antibiofilm Activity and Toxicity Effects in Ceriodaphnia Cornuta. Microb. Pathog. 2016, 93, 70–77. [Google Scholar] [CrossRef]
- Luca, M.; Mario, V.; Gino, N.; Felice, M. De Purification and Partial Characterization of Bacillocin 490, a Novel Bacteriocin Produced by a Thermophilic Strain of Bacillus Licheniformis. Microb. Cell Fact. 2002, 91, 1–5. [Google Scholar]
- Cladera-Olivera, F.; Caron, G.R.; Brandelli, A. Bacteriocin-like Substance Production by Bacillus Licheniformis Strain P40. Lett. Appl. Microbiol. 2004, 38, 251–256. [Google Scholar] [CrossRef]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological Applications of Bacillus Licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef]
- Shobharani, P.; Padmaja, R.J.; Halami, P.M. Diversity in the Antibacterial Potential of Probiotic Cultures Bacillus Licheniformis MCC2514 and Bacillus Licheniformis MCC2512. Res. Microbiol. 2015, 166, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, P.; Kaushik, J.K.; Grover, S.; Batish, V.K. Purification and Characterization of a Bacteriocin-like Compound (Lichenin) Produced Anaerobically by Bacillus Licheniformis Isolated from Water Buffalo. J. Appl. Microbiol. 2001, 91, 636–645. [Google Scholar] [CrossRef]
- He, L.; Chen, W.L.; Liu, Y. Production and Partial Characterization of Bacteriocin-like Pepitdes by Bacillus Licheniformis ZJU12. Microbiol. Res. 2006, 161, 321–326. [Google Scholar] [CrossRef]
- Kayalvizhi, N.; Gunasekaran, P. Production and Characterization of a Low-Molecular-Weight Bacteriocin from Bacillus Licheniformis MKU3. Lett. Appl. Microbiol. 2008, 47, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Anthony, T.; Rajesh, T.; Kayalvizhi, N.; Gunasekaran, P. Influence of Medium Components and Fermentation Conditions on the Production of Bacteriocin(s) by Bacillus Licheniformis AnBa9. Bioresour. Technol. 2009, 100, 872–877. [Google Scholar] [CrossRef]
- Korenblum, E.; Rosado, A.S.; Sebastia, G.V.; De Paiva, M.M.; Seldin, L. Production of Antimicrobial Substances by Bacillus Subtilis LFE-1, B. Firmus H 2 O-1 and B. Licheniformis T6-5 Isolated from an Oil Reservoir in Brazil. J. Appl. Microbiol. 2005, 98, 667–675. [Google Scholar] [CrossRef]
- Callow, R.K.; Work, T.S. Antibiotic Peptides from Bacillus Licheniformis; Licheniformins A, B and C. Biochem. J. 1952, 51, 558–568. [Google Scholar] [CrossRef] [Green Version]
- Präve, P.; Sukatsch, D.; Vértesy, L. Proticin, a New Phosphorus-Containing Antibiotic. I. Taxonomy, Fermentation, Isolation, and Biological Properties. J Antibiot 1972, 25, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, D.; Cai, D.; Zhan, Y.; Wang, Q.; Chen, S. Identification and High-Level Production of Pulcherrimin in Bacillus Licheniformis DW2. Appl. Biochem. Biotechnol. 2017, 183, 1323–1335. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, Natural Antimicrobials for Food Preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Ross, R.P.; Hill, C. Potential of Bacteriocin-Producing Lactic Acid Bacteria for Improvements in Food Safety and Quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef]
- Mercado, V.; Olmos, J. Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob. Proteins 2022, 14, 1151–1169. [Google Scholar] [CrossRef]
- Jack, R.W.; Tagg, J.R.; Ray, B. Bacteriocins of Gram-Positive Bacteria. Microbiol. Rev. 1995, 59, 171–200. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Franz, C.M.A.P.; Omar, N.B.; Galvez, A. Diversity Andapplications of Bacillus Bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, S.P.C.; Rosana, A.R.R.; de Souza, A.N.; Chiorean, S.; Martins, M.L.L.; Vederas, J.C. Draft Genome Sequence of the Thermophilic Bacterium Bacillus Licheniformis SMIA-2, an Antimicrobial- and Thermostable Enzyme-Producing Isolate from Brazilian Soil. Microbiol. Resour. Announc. 2020, 9, e00106-20. [Google Scholar] [CrossRef]
- Gálvez, A.; Maqueda, M.; Martínez-Bueno, M.; Lebbadi, M.; Valdivia, E. Isolation and Physico-Chemical Characterization of an Antifungal and Antibacterial Peptide Produced by Bacillus Licheniformis A12. Appl. Microbiol. Biotechnol. 1993, 39, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Hill, C.; Ross, R.P. Food Microbiology: Bacteriocins: Developing Innate Immunity for Food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products: Overview and Recommendations for a Universal Nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Halami, P.M. Sublichenin, a New Subtilin-like Lantibiotics of Probiotic Bacterium Bacillus Licheniformis MCC 2512 T with Antibacterial Activity. Microb. Pathog. 2019, 128, 139–146. [Google Scholar] [CrossRef]
- Dischinger, J.; Josten, M.; Szekat, C.; Sahl, H.G.; Bierbaum, G. Production of the Novel Two-Peptide Lantibiotic Lichenicidin by Bacillus Licheniformis DSM 13. PLoS ONE 2009, 4, e0006788. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Cotter, P.D.; Hill, C.; Ross, R.P. Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, Following Rational Genome Mining for LanM Proteins. Appl. Environ. Microbiol. 2009, 75, 5451–5460. [Google Scholar] [CrossRef] [Green Version]
- Shenkarev, Z.O.; Finkina, E.I.; Nurmukhamedova, E.K.; Balandin, S.V.; Mineev, K.S.; Nadezhdin, K.D.; Yakimenko, Z.A.; Tagaev, A.A.; Temirov, Y.V.; Arseniev, A.S.; et al. Isolation, Structure Elucidation, and Synergistic Antibacterial Activity of a Novel Two-Component Lantibiotic Lichenicidin from Bacillus Licheniformis VK21. Biochemistry 2010, 49, 6462–6472. [Google Scholar] [CrossRef]
- Prieto, M.L.; O’Sullivan, L.; Tan, S.P.; McLoughlin, P.; Hughes, H.; O’Connor, P.M.; Cotter, P.D.; Lawlor, P.G.; Gardiner, G.E. Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp. Mar. Drugs 2012, 10, 2280–2299. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Begley, M.; Clifford, T.; Deasy, T.; Considine, K.; O’Connor, P.; Paul Ross, R.; Hill, C. Investigation of the Antimicrobial Activity of Bacillus Licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae. Probiotics Antimicrob. Proteins 2014, 6, 32–40. [Google Scholar] [CrossRef]
- Mendo, S.; Faustino, N.A.; Sarmento, A.C.; Amado, F.; Moir, A.J.G. Purification and Characterization of a New Peptide Antibiotic Produced by a Thermotolerant Bacillus Licheniformis Strain. Biotechnol. Lett. 2004, 26, 115–119. [Google Scholar] [CrossRef]
- Abdel-Mohsein, H.S.; Sasaki, T.; Tada, C.; Nakai, Y. Characterization and Partial Purification of a Bacteriocin-like Substance Produced by Thermophilic Bacillus Licheniformis H1 Isolated from Cow Manure Compost. Anim. Sci. J. 2011, 82, 340–351. [Google Scholar] [CrossRef]
- Smitha, S.; Bhat, S.G. Thermostable Bacteriocin BL8 from Bacillus Licheniformis Isolated from Marine Sediment. J. Appl. Microbiol. 2013, 114, 688–694. [Google Scholar] [CrossRef]
- Chang, J.Y.; Lee, H.H.; Kim, I.C.; Chang, H.C. Characterization of bacteriocin produced by Bacillus licheniformis cy2. J. Korean Soc. Food Sci. Nutr. 2001, 30, 410–414. [Google Scholar]
- Berić, T.; Stanković, S.; Draganić, V.; Kojić, M.; Lozo, J.; Fira, D. Novel Antilisterial Bacteriocin Licheniocin 50.2 from Bacillus Licheniformis VPS50.2 Isolated from Soil Sample. J. Appl. Microbiol. 2014, 116, 502–510. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.L.; Kakkar, P. Bacillus Licheniformis IITRHR2: A Novel Source of Antimicrobial Proteinaceous Food Substance. J. Microbiol. Antimicrob. 2010, 2, 127–133. [Google Scholar]
- Guo, Y.; Yu, Z.; Xie, J.; Zhang, R. Identification of a New Bacillus Licheniformis Strain Producing a Bacteriocin-like Substance. J. Microbiol. 2012, 50, 452–458. [Google Scholar] [CrossRef]
- Nithya, V.; Murthy, P.S.K.; Halami, P.M. Development and Application of Active Films for Food Packaging Using Antibacterial Peptide of Bacillus Licheniformis Me1. J. Appl. Microbiol. 2013, 115, 475–483. [Google Scholar] [CrossRef]
- Nithya, V.; Halami, P.M. Antibacterial Peptides, Probiotic Properties and Biopreservative Efficacy of Native Bacillus Species Isolated from Different Food Sources. Probiotics Antimicrob. Proteins 2012, 4, 279–290. [Google Scholar] [CrossRef]
- Vadakedath, N.; Halami, P.M. Characterization and Mode of Action of a Potent Bio-Preservative from Food-Grade Bacillus Licheniformis MCC 2016. Prep. Biochem. Biotechnol. 2019, 49, 334–343. [Google Scholar] [CrossRef]
- Callow, R.; Glover, R.; Hart, P.D.; Hills, G.M. Licheniformin, an Antibiotic Substance from Bacillus Licheniformis, Active against Mycobacterium Tuberculosis. Br. J. Exp. Pathol. 1947, 28, 418–440. [Google Scholar]
- Yu, X.; Han, X.; Li, Y.; Sun, Z.; Dong, C. Isolation, Identification and Prokaryotic Expression of a Bacteriocin-like Substance from Bacillus Licheniformis. Sheng Wu Gong Cheng Xue Bao 2021, 37, 2453–2462. [Google Scholar] [CrossRef]
- Dusane, D.H.; Damare, S.R.; Nancharaiah, Y.V.; Ramaiah, N.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus Licheniformis. PLoS ONE 2013, 8, e0064501. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.T.; Morris, P.C.; Hansen, R.; Jamieson, D.J.; Burgess, J.G.; Austin, B. Recovery and Characterization of a 30.7-KDa Protein from Bacillus Licheniformis Associated with Inhibitory Activity against Methicillin-Resistant Staphylococcus Aureus, Vancomycin-Resistant Enterococci, and Listeria Monocytogenes. Mar. Biotechnol. 2006, 8, 587–592. [Google Scholar] [CrossRef]
- Xiao, L.; Xie, C.C.; Cai, J.; Lin, Z.J.; Chen, Y.H. Identification and Characterization of a Chitinase-Produced Bacillus Showing Significant Antifungal Activity. Curr. Microbiol. 2009, 58, 528–533. [Google Scholar] [CrossRef]
- Slimene, I.B.; Tabbene, O.; Gharbi, D.; Mnasri, B.; Schmitter, J.M.; Urdaci, M.C.; Limam, F. Isolation of a Chitinolytic Bacillus Licheniformis S213 Strain Exerting a Biological Control Against Phoma Medicaginis Infection. Appl. Biochem. Biotechnol. 2015, 175, 3494–3506. [Google Scholar] [CrossRef]
- Sasi, A.; Duraipandiyan, N.; Marikani, K.; Dhanasekaran, S.; Al-Dayan, N.; Venugopal, D. Identification and Characterization of a Newly Isolated Chitinase-Producing Strain Bacillus Licheniformis SSCL-10 for Chitin Degradation. Archaea 2020, 2020, 8844811. [Google Scholar] [CrossRef]
- Akeed, Y.; Atrash, F.; Naffaa, W. Partial Purification and Characterization of Chitinase Produced by Bacillus Licheniformis B307. Heliyon 2020, 6, e03858. [Google Scholar] [CrossRef]
- Kudan, S.; Pichyangkura, R. Purification and Characterization of Thermostable Chitinase from Bacillus Licheniformis SK-1. Appl. Biochem. Biotechnol. 2009, 157, 23–35. [Google Scholar] [CrossRef]
- Toharisman, A.; Suhartono, M.T.; Spindler-Barth, M.; Hwang, J.K.; Pyun, Y.R. Purification and Characterization of a Thermostable Chitinase from Bacillus Licheniformis Mb-2. World J. Microbiol. Biotechnol. 2005, 21, 733–738. [Google Scholar] [CrossRef]
- Tantimavanich, S.; Pantuwatana, S.; Bhumiratana, A.; Panbangred, W. Multiple Chitinase Enzymes from a Single Gene of Bacillus Licheniformis TP-1. J. Ferment. Bioeng. 1998, 85, 259–265. [Google Scholar] [CrossRef]
- Cui, T.B.; Chai, H.Y.; Jiang, L.X. Isolation and Partial Characterization of an Antifungal Protein Produced by Bacillus Licheniformis BS-3. Molecules 2012, 17, 7336–7347. [Google Scholar] [CrossRef]
- Waghmare, S.R.; Randive, S.A.; Jadhav, D.B.; Nadaf, N.H.; Parulekar, R.S.; Sonawane, K.D. Production of Novel Antimicrobial Protein from Bacillus Licheniformis Strain JS and Its Application against Antibiotic-Resistant Pathogens. J. Proteins Proteomics 2019, 10, 17–22. [Google Scholar] [CrossRef]
- Korenblum, E.; Sebastián, G.V.; Paiva, M.M.; Coutinho, C.M.L.M.; Magalhães, F.C.M.; Peyton, B.M.; Seldin, L. Action of Antimicrobial Substances Produced by Different Oil Reservoir Bacillus Strains against Biofilm Formation. Appl. Microbiol. Biotechnol. 2008, 79, 97–103. [Google Scholar] [CrossRef]
- Arbsuwan, N.; Sirithorn, P.; Daduang, S.; Dhiravisit, A.; Thammasirirak, S. Purification and Characterization of Antimicrobial Substances from Bacillus Licheniformis BFP011. Appl. Biochem. Microbiol. 2014, 50, 580–587. [Google Scholar] [CrossRef]
- Tareq, F.S.; Kim, J.H.; Lee, M.A.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Erratum: Ieodoglucomides A and B from a Marine-Derived Bacterium Bacillus Licheniformis (Organic Letters (1466)). Org. Lett. 2013, 15, 2071. [Google Scholar] [CrossRef]
- Tareq, F.S.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus Licheniformis 09IDYM23. Lipids 2015, 50, 513–519. [Google Scholar] [CrossRef]
- Karim, R.; Mahmud, M.N.; Hakim, M.A. Production of Bacteriocin Like Substances as Antipathogenic Metabolites by Staphylococcus Warneri Isolated from Healthy Human Skin. Univers. J. Microbiol. Res. 2017, 5, 40–48. [Google Scholar] [CrossRef]
- Karim, R.; Nuruddin Mahmud, M.A.H. Detection of Bacteriocin like Substances from Normal Skin Microflora as Alternative to Conventional Antibiotics. Asian J. Agric. Biol. 2019, 7, 531–537. [Google Scholar]
- Šurín Hudáková, N.; Kačírová, J.; Sondorová, M.; Šelianová, S.; Mucha, R.; Maďar, M. Inhibitory Effect of Bacillus Licheniformis Strains Isolated from Canine Oral Cavity. Life 2022, 12, 1238. [Google Scholar] [CrossRef]
- Jebur, H.A.; Auda, J.M. Evalution of Antimicrobial Activity of Partial Purified Bacteriocin from Local Isolate of Bacillus Licheniforims HJ2020 MT192715.1. Iraqi J. Agric. Sci. 2020, 51, 1644–1652. [Google Scholar] [CrossRef]
- Du, A.; Staden, P.V.; van Zyl, W.F.; Trindade, M.; Dicks, L.M.T.; Smith, C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl. Environ. Microbiol. 2021, 87, e00186-21. [Google Scholar]
- Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.-G. Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity. J. Biol. Chem. 2001, 276, 1772–1779. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.D.; Breukink, E.; Tischenko, E.; Lutters, M.A.G.; Kruijff, B.D.; Kaptein, R.; Bonvin, A.M.J.J.; van Nuland, N.A.J. The Nisin—Lipid II Complex Reveals a Pyrophosphate Cage That Provides a Blueprint for Novel Antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963–967. [Google Scholar] [CrossRef] [Green Version]
- Helander, I.M.; Mattila-Sandholm, T. Permeability Barrier of the Gram-Negative Bacterial Outer Membrane with Special Reference to Nisin. Int. J. Food Microbiol. 2000, 60, 153–161. [Google Scholar] [CrossRef]
- Banerjee, S.; Hansen, J.N. Structure and Expression of a Gene Encoding the Precursor of Subtilin, a Small Protein Antibiotic. J. Biol. Chem. 1988, 263, 9508–9514. [Google Scholar] [CrossRef]
- Wei, Z.; Shan, C.; Zhang, L.; Ge, D.; Wang, Y.; Xia, X.; Liu, X.; Zhou, J. A Novel Subtilin-like Lantibiotics Subtilin JS-4 Produced by Bacillus Subtilis JS-4, and Its Antibacterial Mechanism against Listeria Monocytogenes. LWT-Food Sci. Technol. 2021, 142, 110993. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Silva, Í.C.; Caetano, T.; Mösker, E.; Seidel, M.; Lourenço, J.; Süssmuth, R.D.; Santos, N.C.; Gonçalves, S.; Mendo, S. Assessing the Potential of the Two-Peptide Lantibiotic Lichenicidin as a New Generation Antimicrobial. World J. Microbiol. Biotechnol. 2022, 38, 18. [Google Scholar] [CrossRef]
- Caetano, T.; Krawczyk, J.M.; Mösker, E.; Süssmuth, R.D.; Mendo, S. Heterologous Expression, Biosynthesis, and Mutagenesis of Type II Lantibiotics from Bacillus Licheniformis in Escherichia Coli. Chem. Biol. 2011, 18, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.C.; Goncalves, S.; Makowski, M.; Silva, I.C.; Caetano, T.; Schneider, T.; Mosker, E.; Süssmuth, R.D.; Santos, N.C.; Mendo, S.; et al. Insights into the Mode of Action of the Two-Peptide Lantibiotic Lichenicidin. Colloids Surfaces B Biointerfaces 2022, 211, 112308. [Google Scholar] [CrossRef]
- Panina, I.S.; Balandin, S.V.; Tsarev, A.V.; Chugunov, A.O.; Tagaev, A.A.; Finkina, E.I.; Antoshina, D.V.; Sheremeteva, E.V.; Paramonov, A.S.; Rickmeyer, J.; et al. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. Int. J. Mol. Sci. 2023, 24, 1332. [Google Scholar] [CrossRef]
- Makumba, B.A.N.; Mwaura, F.B.; Mutitu, E.W. In Vitro and in Vivo Tests of Bacillus Licheniformis MGrP1 Antibiotics Culture Filtrate as a Potential Biocontrol Agent against Bean Anthracnose. E. Afr. J. Pure Appl. Sci. 2009, 2, 1–16. [Google Scholar]
- Lebbadi, M.; Gálvez, A.; Maqueda, M.; Martínez-Bueno, M.; Valdivia, E. Fungicin M4: A Narrow Spectrum Peptide Antibiotic from Bacillus Licheniformis M-4. J. Appl. Bacteriol. 1994, 77, 49–53. [Google Scholar] [CrossRef]
- Lebbadi, M.; Gálvez, A.; Valdivia, E.; Martínez-Blueno, M.; Maqueda, M. Purification of Amoebolytic Substances from Bacillus Licheniformis M-4. Arch. Microbiol. 1994, 162, 98–102. [Google Scholar] [CrossRef]
- Esmaeilishirazifard, E.; Dariush, A.; Moschos, S.A.; Keshavarz, T. A Novel Antifungal Property for the Bacillus Licheniformis ComX Pheromone and Its Possible Role in Inter-Kingdom Cross-Talk. Appl. Microbiol. Biotechnol. 2018, 102, 5197–5208. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zheng, L.; Yang, X.; Liu, H.; Guo, J. Isolation and Characterization of an Antifungal Protein from Bacillus Licheniformis HS10. Biochem. Biophys. Res. Commun. 2014, 454, 48–52. [Google Scholar] [CrossRef]
- Tendulkar, S.R.; Saikumari, Y.K.; Patel, V.; Raghotama, S.; Munshi, T.K.; Balaram, P.; Chattoo, B.B. Isolation, Purification and Characterization of an Antifungal Molecule Produced by Bacillus Licheniformis BC98, and Its Effect on Phytopathogen Magnaporthe Grisea. J. Appl. Microbiol. 2007, 103, 2331–2339. [Google Scholar] [CrossRef]
- Jenny, K.; Kiippeli, O.; Fiechter, A. Applied Microbiology Biotechnology Biosurfactants from Bacillus Licheniformis: Structural Analysis and Characterization. Appl. Microbiol. Biotechnol. 1991, 36, 5–13. [Google Scholar] [CrossRef]
- Thaniyavarn, J.; Roongsawang, N.; Kameyama, T.; Haruki, M.; Imanaka, T.; Morikawa, M.; Kanaya, S. Production and Characterization of Biosurfactants from Bacillus Licheniformis F2.2. Biosci. Biotechnol. Biochem. 2003, 67, 1239–1244. [Google Scholar] [CrossRef]
- Oita, S.; Horita, M.; Yanagi, S.O. Purification and Properties of a New Chitin-Binding Antifungal CB-1 from Bacillus Licheniformis. Biosci. Biotechnol. Biochem. 1996, 60, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Antimicrobial Activity of a Biosurfactant Produced by Bacillus Licheniformis Strain M104 Grown on Whey. Braz. Arch. Biol. Technol. 2013, 56, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Abinaya, M.; Vaseeharan, B.; Divya, M.; Vijayakumar, S.; Govindarajan, M.; Alharbi, N.S.; Khaled, J.M.; Al-anbr, M.N.; Benelli, G. Structural Characterization of Bacillus Licheniformis Dahb1 Exopolysaccharide—Antimicrobial Potential and Larvicidal Activity on Malaria and Zika Virus Mosquito Vectors. Environ. Sci. Pollut. Res. 2018, 25, 18604–18619. [Google Scholar] [CrossRef]
- Galvez, A.; Valdivia, E.; Gonzalez-segura, A.; Lebbadi, M.; Martinez-Bueno, M.; Maqueda, M. Purification, Characterization, and Lytic Activity against Naegleria Fowleri of Two Amoebicins Produced by Bacillus Licheniformis A12. Appl. Environ. Microbiol. 1993, 59, 1480–1486. [Google Scholar] [CrossRef] [Green Version]
- Galvez, A.; Maqueda, M.; Cordovilla, P.; Martinez-Bueno, M.; Lebbadi, M.; Valdivia, E. Characterization and Biological Activity against Naegleria Fowleri of Amoebicins Produced by Bacillus Licheniformis D-13. Antimicrob. Agents Chemother. 1994, 38, 1314–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, R.; Mahmud, N.; Sharifuzzaman, M.; Islam, H. Production of Bacteriocin Like Substances as Antipathogenic Metabolites by Bacillus Licheniformis Isolated from Healthy Human Skin. Int. J. Sci. Basic Appl. Res. 2017, 36, 48–60. [Google Scholar]
- Finking, R.; Marahiel, M.A. Biosynthesis of Nonribosomal Peptides. Annu. Rev. Microbiol. 2004, 58, 453–488. [Google Scholar] [CrossRef]
- Süssmuth, R.D.; Mainz, A. Nonribosomal Peptide Synthesis—Principles and Prospects Reviews. Angew. Chem. Int. Ed. Engl. 2017, 56, 3770–3821. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Lipopeptides Biosurfactants: Mean Classes and New Insights for Industrial, Biomedical, and Environmental Applications. Biopolymers 2015, 104, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Hills, G.M.; Belton, F.C.; Blatchley, E.D. Ayfivin: Production in chemically defined media and comparison with licheniformin. Br. J. Exp. Pathol. 1949, 30, 427–443. [Google Scholar]
- Jin, P.; Tan, Z.; Wang, H.; Liu, W.; Miao, W. Antimicrobial Effect of Bacillus Licheniformis HN-5 Bacitracin A on Rice Pathogen Pantoea Ananatis. BioControl 2020, 66, 249–257. [Google Scholar] [CrossRef]
- Toscano, W.A.; Storm, D.R. Bacitracin. Pharmacol. Ther. 1982, 16, 199–210. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Mu, B. The Surfactin and Lichenysin Isoforms Produced by Bacillus Licheniformis HSN 221. Anal. Lett. 2010, 43, 929–940. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.A.; Mou, H.; Ma, Y.; Li, M.; Hu, X. Characterization of Lipopeptide Biosurfactants Produced by Bacillus Licheniformis MB01 from Marine Sediments. Front. Microbiol. 2017, 8, 871. [Google Scholar] [CrossRef] [Green Version]
- Pecci, Y.; Rivardo, F.; Martinotti, M.G.; Allegrone, G. LC/ESI-MS/MS Characterisation of Lipopeptide Biosurfactants Produced by the Bacillus Licheniformis V9T14 Strain. J. Mass Spectrom. 2010, 45, 772–778. [Google Scholar] [CrossRef]
- Rivardo, F.; Turner, R.J.; Allegrone, G.; Ceri, H.; Martinotti, M.G. Anti-Adhesion Activity of Two Biosurfactants Produced by Bacillus Spp. Prevents Biofilm Formation of Human Bacterial Pathogens. Appl. Microbiol. Biotechnol. 2009, 83, 541–553. [Google Scholar] [CrossRef]
- Horng, Y.B.; Yu, Y.H.; Dybus, A.; Hsiao, F.S.H.; Cheng, Y.H. Antibacterial Activity of Bacillus Species-Derived Surfactin on Brachyspira Hyodysenteriae and Clostridium Perfringens. AMB Express 2019, 9, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.R.; Cheng, Y.H.; Hsiao, F.S.H.; Proskura, W.S.; Dybus, A.; Yu, Y.H. Optimization of Solid-State Fermentation Conditions of Bacillus Licheniformis and Its Effects on Clostridium Perfringens-Induced Necrotic Enteritis in Broilers. Rev. Bras. Zootec. 2019, 48, e170298. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, S.; Gilbert, J.N.; Griffin, W.M. Isolation and Characterization of a Surfactant Produced by Bacillus Licheniformis 86. J. Ind. Microbiol. 1990, 6, 243–248. [Google Scholar] [CrossRef]
- Habe, H.; Taira, T.; Imura, T. Surface Activity and Ca 2 + -Dependent Aggregation Property of Lichenysin Produced by Bacillus Licheniformis NBRC 104464. J. Oleo Sci. 2018, 67, 1307–1313. [Google Scholar] [CrossRef] [Green Version]
- Yakimov, M.M.; Timmis, K.N.; Wray, V.; Fredrickson, H.L. Characterization of a New Lipopeptide Surfactant Produced by Thermotolerant and Halotolerant Subsurface Bacillus Licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713. [Google Scholar] [CrossRef] [Green Version]
- Biria, D.; Maghsoudi, E.; Roostaazad, R.; Dadafarin, H.; Lotfi, S.S.; Amoozegar, M.A. Purification and Characterization of a Novel Biosurfactant Produced by Bacillus Licheniformis MS3. World J. Microbiol. Biotechnol. 2010, 26, 871–878. [Google Scholar] [CrossRef]
- Teixeira, M.L.; Cladera-Olivera, F.; dos Santos, J.; Brandelli, A. Purification and Characterization of a Peptide from Bacillus Licheniformis Showing Dual Antimicrobial and Emulsifying Activities. Food Res. Int. 2009, 42, 63–68. [Google Scholar] [CrossRef]
- Díaz, P.R.; Torres, M.J.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C. Antibacterial Activity of Bacillus Licheniformis B6 against Viability and Biofilm Formation of Foodborne Pathogens of Health Importance. World J. Microbiol. Biotechnol. 2022, 38, 181. [Google Scholar] [CrossRef]
- Batrakov, S.G.; Rodionova, T.A.; Esipov, S.E.; Polyakov, N.B.; Sheichenko, V.I.; Shekhovtsova, N.V.; Lukin, S.M.; Panikov, N.S.; Nikolaev, Y.A. A Novel Lipopeptide, an Inhibitor of Bacterial Adhesion, from the Thermophilic and Halotolerant Subsurface Bacillus Licheniformis Strain 603. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2003, 1634, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, A.; Balakrishnan, M.; Joseph, T.C.; Palaiya Sukumaran, D.; Nambali Valsalan, V.; Gopal, D.; Ramalingam, K. Functional and Molecular Characterization of a Lipopeptide Surfactant from the Marine Sponge-Associated Eubacteria Bacillus Licheniformis NIOT-AMKV06 of Andaman and Nicobar Islands, India. Mar. Pollut. Bull. 2014, 82, 76–85. [Google Scholar] [CrossRef]
- Johnson, B.A.; Anker, H.; Meleney, F.L. Bacitracin: A new antibiotic produced by a member of the b. subtilis group. Science 1945, 102, 376–377. [Google Scholar] [CrossRef]
- Logan, N.A. Bacillus Species of Medical and Veterinary Importance. J. Med. Microbiol. 1988, 25, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Bernlohrl, R.W.; Novell, G.D. Some Characteristics of Bacitracin Producrion by Bacillus Licheniformis. Arch. Biochem. Biophys. 1960, 87, 232–238. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Q.; Xiao, T.; Zhu, Y.; Xiao, Y. Impact of Polymyxin Resistance on Virulence and Fitness among Clinically Important Gram-Negative Bacteria. Engineering 2022, 13, 178–185. [Google Scholar] [CrossRef]
- Cai, D.; Zhang, B.; Zhu, J.; Xu, H.; Liu, P.; Wang, Z.; Li, J.; Yang, Z.; Ma, X.; Chen, S. Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus Licheniformis. Front. Bioeng. Biotechnol. 2020, 8, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus Subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Tran, C.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiot. MDPI 2022, 11, 88. [Google Scholar] [CrossRef]
- ZINTEL, H.A.; MA, R.A. The Absorption, Distribution, Excretion and Toxicity of Bacitracin In. Am. J. Med. Sci. 1949, 218, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, Y.; Rivera, L.; Pedroso, A.; Mcguire, R.; Mario, E.; Tresanco, V.; Bergado, G.; Charli, J.; Sánchez, B.; Arrebola, Y.; et al. Bacitracin Is a Non-Competitive Inhibitor of Porcine M1 Family Neutral and Glutamyl Aminopeptidases. Nat. Prod. Res. 2019, 35, 2958–2962. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Sankar, S.; Neamati, N. Protein Disulfide Isomeras: A Promising Target for Cancer Therapy. Drug Discov. Today 2014, 19, 222–240. [Google Scholar] [CrossRef]
- Mendez, L.R.; Arrebola, Y.; Valdés-Tresanco, M.E.; Díaz-Guevara, L.; Bergado, G.; Sánchez, B.; Charli, J.; Alonso, I.P. Macromolecules Bestatin and Bacitracin Inhibit Porcine Kidney Cortex Dipeptidyl Peptidase IV Activity and Reduce Human Melanoma MeWo Cell Viability. Int. J. Biol. Macromol. 2020, 164, 2944–2952. [Google Scholar] [CrossRef]
- Ciesio, J.; Wrzesi, J.; Stokowa-so, K.; Nagaj, J.; Kasprowicz, A.; Leszek, B.; Szczepanik, W. Antibiotic Bacitracin Induces Hydrolytic Degradation of Nucleic Acids. Biochim. Biophys. Acta J. 2014, 1840, 1782–1789. [Google Scholar] [CrossRef]
- Siewert, G.; Strominger, J.L. Bacitracin: An Inhibitor of the Dephosphorylation of Lipid Pyrophosphate, an Intermediate in Biosynthesis of the Peptidoglycan of Bacterial Cell Walls. Proc. Natl. Acad. Sci. USA 1967, 57, 767–773. [Google Scholar] [CrossRef]
- Wu, S.; Jia, S.; Sun, D.; Chen, M.; Chen, X.; Zhong, J.; Huan, L. Purification and Characterization of Two Novel Antimicrobial Peptides Subpeptin JM4-A and Subpeptin JM4-B Produced by Bacillus Subtilis. Curr. Microbiol. 2005, 51, 292–296. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, J.; Huan, L. Genetics of Subpeptin JM4-A and Subpeptin JM4-B Production by Bacillus Subtilis JM4. Biochem. Biophys. Res. Commun. 2006, 344, 1147–1154. [Google Scholar] [CrossRef]
- Yan, L. Cross-Species Induction of Antimicrobial Compounds in Bacilli; Boyd, K.G.; Adams, D.R.; Burgess, J.G. Biofilm-Specific Cross-Species Induction of Antimicrobial Compounds in Bacilli. Appl. Environ. Microbiol. 2003, 69, 3719–3727. [Google Scholar] [CrossRef] [Green Version]
- Nijland, R.; Hall, M.J.; Grant Burgess, J. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase. PLoS ONE 2010, 5, e0015668. [Google Scholar] [CrossRef] [Green Version]
- Mnif, I.; Ghribi, D. Microbial Derived Surface Active Compounds: Properties and Screening Concept. World J. Microbiol. Biotechnol. 2015, 31, 1001–1020. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Chen, C.; Hu, J.; Zhang, S.; Zhou, P.; Zhao, X.; Xu, H.; Zhao, X.; Yaseen, M.; Lu, J.R. Molecular Mechanisms of Antibacterial and Antitumor Actions of Designed Surfactant-like Peptides. Biomaterials 2012, 33, 592–603. [Google Scholar] [CrossRef]
- Wang, D.; Richter, C.; Rühling, A.; Hüwel, S.; Glorius, F.; Galla, H.J. Anti-Tumor Activity and Cytotoxicity in Vitro of Novel 4,5-Dialkylimidazolium Surfactants. Biochem. Biophys. Res. Commun. 2015, 467, 1033–1038. [Google Scholar] [CrossRef]
- Bakr, S.A. Surface, Biological and Antitumor Activity of Some Thio-Based Cationic Surfactants. J. Am. Sci. 2017, 13, 106–120. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Natural Roles of Biosurfactants. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef]
- Eman Zakaria Gomaa Antimicrobial Activity of a Biosurfactant Produced by Bacillus Licheniformis Strain M104 Grown on Whey. Afr. J. Microbiol. Res. 2012, 6, 463. [CrossRef]
- Lin, L.; Chyau, C.; Hsu, W. Production and Properties of a Raw-Starch-Degrading Amylase from the Thermophilic and Alkaliphilic bacillus Sp. TS-23. Biotechnol. Appl. Biochem. 1998, 28, 61–68. [Google Scholar]
- Bonmatin, J.; Laprévote, O.; Peypoux, F. Diversity Among Microbial Cyclic Lipopeptides: Iturins and Surfactins. Activity-Structure Relationships to Design New Bioactive Agents. Comb. Chem. High Throughput Screen. 2003, 6, 541–556. [Google Scholar] [CrossRef]
- Baruzzi, F.; National, I.; Quintieri, L.; National, I.; Morea, M.; National, I.; Caputo, L. Antimicrobial Compounds Produced by Bacillus spp. and Applications in Food. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; World Scientific: Singapore, 2011. [Google Scholar]
- Li, Y.-M.; Namir, Y.L.; Haddad, N.I.A.; Yang, S.-Z.; Mu, B.-Z. Variants of Lipopeptides Produced by Bacillus Licheniformis HSN221 in Different Medium Components Evaluated by a Rapid Method ESI-MS. Int. J. Pept. Res. Ther. 2008, 14, 229–235. [Google Scholar] [CrossRef]
- Price, N.P.J.; Rooney, A.P.; Swezey, J.L.; Perry, E.; Cohan, F.M. Mass Spectrometric Analysis of Lipopeptides from Bacillus Strains Isolated from Diverse Geographical Locations. FEMS Microbiol. Lett. 2007, 271, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a Crystalline Peptidelipid Surfactant Produced by Bacillus Subtilis: Isolation, Characterization and Its Inhibition of Fibrin Clot Formation. Biochem. Biophys. Res. Commun. 1968, 31, 488–494. [Google Scholar] [CrossRef]
- He, L.; Chen, W. Synergetic Activity of Nisin with Cell-Free Supernatant of Bacillus Licheniformis ZJU12 against Food-Borne Bacteria. Food Res. Int. 2006, 39, 905–909. [Google Scholar] [CrossRef]
- Carrillo, C.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Molecular Mechanism of Membrane Permeabilization by the Peptide Antibiotic Surfactin. Biochim. Biophys. Acta 2003, 1611, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent Trends in the Biochemistry of Surfactin. Appl. Microbiol. Biotechnol. 1999, 51, 553–563. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Mu, B. Structural Characterization of Lipopeptide Methyl Esters Produced by Bacillus Licheniformis HSN 221. Chem. Biodivers. 2010, 7, 2065–2075. [Google Scholar] [CrossRef]
- Cheng, Y.; Horng, Y.; Dybus, A.; Yu, Y. Bacillus Licheniformis -Fermented Products Improve Growth Performance and Intestinal Gut Morphology in Broilers under Clostridium Perfringens Challenge. J. Poult. Sci. 2021, 58, 30–39. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, C.; Chen, W.; Hua, K.; Liu, J.; Cheng, Y. Effectiveness of Bacillus Licheniformis-Fermented Products and Their Derived Antimicrobial Lipopeptides in Controlling Coccidiosis in Broilers. Animals 2021, 11, 3576. [Google Scholar] [CrossRef]
- Horowitz, S.; Griffin, W.M. Structural Analysis of Bacillus Licheniformis 86 Surfactant. J. Ind. Microbiol. 1991, 7, 45–52. [Google Scholar] [CrossRef]
- Yeak, K.Y.C.; Perko, M.; Staring, G.; Fernandez-Ciruelos, B.M.; Wells, J.M.; Abee, T.; Wells-Bennik, M.H.J. Lichenysin Production by Bacillus Licheniformis Food Isolates and Toxicity to Human Cells. Front. Microbiol. 2022, 13, 831033. [Google Scholar] [CrossRef]
- Grangemard, I.; Wallach, J.; Maget-Dana, R.; Peypoux, F. Lichenysin: A More Efficient Cation Chelator Than Surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199–210. [Google Scholar] [CrossRef]
- Joshi, S.J.; Geetha, S.J.; Desai, A.J. Characterization and Application of Biosurfactant Produced by Bacillus Licheniformis R2. Appl. Biochem. Biotechnol. 2015, 177, 346–361. [Google Scholar] [CrossRef]
- Konz, D.; Doekel, S.; Marahiel, M.A. Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin. J. Bacteriol. 1999, 181, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Grangemard, I.; Bonmatin, J.M.; Bernillon, J.; Das, B.C.; Peypoux, F. Lichenysins G, a Novel Family of Lipopeptide Biosurfactants from Bacillus Licheniformis IM 1307: Production, Isolation and Structural Evaluation by NMR and Mass Spectrometry. J. Antibiot. 1999, 52, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Nerurkar, A.S. Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. Biosurfactants 2010, 672, 304–315. [Google Scholar]
- Folmsbee, M.; Duncan, K.; Han, S.O.; Nagle, D.; Jennings, E.; McInerney, M. Re-Identification of the Halotolerant, Biosurfactant-Producing Bacillus Licheniformis Strain JF-2 as Bacillus Mojavensis Strain JF-2. Syst. Appl. Microbiol. 2006, 29, 645–649. [Google Scholar] [CrossRef]
- Hathout, Y.; Ho, Y.; Ryzhov, V.; Demirev, P.; Fenselau, C. Kurstakins: A New Class of Lipopeptides Isolated from Bacillus Thuringiensis. J. Nat. Prod. 2000, 63, 1492–1496. [Google Scholar] [CrossRef]
- Hu, L.B.; Shi, Z.Q.; Zhang, T.; Yang, Z.M. Fengycin Antibiotics Isolated from B-FS01culture Inhibit the Growth of Fusarium Moniliforme Sheldon ATCC 38932. FEMS Microbiol. Lett. 2007, 272, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.J.; Brandan, C.P.; Petroselli, G.; Erra-balsells, R.; Audisio, M.C. Antagonistic Effects of Bacillus Subtilis Subsp. Subtilis and B. Amyloliquefaciens against Macrophomina Phaseolina: SEM Study of Fungal Changes and UV-MALDI-TOF MS Analysis of Their Bioactive Compounds. Microbiol. Res. 2016, 182, 31–39. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Zheng, Q.-W.; Wei, T.; Zhang, Z.-Q.; Zhao, C.-F.; Zhong, H.; Xu, Q.-Y.; Lin, J.-F.; Guo, L.-Q. Isolation and Characterization of Fengycins Produced by Bacillus Amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens. Front. Microbiol. 2020, 11, 579621. [Google Scholar] [CrossRef] [PubMed]
- Deleu, M.; Paquot, M.; Nylander, T. Fengycin Interaction with Lipid Monolayers at the Air—Aqueous Interface—Implications for the Effect of Fengycin on Biological Membranes. J. Colloid Interface Sci. 2005, 283, 358–365. [Google Scholar] [CrossRef]
- Deleu, M.; Paquot, M.; Nylander, T. Effect of Fengycin, a Lipopeptide Produced by Bacillus Subtilis, on Model Biomembranes. Biophys. J. 2008, 94, 2667–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivardo, F.; Giovanna, M.; Joseph, R.; Ceri, H. Synergistic Effect of Lipopeptide Biosurfactant with Antibiotics against Escherichia Coli CFT073 Biofilm. Int. J. Antimicrob. Agents 2011, 37, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Moryl, M.; Spętana, M.; Dziubek, K.; Paraszkiewicz, K.; Różalska, S.; Płaza, G.A.; Różalski, A. Antimicrobial, Antiadhesive and Antibiofilm Potential of Lipopeptides Synthesised by Bacillus Subtilis, on Uropathogenic Bacteria. Acta Biochim Pol. 2015, 62, 725–732. [Google Scholar] [CrossRef]
- Martinotti, G.; Vanderhye, P.C. Biosurfactant Composition Produced by a New Bacillus Licheniformis Strain, Uses and Products Thereof. CA2744172A1, 17 June 2010. [Google Scholar]
- Giri, S.S.; Ryu, E.C.; Sukumaran, V.; Park, S.C. Antioxidant, Antibacterial, and Anti-Adhesive Activities of Biosurfactants Isolated from Bacillus Strains. Microb. Pathog. 2019, 132, 66–72. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Jun, J.W.; Sukumaran, V.; Park, S.C. Role of Bacillus Licheniformis VS16-Derived Biosurfactant in Mediating Immune Responses in Carp Rohu and Its Application to the Food Industry. Front. Microbiol. 2017, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Betzel, C.; Bellemann, M.; Pal, G.P.; Bajorath, J.; Saenger, W.; Wilson, K.S. X-ray and Model-building Studies on the Specificity of the Active Site of Proteinase K. Proteins Struct. Funct. Bioinform. 1988, 4, 157–164. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Abdalla, A.K.; Ayyash, M.M.; Olaimat, A.N.; Osaili, T.M. Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Front. Microbiol. 2021, 12, 664395. [Google Scholar] [CrossRef]
- Hertadi, R.; Permatasari, N.U.; Ratnaningsih, E. Box-Wilson Design for Optimization of in Vitro Levan Production and Levan Application as Antioxidant and Antibacterial Agents. Iran. Biomed. J. 2021, 25, 202–212. [Google Scholar] [CrossRef]
- Petrova, P.; Arsov, A.; Ivanov, I.; Tsigoriyna, L.; Petrov, K. New Exopolysaccharides Produced by Bacillus Licheniformis 24 Display Substrate-Dependent Content and Antioxidant Activity. Microorganisms 2021, 9, 2127. [Google Scholar] [CrossRef] [PubMed]
- Spanò, A.; Laganà, P.; Visalli, G.; Maugeri, T.L.; Gugliandolo, C. In Vitro Antibiofilm Activity of an Exopolysaccharide from the Marine Thermophilic Bacillus Licheniformis T14. Curr. Microbiol. 2016, 72, 518–528. [Google Scholar] [CrossRef]
- Sayem, S.M.A.; Manzo, E.; Ciavatta, L.; Tramice, A.; Cordone, A.; Zanfardino, A.; De Felice, M.; Varcamonti, M. Anti-Biofilm Activity of an Exopolysaccharide from a Sponge-Associated Strain of Bacillus Licheniformis. Microb. Cell Fact. 2011, 10, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakapong, S.; Pichyangkura, R.; Ito, K.; Iizuka, M.; Pongsawasdi, P. High Expression Level of Levansucrase from Bacillus Licheniformis RN-01 and Synthesis of Levan Nanoparticles. Int. J. Biol. Macromol. 2013, 54, 30–36. [Google Scholar] [CrossRef] [PubMed]
- van Dyk, J.S.; Kee, N.L.A.; Frost, C.L.; Pletschke, B.I. Extracellular Polysaccharide Production in Bacillus Licheniformis Svd1 and Its Immunomodulatory Effect. BioResources 2012, 7, 4976–4993. [Google Scholar] [CrossRef] [Green Version]
- Lambert, P.A. Cellular Impermeability and Uptake of Biocides and Antibiotics in Gram-Positive Bacteria and Mycobacteria. J. Appl. Microbiol. Symp. Suppl. 2002, 92, 46S–54S. [Google Scholar] [CrossRef]
- Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020; ISBN 9789240013131.
- Zhang, Y. Persistent and Dormant Tubercle Bacilli and Latent Tuberculosis. Front. Biosci. 2004, 9, 1136–1156. [Google Scholar] [CrossRef] [Green Version]
- Patra, K.; Batabyal, S.; Mandal, K.; Ghose, D.; Sarkar, J. Tuberculosis and COVID-19: A Combined Global Threat to Human Civilization. Clin. Epidemiol. Glob. Health 2022, 15, 101031. [Google Scholar] [CrossRef]
- Mahapatra, S.; Yagi, T.; Belisle, J.T.; Espinosa, B.J.; Hill, P.J.; McNeil, M.R.; Brennan, P.J.; Crick, D.C. Mycobacterial Lipid II Is Composed of a Complex Mixture of Modified Muramyl and Peptide Moieties Linked to Decaprenyl Phosphate. J. Bacteriol. 2005, 187, 2747–2757. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, J.; Krasucki, S.P.; Asare-Okai, P.N.; Diehl, C.; Friedman, A.; Brown, C.M.; Maezato, Y.; Streatfield, S.J. Isolation, Characterization and Structure Elucidation of a Novel Lantibiotic from Paenibacillus sp. Front. Microbiol. 2020, 11, 598789. [Google Scholar] [CrossRef]
- Carroll, J.; Draper, L.A.; Connor, P.M.O.; Coffey, A.; Hill, C.; Ross, R.P.; Cotter, P.D.; Mahony, J.O. Comparison of the Activities of the Lantibiotics Nisin and Lacticin 3147 against Clinically Significant Mycobacteria. Int. J. Antimicrob. Agents 2010, 36, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Knights, V.; Tompsett, R. Relationship of Type of Growth of M. Tuberculosis to Antituberculous Activity of Subtilin. Exp. Biol. Med. 1950, 73, 55–60. [Google Scholar] [CrossRef]
- Callow, R.; Hart, P. Antibiotic Material from Bacillus Licheniformis (Weigmann, Emend. Gibson) Active against Species of Mycobacteria. Nature 1946, 157, 334–335. [Google Scholar] [CrossRef]
- Keppie, J.; Ross, J.M.; Day, J.O.R. The Toxicity and Pharmacology of Licheniformin A5. Br. J. Pharmacol. 1950, 5, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Rieber, M.; Imaeda, T.; Cesari, I.M. Bacitracin Action on Membranes of Mycobacteria. J. Gen. Microbiol. 1969, 55, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Vértesy, L. Proticin, a New Phosphorus-Containing Antibiotic. II. Characterization and Chemical Studies. J. Antibiot. 1972, 25, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Sosunov, V.; Mischenko, V.; Eruslanov, B.; Svetoch, E.; Shakina, Y.; Stern, N.; Majorov, K.; Sorokoumova, G.; Selishcheva, A.; Apt, A. Antimycobacterial Activity of Bacteriocins and Their Complexes with Liposomes. J. Antimicrob. Chemother. 2007, 59, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Kaur, T.; Sharma, P.; Gupta, G.K.; Ntie-Kang, F.; Kumar, D. Treatment of Tuberculosis by Natural Drugs: A Review. Plant Arch. 2019, 19, 2168–2176. [Google Scholar]
- Almatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial Peptides as an Alternative to Anti-Tuberculosis Drugs. Pharmacol. Res. 2018, 128, 288–305. [Google Scholar] [CrossRef]
- Silva, J.P.; Appelberg, R.; Miguel, F.M. Antimicrobial Peptides as Novel Anti-Tuberculosis Therapeutics. Biotechnol. Adv. 2016, 34, 924–940. [Google Scholar] [CrossRef] [Green Version]
- Abedinzadeh, M.; Gaeini, M.; Sardari, S. Natural Antimicrobial Peptides against Mycobacterium Tuberculosis. J. Antimicrob. Chemother. 2015, 70, 1285–1289. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Pirri, G.; Nicoletto, S.F. Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics; De Gruyter: Berlin, Germany, 2007; Volume 2, ISBN 1153500700105. [Google Scholar]
- Ebenhan, T.; Gheysens, O.; Kruger, H.G.; Zeevaart, J.R.; Sathekge, M.M. Antimicrobial Peptides: Their Role as Infection-Selective Tracers for Molecular Imaging. Biomed Res. Int. 2014, 2014, 867381. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Gallo, R.L. AMPed up Immunity: How Antimicrobial Peptides Have Multiple Roles in Immune Defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, K. Control of Cell Selectivity of Antimicrobial Peptides. Biochim. Biophys. Acta-Biomembr. 2009, 1788, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Danquah, C.A.; Minkah, P.A.B.; Junior, I.O.D.; Amankwah, K.B.; Somuah, S.O. Antimicrobial Compounds from Microorganisms. Antibiotics 2022, 11, 285. [Google Scholar] [CrossRef]
- Carroll, J.; Field, D.; Connor, P.M.O.; Cotter, P.D.; Coffey, A.; Hill, C.; Mahony, J.O. Gene Encoded Antimicrobial Peptides, a Template for the Design of Novel Anti-Mycobacterial Drugs. Bioeng. Bugs 2010, 1, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.D. Bioengineering: A Bacteriocin Perspective. Bioengineered 2015, 3, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hansen, N. Enhancement of the Chemical and Antimicrobial Properties of Subtilin by Site-Directed Mutagenesis. J. Biol. Chem. 1992, 267, 25078–25085. [Google Scholar] [CrossRef]
- Moutinho, L.F.; Moura, F.R.; Silvestre, R.C.; Romão-Dumaresq, A.S. Microbial Biosurfactants: A Broad Analysis of Properties, Applications, Biosynthesis and Techno-Economical Assessment of Rhamnolipid Production. Biotechnol. Prog. 2020, 37, e3093. [Google Scholar] [CrossRef]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front. Microbiol. 2017, 8, 1205. [Google Scholar] [CrossRef] [Green Version]
Substance(s) Specific/Unspecific Name | Producing Strain | Molecular Mass | Activity Assay | Reference |
---|---|---|---|---|
Bacteriocin-like peptides | Bacillus licheniformis ZJU12 | 3 kDa | Xanthomonas oryzae pv. oryzae Zhe 173 Alternaria brassicae (cabbage isolate) Fusarium oxysporum (cotton isolate) Guignardia sp. (shihu isolate) Pyricularia grisea (rice isolate) Rhizoctonia solani (rice isolate) | [33] |
Antibiotics culture filtrate | Bacillus licheniformis strain MGrP1 | ND | Colletotrichum lindemuthianum C. kahawae Fusarium oxysporum f.sp. phaseoli Alternaria solani | [96] |
Fungicin M-4 | Bacillus licheniformis M-4 | 3.6 kDa | Microsporum canis CECT 2797 Mucor mucedo CECT 2653 Mucor plumbeus CCM F 443 Sporothrix schenckii CECT 2799 | [97] |
Amoebicins M4—a, b, c | Bacillus licheniformis M-4 | 3–3.2 kDa | Aspergillus niger CECT 2089 Candida albicans CECT 1394 Cryptococcus neoformans CECT 1075 Microsporum canis CECT 2797 Mucor mucedo CECT 2653 Mucor plumbeus CCM F443 Penicillium sp. Rhizopus oryzae CECT 2340 Saccharomyces cerevisiae Sporothrix schenckii CECT 2799 Trychophyton mentagrophytes CECT 2793 | [98] |
Peptide A12-C | B. licheniformis A12 | 0.77 kDa | Microsporum canis CECT 2797 Mucor mucedo CECT 2653 M. plumbeus CCM F 443 Sporothrix schenckii CECT 2799 Trychophyton mentagrophytes CECT 2793 | [46] |
QSM (ComX pheromone) | B. licheniformis NCIMB 8874 | ND | A. flavus NRL 3375, ESP 15 | [99] |
Bacteriocin MKU3 | B. licheniformis MKU3 | 1.5 kDa | Candida albicans MTCC 183 Aspergillus niger MKU1 Aspergillus fischeri FXN1 Aspergillus fumigatus MKU3 | [34] |
Antifungal protein | B. licheniformis HS10 | 55 kDa | Phytophthora capsici Botrytis cinerea Sclerotinia sclerotiorum Bipolaris maydis Fusarium graminearum Bipolaris sorokinianum Gaeumannomyces graminis | [100] |
Chitinase | B. licheniformis MY75 (also produced by Mb-2,TP–1, S213, SSCL-10, B307 strains) | 55 (67,68/62/60,65,66) kDa | G. saubinetii A. niger (Phoma medicaginis) | [69,70,71,72,73,74,75] |
Antifungal Protein F2 | B. licheniformis BS-3 | 31 kDa | Aspergillus niger Magnaporthe oryzae Rhizoctonia solani Fusarium oxysporum (schl.)f.sp. momordicae | [76] |
Ieodoglucomides A and B | B. licheniformis 09IDYM23 | ND | C. albicans A. niger | [80] |
Ieodoglucomide C and ieodoglycolipid | B. licheniformis 09IDYM23 | ND | C. albicans A. niger R. solani C. acutatum B. cenerea | [81] |
F4, F5 and F6 | B. licheniformis BFP011 | Less than 45 kDa | C. capsici | [79] |
Bacteriocin | B. licheniformis HJ2020 MT192715.1 | ND | Candida albicans | [85] |
Surfactin | B. licheniformis BC98 | 1.035 kDa | Sclerotium sclerotinii Phomopsis phyllanthi Rhizoctonia bataticola Aspergillus niger N 573 Curvularia lunata Magnaporthe grisea Helminthosporium sp. Chaetomium sp. Fusarium verticillioides Pestaliopsis magnifera Gleosporium magnefera | [101] |
Lipopeptides | B. licheniformis (soil isolate) | 1.022 and 1.036 kDa | Candida utilis C. tropicalis Trichosporon cutaneum Saccharomyces cerevisiae Trichoderma reesei Penicillium oxalicum | [102] |
BL1193 (non-lipopeptide-type biosurfactant together with lipopeptides, plipastatin, and surfactin) | B. licheniformis F2.2 | 1.193 kDa | Aspergillus niger Penicillium sp. Fusarium sp. Cladosporium sp. (inhibited by plipastatin) | [103] |
CB-1 | Bacillus licheniformis | 42 kDa | Pyriculariz oryzae MAFF 101002 Rhizoctonia solani CF-1 Corticium rolfsii MAFF 712043 Tyromyces palustris MAFF 420001 Botrytis cinerca MAFF 712057 Coriolus versicolor CF-2 Fusarium oxysporum NFRI 1011 Saccharomyces cerevisiae Y02587 | [104] |
Biosurfactant | Bacillus licheniformis M104 | ND | Candida albicans ATCC 70014 | [105] |
Bl-EPS | B. licheniformis Dahb1 | ND | C. albicans | [106] |
Peptide A12-A, A12-B | Bacillus licheniformis A12 | 1.43–1.6 kDa | Candida albicans CECT 1394 Cryptococcus neoformans CECT Saccharomyces heterogenicus Aspergillus niger CECT 2089 Microsporum canis CECT 2797 Mucor mucedo CECI 2653 Mucorplumbeus CCM F443 Sporothrix schenchii CECT 2799 Ttychophyton mentagrophytes CECT 2793 B. megaterium Cotynebactenum glutamicum CECT 78 Sarcina sp. | [107] |
BL-DZ1 (BL00275) | B. licheniformis strain D1 | 14 kDa | Candida albicans BH | [67] |
Substance(s) Specific/Unspecific Name | Producing Strain | Molecular Mass | Activity Assay | Reference |
---|---|---|---|---|
Peptide A12-A и A12-B | Bacillus licheniformis A12 | 1.43–1.6 kDa | N. fowlen S-3 (=ATCC 30809) N. fowlen HB-1 (=ATCC 30174) N. lovaniensis Aq/9/1/45D N. gruberi CCAP 1516/le B. megaterium Cotynebactenum glutamicum CECT 78 Sarcina sp. B. megaterium Cotynebactenum glutamicum CECT 78 Sarcina sp. | [107] |
Amoebicins M4—a, b, c | Bacillus licheniformis M-4 | 3–3.2 kDa | Acanthamoeba sp. Gr-1 Naegleria fowleri S-3 (=ATCC 30809) N. fowleri HB-1 (=ATCC 30174) Naegleria lovaniensis Aq/9/1/45D Naegleria gruberi CCAP 1516/le | [98] |
Amoebicins d13-A, d13-B and d13-C | B. licheniformis strain D-13 | 1.87 kDa | Acanthamoeba sp. strain Gr-1 Naegleria lovaniensis Aq/9/1/45D Naegleria gruberi CCAP 1516/le N. fowleri S-3 (=ATCC 30809) N. fowleri HB-1 (=ATCC 30174) Alcaligenes facecalis B. licheniformis M-4, A12 Bacillus megaterium Corynebacterium glutamicum CECT 78 Enterococcus faecalis S-13, S-14, S-48, S-86 Micrococcus luteus Mycobacterium phlei Pseudomonas reptilovora N5 | [108] |
Substance(s) Specific/Unspecific Name | Producing Strain | Molecular Mass | Activity Assay | Reference |
---|---|---|---|---|
2.2.1. Bacitracin | ||||
Bacitracin/Ayfivin | Bacillus licheniformis strain EI-34-6, HN-5 | 1.42 kDa | M. tuberculosis M. smegmatis Actinomyces israeli Pantoea ananatis gram-positive cocci staphylococci streptococci corynebacteria anaerobic cocci clostridia | [112,113,114,115] |
Treponema pallidum T. vincenti neisseria gonococci meningococci | ||||
Antimicrobial compound (a variant of subpeptin and bacitracin) | B. licheniformis IMF1, IMF2, IMF5, IMF6, IMF22 and IMF78 | 1.42 kDa | L. lactis HP L. bulgaricus LMG 6901 S. aureus ST528 S. agalactiae ATCC 13813 L. innocua FH2333 L. monocytogenes LO28 | [54] |
2.2.2. Cyclic lipopeptides (biosurfactants) | ||||
2.2.2.1. Surfactinhomologues | ||||
Surfactin and lichenysin isoforms | Bacillus licheniformis HSN 221 | 1.048–1.063 kDa | ND | [116] |
Surfactin | B. licheniformis BC98 | 1.035 kDa | Sclerotium sclerotinii Phomopsis phyllanthi Rhizoctonia bataticola Aspergillus niger N 573 Curvularia lunata Magnaporthe grisea Helminthosporium sp. Chaetomium sp. Fusarium verticillioides Pestaliopsis magnifera Gleosporium magnefera | [101] |
Lipopeptides | B. licheniformis (soil isolate) | 1.022 and 1.036 kDa | Pseudomonas aeruginosa Escherichia coli | [102] |
Lipopeptide biosurfactants | B. licheniformis MB01 | 0.994, 1.008, 1.022, and 1.036 kDa | Staphylococcus aureus | [117] |
Escherichia coli Vibrio cholerae Vibrio parahaemolyticus Vibrio harveyi Pseudomonas aeruginosa Proteus species | ||||
Lipopeptide biosurfactants (surfactin homologues and fengycin A, B) | B. licheniformis V9T14 (DSM 21038) | ND | E. coli CFT073 (biofilm formation) | [118,119] |
Surfactin (major isoform—surfactin C) | B. licheniformis ATCC 12713 | ND | C. perfringens ATCC13124 Staphylococcus aureus BCRC10780 | [120,121] |
B. hyodysenteriae ATCC 27164 | ||||
Surfactant BL86 | Bacillus licheniformis BL86 | from 0.979 to 1.091 kDa and varying in increments of 14 Da | ND | [122] |
BL1193 (non-lipopeptide type biosurfactant together with lipopeptides, plipastatin, and surfactin) | B. licheniformis F2.2 | 1.193 kDa | B. subtilis | [103] |
Pseudomonas aeruginosa Escherichia coli (inhibited by plipastatin) | ||||
2.2.2.2. Lichenysins | ||||
Lichenysin | B. licheniformis NBRC 104464 | ND | [123] | |
Lichenysins A | B. licheniformis BAS50 | 1.006–1.034 kDa | Bacillus sp. Strain ATCC 39307 Bacillus subtilis Staphylococcus aureus | [124] |
Acinetobacter calcoaceticus Alcaligenes eutrophus Pseudomonas fluorescens Pseudomonas proteofaciens Escherichia coli Enterobacter sp. strain 306 | ||||
2.2.2.3. Biosurfactant licheniformin | ||||
Licheniformin | B. licheniformis MS3 | 1.438 kDa | ND | [125] |
BLS | B. licheniformis P40 | 0.800 kDa | Bacillus cereus ATCC 14579 Bacillus cereus (food isolate) Bacillus subtilis (food isolate) Corynebacterium fimi NCTC 7547 Enterococcus faecalis (clinical isolate) Lactobacillus acidophilus ATCC 4356 Listeria monocytogenes ATCC 7644 Listeria inoccua (food isolate) Rhodococcus sp. Staphylococcus intermedius (clinical isolate) Streptococcus sp. (b-haemolytic) Streptococcus sp. (clinical isolate) Streptococcus sp. (clinical isolate) | [29,126] |
Aeromonas hydrophila (clinical isolate) Aeromonas sp. (clinical isolate) Enterobacter aerogenes (food isolate) Erwinia carotorovora (food isolate) Erwinia carotorovora 309 (food isolate) Erwinia carotorovora A325 (food isolate) Pasteurella haemolytica (clinical isolate) Salmonella gallinarium (clinical isolate) | ||||
2.2.2.4. Fengycins | ||||
Fengycins A,B (and surfactin homologues) | B. licheniformis V9T14 (DSM 21038) (also produced by Bacillus licheniformis B6) | ND | E. coli CFT073 (biofilm formation) | [118,119,127] |
Lipopeptides (fengycins A and B, iturin, kurstakin, surfactin isophorms) | Bacillus licheniformis B6 | 1.2–1.65 kDa | Staphylococcus aureus | [127] |
Escherichia coli Klebsiella sp. | ||||
2.2.3. Other lipopeptides | ||||
Biosurfactant | Bacillus licheniformis M104 | ND | Bacillus subtilis ATCC 6633 Bacillus thuringiensis var. kurstaki ATCC 19266 Bacillus thuringiensis ATCC 10792 Bacillus cereus ATCC 9634 Staphylococcus aureus ATCC 25928 Methicillin-resistant Staphylococcus aureus ATCC 25928 | [105] |
Proteus vulgaris ATCC 13315 Pseudomonas aeruginosa ATCC 10145 Escherichia coli ATCC 11775 Escherichia coli ATCC 11246 Salmonella typhimurium ATCC 14028 | ||||
Antiadhesin (I) | B. licheniformis 603 | ND | Corynebacterium variabilis Ac1122 | [128] |
Acinetobacter sp. | ||||
CB-1 | Bacillus licheniformis | 42 kDa | Bacillus cereus NFRI 8004 | [104] |
Escherichia coli K-12 | ||||
NIOT-AMKV06 | Bacillus licheniformis NIOT-AMKV06 | ND | Enterococcus faecalis MTCC439 Bacillus subtilis MTCC441 Staphylococcus aureus MTCC96 Micrococcus luteus MTCC1541 | [129] |
Salmonella typhi MTCC734 Proteus mirabilis MTCC142 Vibrio cholerae MTCC3904 Klebsiella pneumoniae MTCC109 Shigella flexineri MTCC1457 |
Substance(s) Specific/Unspecific Name | Producing Strain | Molecular Mass | Activity Assay | Reference |
---|---|---|---|---|
Levan (fructan) | B. licheniformis BK1, BK2 | ~2–100 × 103 kDa | Staphylococcus aureus | [188] |
E. coli Pseudomonas aeruginosa | ||||
EPS1 | B. licheniformis 24 | ND | Vibrio cholerae non-O1 | [189] |
Bl-EPS | B. licheniformis Dahb1 | ND | B. subtilis KT763078.1 B. pumilus Dahb3 HQ693273.1 | [106] |
P. aeruginosa Dahp1 (HQ400663.1) P. vulgaris Dahp1 (HQ116441.1) | ||||
EPS-T14 | B. licheniformis T14 | 1000 kDa | multiresistant clinical strains: Staphylococcus aureus | [190] |
Escherichia coli Klebsiella pneumonia Pseudomonas aeruginosa | ||||
Exopolysaccharide | B. licheniformis SP1 | 1800 kDa | Escherichia coli PHL628 Pseudomonas fluorescens (only biofilms formation) | [191] |
Substance Name | Molecular Mass | Sensitivity to Enzymes | Sensitivity to Temperature | Reference |
---|---|---|---|---|
Bacitracin/Ayfivin | 1.42 kDa | ND | Resistant to temperature under 60 °C. | [113,130] |
Proticin | 0.56 kDa | ND | ND | [38] |
Peptide A12-C | 0.77 kDa | Resistant to trypsin, pronase and proteinase K, carboxypeptidase A, alkaline phosphatase, lipase, lysozyme, β-glucosidase and β-glucuronidase | resistant to heat (100 °C for 30 min at pH 7.0) | [46] |
Licheniformins | 3.8–4.8 kDa | ND | ND | [37] |
Amoebicins d13-A, d13-B, and d13-C | 1.87 kDa | Resistant to trypsin, pronase, proteinase, lipase and β-glucuronidase | retained 100% of the activity after being heated at 100 °C for 30 min and also after being stored at −20 °C for 6 months | [108] |
Lichenicidin | 3 kDa and 3.25 kDa | No loss of antimicrobial activity after treatment with trypsin and chymotrypsin, inactivation by proteinase K and pronase E | supernatant was inactivated within two hours by 80 °C and within 30 min by boiling | [50,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shleeva, M.O.; Kondratieva, D.A.; Kaprelyants, A.S. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023, 15, 1893. https://doi.org/10.3390/pharmaceutics15071893
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics. 2023; 15(7):1893. https://doi.org/10.3390/pharmaceutics15071893
Chicago/Turabian StyleShleeva, Margarita O., Daria A. Kondratieva, and Arseny S. Kaprelyants. 2023. "Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications" Pharmaceutics 15, no. 7: 1893. https://doi.org/10.3390/pharmaceutics15071893