Cyclodextrins and Their Polymers Affect Human Serum Albumin’s Interaction with Drugs Used in the Treatment of Pulmonary Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CD-Based Polymers
2.3. Antibacterial Molecule–CD Carrier Complex Formation
2.4. Preparation of Two-Component (AM–HSA) and Three-Component (AM–CD Carrier–HSA) Systems
2.5. FTIR Spectroscopy
2.6. Fluorescence Spectroscopy
2.7. Nanoparticle Tracking Analysis (NTA)
2.8. Dynamic Light Scattering
2.9. The Determination of Stern–Volmer Constants and Binding Affinity (Ka) for Drug Form–HSA
2.10. Circular Dichroism Spectroscopy
2.11. NMR Spectroscopy
2.12. UV-Spectroscopy
2.13. In Vitro Studies
3. Results and Discussion
3.1. AM Interaction with CD and CD Polymers
3.2. AM and AM–CD Interactions with HSA
3.2.1. HSA Fluorescence Quenching Study
3.2.2. The Analysis of HSA’s Secondary Structure
3.3. AM–CD Polymers Interactions with HSA
3.4. Antibacterial Activity of AM Drug Forms in the Presence of HSA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Posteraro, B.; Cortazzo, V.; Liotti, F.M.; Menchinelli, G. Diagnosis and treatment of bacterial pneumonia in critically Ill patients with COVID-19 using a multiplex PCR assay: A large italian hospital’s five-month experience. Microbiol. Spectr. 2021, 9, e00695-21. [Google Scholar] [CrossRef] [PubMed]
- Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoğlu, U. Severe COVID-19 pneumonia: Pathogenesis and clinical management. BMJ 2021, 372, 372. [Google Scholar] [CrossRef] [PubMed]
- Jingu, D.; Takahashi, H.; Ubukata, S.; Watanabe, H.; Horii, A. Legionella pneumonia immediately after recovery from COVID-19. Clin. Case Rep. 2022, 10, e6090. [Google Scholar] [CrossRef] [PubMed]
- Kanne, J.; Little, B.; Schulte, J.; Haramati, A. Long-term lung abnormalities associated with COVID-19 pneumonia. Radiology 2023, 306, 221806. [Google Scholar] [CrossRef]
- Ginsburg, A.S.; Klugman, K. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob. Health 2020, 8, 1453–1454. [Google Scholar] [CrossRef]
- Chedid, M.; Waked, R.; Haddad, E.; Chetata, N. Antibiotics in treatment of COVID-19 complications: A review of frequency, indications, and efficacy. J. Infect. Public Health 2021, 14, 570–576. [Google Scholar] [CrossRef]
- Mohammed, A.; Ghebreyesus, T.; Chen, J.; Davies, D.S. No Time to Wait: Securing the Future from Drug-Resistant Infections; WHO: Geneva, Switzerland, 2019; pp. 1–28.
- Burke, A.C. Antibiotic side effects. Med. Clin. N. Am. 2001, 85, 149–185. [Google Scholar]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Řezanka, M. Synthesis of substituted cyclodextrins. Environ. Chem. Lett. 2019, 17, 49–63. [Google Scholar] [CrossRef]
- Li, T.; Guo, R.; Zong, Q.; Ling, G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym. 2022, 276, 118664. [Google Scholar] [CrossRef]
- Kravtsova, A.A.; Skuredina, A.A.; Malyshev, A.S.; Le-Deygen, I.M.; Kudryashova, E.V. The solubility studies and the complexation mechanism investigations of biologically active spiro[cyclopropane-1,3′-oxindoles] with β-cyclodextrins. Pharmaceutics 2023, 15, 228. [Google Scholar] [CrossRef]
- Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym. 2017, 173, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Osmani, R.A.; Kulkarni, P.; Manjunatha, S.; Vaghela, R.; Bhosale, R. Cyclodextrin nanosponge-based systems in drug delivery and nanotherapeutics. In Organic Materials as Smart Nanocarriers for Drug Delivery; William Andrew: Norwich, NY, USA, 2018; pp. 659–717. [Google Scholar] [CrossRef]
- Skuredina, A.A.; Le-Deygen, I.M.; Belogurova, N.G.; Kudryashova, E.V. Effect of cross-linking on the inclusion complex formation of derivatized β-cyclodextrins with small-molecule drug moxifloxacin. Carbohydr. Res. 2020, 498, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Skuredina, A.A.; Tychinina, A.S.; Le-Deygen, I.M.; Golyshev, S.A.; Belogurova, N.G.; Kudryashova, E.V. The formation of quasi-regular polymeric network of cross-linked sulfobutyl ether derivative of β-cyclodextrin synthesized with moxifloxacin as a template. React. Funct. Polym. 2021, 159, 104811. [Google Scholar] [CrossRef]
- Fanali, G.; Di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci. 2014, 15, 3580–3595. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Hughes, G.; Kerr, C.; Kelly, M.; O’Connor, R. Bacterial pneumonia coinfection and antimicrobial therapy duration in SARS-CoV-2 (COVID-19) infection. JAC Antimicrob. Resist. 2020, 2, dlaa071. [Google Scholar] [CrossRef]
- Abu-Rub, L.I.; Abdelrahman, H.A.; Johar, A.-R.A.; Alhussain, H.A. Antibiotics prescribing in intensive care ssettings during the COVID-19 era: A systematic review. Antibiotics 2021, 10, 935. [Google Scholar] [CrossRef]
- Yakupova, L.R.; Skuredina, A.A.; Markov, P.O.; Le-Deygen, I.M.; Kudryashova, E.V. Cyclodextrin polymers as a promising drug carriers for stabilization of meropenem solutions. Appl. Sci. 2023, 13, 3608. [Google Scholar] [CrossRef]
- Astray, G.; Mejuto, J.C.; Morales, J. Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res. Int. 2010, 43, 1212–1218. [Google Scholar] [CrossRef]
- Zhang, L.W.; Wang, K.; Zhang, X.X. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Anal. Chim. Acta 2007, 603, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Belogurova, N.G.; Krylov, S.S.; Semenova, M.N. Plant alkylbenzenes and terpenoids in the form of cyclodextrin inclusion complexes as antibacterial agents and levofloxacin synergists. Pharmaceuticals 2022, 15, 861. [Google Scholar] [CrossRef] [PubMed]
- Missoun, F.; de los Ríos, A.P.; Ortiz-Martínez, V.; Salar-García, M.J. Discovering low toxicity ionic liquids for saccharomyces cerevisiae by using theagar well diffusion test. Processes 2020, 8, 1163. [Google Scholar] [CrossRef]
- Le-Deygen, I.M.; Skuredina, A.A.; Mamaeva, P.V.; Kolmogorov, I.M.; Kudryashova, E.V. Conjugates of chitosan with β-cyclodextrins as promising carriers for the delivery of levofloxacin: Spectral and microbiological studies. Life 2023, 13, 272. [Google Scholar] [CrossRef]
- Skuredina, A.A.; Yu Kopnova, T.; Tychinina, A.S.; Golyshev, S.A. The new strategy for studying drug-delivery systems with prolonged release: Seven-day in vitro antibacterial action. Molecules 2022, 27, 8026. [Google Scholar] [CrossRef]
- Skuredina, A.A.; Le-Deygen, I.M.; Kudryashova, E.V. The effect of molecular architecture of sulfobutyl ether β-cyclodextrin nanoparticles on physicochemical properties of complexes with moxifloxacin. Colloid J. 2018, 80, 312–319. [Google Scholar] [CrossRef]
- Yakupova, L.R.; Kopnova, T.Y.; Skuredina, A.A.; Le-Deygen, I.M.; Shustrov, P.N.; Novoselov, A.M.; Kudryashova, E.V. The formation of β-cyclodextrin complexes with levofloxacin and ceftriaxone as an approach to the regulation of drugs’ pharmacokinetic. Colloid J. 2023, 85, 122–136. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery—Physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018, 45, 45–53. [Google Scholar] [CrossRef]
- Paczkowska, M.; Mizera, M.; Szymanowska-Powałowska, D. β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur. J. Pharm. Biopharm. 2016, 99, 24–34. [Google Scholar] [CrossRef]
- Le-Deygen, I.M.; Skuredina, A.A.; Uporov, I.V.; Kudryashova, E.V. Thermodynamics and molecular insight in guest–host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments. Anal. Bioanal. Chem. 2017, 409, 6451–6462. [Google Scholar] [CrossRef]
- Misiuk, W.; Jozefowicz, M. Study on a host–guest interaction of hydroxypropyl-β-cyclodextrin with ofloxacin. J. Mol. Liq. 2015, 202, 101–106. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ameen, F.; Rehman, S.; Sarwar, T. Studying the interaction of drug/ligand with serum albumin. J. Mol. Liq. 2021, 336, 116200. [Google Scholar] [CrossRef]
- Shamsi, A.; Ahmed, A.; Bano, B. Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. J. Biomol. Struct. Dyn. 2018, 36, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, D.; Ma, X.; Wang, L.; Xu, K.; Li, H. Spectral and molecular modeling studies on the influence of β-cyclodextrin and its derivatives on aripiprazole-human serum albumin binding. Carbohydr. Polym. 2015, 131, 65–74. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Wang, Q.; Shi, Z.-H.; Xia, X.-H.; Sun, H.-W. Interaction Characteristic Studies of Ciprofloxacin and/or Sulphadiazine with Bovine Serum Albumin by Spectroscopic Technique. Asian J. Chem. 2015, 27, 818–826. [Google Scholar] [CrossRef]
- Tang, B.; Tang, P.; He, J.; Yang, H. Characterization of the binding of a novel antitumor drug ibrutinib with human serum albumin: Insights from spectroscopic, calorimetric and docking studies. J. Photochem. Photobiol. B Biol. 2018, 184, 18–26. [Google Scholar] [CrossRef]
- Almutairi, F.M.; Ajmal, M.R.; Siddiqi, M.K. Multi-spectroscopic and molecular docking technique study of the azelastine interaction with human serum albumin. J. Mol. Struct. 2020, 1201, 127147. [Google Scholar] [CrossRef]
- Marković, O.S.; Cvijetić, I.N.; Zlatović, M.V.; Opsenica, I.M. Human serum albumin binding of certain antimalarials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 128–139. [Google Scholar] [CrossRef]
- Abu, T.M.M.; Ghithan, J.; Abu-Taha, M.I.; Darwish, S.M.; Abu-hadid, M.M. Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin. J. Biophys. Struct. Biol. 2014, 6, 883. [Google Scholar] [CrossRef]
- Rehman, M.T.; Ahmed, S.; Khan, A.U. Interaction of meropenem with ‘N’ and ‘B’ isoforms of human serum albumin: A spectroscopic and molecular docking study. J. Biomol. Struct. Dyn. 2016, 34, 1849–1864. [Google Scholar] [CrossRef]
- Kaur, A.; Khan, I.A.; Banipal, P.K.; Banipal, T.S. Deciphering the complexation process of a fluoroquinolone antibiotic, levofloxacin, with bovine serum albumin in the presence of additives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S. Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation. J. Chem. Sci. 2014, 126, 931–944. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Li, Y.; Xu, K. The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J. Pharm. Biomed. Anal. 2016, 117, 453–463. [Google Scholar] [CrossRef]
- Tang, P.; Tang, B.; Wang, Q.; Xu, K. Effect of hydroxypropyl-β-cyclodextrin on the bounding of salazosulfapyridine to human serum albumin. Int. J. Biol. Macromol. 2016, 92, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Y.; Afrin, S.; Alhaji Isa, M.; Ahmed, S.; Tabish, M. Elucidating the molecular interaction of serum albumin with nizatidine and the role of β-cyclodextrin: Multi-spectroscopic and computational approach. J. Biomol. Struct. Dyn. 2020, 38, 1375–1387. [Google Scholar] [CrossRef]
- Naik, R.S.; Pawar, S.K.; Tandel, R.D.; Seetharamappa, J. Insights in to the mechanism of interaction of a thrombin inhibitor, dabigatran etexilate with human serum albumin and influence of β-cyclodextrin on binding: Spectroscopic and computational approach. J. Mol. Liq. 2018, 251, 119–127. [Google Scholar] [CrossRef]
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef]
- Zhivkova, Z. Studies on drug—Human serum albumin binding: The current state of the matter. Curr. Pharm. Des. 2015, 21, 1817–1830. [Google Scholar] [CrossRef]
- Seedher, N.; Agarwal, P. Complexation of fluoroquinolone antibiotics with human serum albumin: A fluorescence quenching study. J. Lumin. 2010, 130, 1841–1848. [Google Scholar] [CrossRef]
- Ermakova, E.A.; Danilova, A.G.; Khairutdinov, B.I. Interaction of ceftriaxone and rutin with human serum albumin. WaterLOGSY-NMR and molecular docking study. J. Mol. Struct. 2020, 1203, 127444. [Google Scholar] [CrossRef]
- Ghaderabad, M.; Mansouri, M.; Beigoli, S.; Rad, A.S. A comparison of the inclusion behavior of human serum albumin and holo transferrin with fluoxymesterone in the presence of three different cyclodextrins. J. Iran. Chem. Soc. 2017, 14, 1347–1364. [Google Scholar] [CrossRef]
- Paul, B.K.; Ghosh, N.; Mukherjee, S. Interplay of Multiple Interaction Forces: Binding of Norfloxacin to Human Serum Albumin. J. Phys. Chem. B 2015, 119, 13093–13102. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.-X.; Long, M.; Liu, Y. Characterization of the interaction between human serum albumin and morin. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Tretiakova, D.; Le-Deigen, I.; Onishchenko, N.; Kuntsche, J. Phosphatidylinositol stabilizes fluid-phase liposomes loaded with a melphalan lipophilic prodrug. Pharmaceutics 2021, 13, 473. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Meyer, J.D.; Brown, J.L.; Manning, M.C. Comparative fourier transform infrared and circular dichroism spectroscopic analysis of α1-proteinase inhibitor and ovalbumin in aqueous solution. Arch. Biochem. Biophys. 2000, 383, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Haris, P.I.; Severcan, F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 1999, 7, 207–221. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Hirano, A.; Arakawa, T.; Shiraki, K. Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. Int. J. Biol. Macromol. 2012, 50, 1286–1291. [Google Scholar] [CrossRef]
- Poureshghi, F.; Ghandforoushan, P.; Safarnejad, A. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J. Photochem. Photobiol. B Biol. 2017, 166, 187–192. [Google Scholar] [CrossRef]
- Trynda-Lemiesz, L. Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorg. Med. Chem. 2004, 12, 3269–3275. [Google Scholar] [CrossRef]
- Varshney, A.; Ansari, Y.; Zaidi, N.; Ahmad, E. Analysis of binding interaction between antibacterial ciprofloxacin and human serum albumin by spectroscopic techniques. Cell Biochem. Biophys. 2014, 70, 93–101. [Google Scholar] [CrossRef]
- Ragi, C.; Sedaghat-Herati, M.R.; Ouameur, A.A.; Tajmir-Riahi, H.A. The effects of poly(ethylene glycol) on the solution structure of human serum albumin. Biopolymers 2005, 78, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, J.; Chen, T.; Wang, X. Insight into the interaction between chitosan and bovine serum albumin. Carbohydr. Polym. 2017, 176, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, E.; Mandeville, J.S.; Jennings, C.J.; Sedaghat-Herati, R. Dendrimers bind human serum albumin. J. Phys. Chem. B 2009, 113, 6986–6993. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Zhang, Q.; Ling, K.; Chen, Y. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles. PLoS ONE 2012, 7, e49304. [Google Scholar] [CrossRef] [PubMed]
- Mariam, J.; Sivakami, S.; Dongre, P.M. Albumin corona on nanoparticles—A strategic approach in drug delivery. Drug Deliv. 2016, 23, 2668–2676. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Lamb, H.M.; Ormrod, D.; Scott, L.J.; Figgitt, D.P.; Weiss, K.; Maisonneuve-Rosemont, H. Ceftriaxone an update of its use in the management of community-acquired and nosocomial infections. Adis Drug Eval. 2002, 62, 1041–1089. [Google Scholar]
- Edwards, J.R. Meropenem: A microbiological overview. J. Antimicrob. Chemother. 1995, 36, 1–17. [Google Scholar] [CrossRef]
- Skuredina, A.; Tychinina, A.; Le-Deygen, I. Cyclodextrins and their polymers affect the lipid membrane permeability and increase levofloxacin’s antibacterial activity in vitro. Polymers 2022, 14, 4476. [Google Scholar] [CrossRef]
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A. A Review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020, 10, 1970. [Google Scholar] [CrossRef]
CD Type | Linker | Abbreviation 1 | Dh, nm | ζ-Potential, mV |
---|---|---|---|---|
HPCD | Citric acid | HpolC | 120.1 ± 3.2 | – 2 |
Succinic anhydride | HpolS | 199.2 ± 18.2 | 5.6 ± 2.1 | |
HMD | HpolH | 142.5 ± 13.5 | 14.7 ± 0.4 | |
MCD | HMD | MpolH | 170.3 ± 14.2 | 30.8 ± 1.1 |
Lev–HPCD | Lev–HpolC | Lev–HpolS | Lev–HpolH |
---|---|---|---|
1.0 (±0.3) × 103 1 | 1.2 (±0.3) × 103 | 2.2 (±0.4) × 105 | 1.1 (±0.2) × 105 |
Ceftriaxone | Meropenem | Levofloxacin | |
---|---|---|---|
– | 3.8 (±0.1) × 104 | 0.57 (±0.01) × 104 | 3.4 (±0.2) × 104 |
HPCD | 3.0 (±0.3) × 104 | 0.85 (±0.02) × 104 | 3.3 (±0.1) × 104 |
MCD | 4.9 (±0.2) × 104 | 0.93 (±0.02) × 104 | 3.1 (±0.1) × 104 |
HpolC | 1.9 (±0.2) × 105 | 2.1 (±0.2) × 104 | 7.7 (±0.4) × 104 |
HpolS | 2.7 (±0.2) × 105 | 2.4 (±0.2) × 104 | 1.1 (±0.3) × 105 |
HpolH | 2.0 (±0.2) × 105 | 1.3 (±0.1) × 104 | 9.8 (±0.4) × 104 |
MpolH | 1.9 (±0.4) × 105 | 1.8 (±0.1) × 104 | 1.7 (±0.2) × 105 |
Ceftriaxone | Meropenem | Levofloxacin | |
---|---|---|---|
– | 1.7 (±0.1) × 105 | 1.1 (±0.1) × 102 | 9.9 (±0.3) × 105 |
HPCD | 2.0 (±0.2) × 105 | 3.6 (±0.2) × 104 | 3.5 (±0.1) × 105 |
MCD | 3.3 (±0.3) × 105 | 9.7 (±0.1) × 103 | 8.9 (±0.2) × 104 |
HpolC | 3.8 (±0.4) × 108 | 8.4 (±0.4) × 105 | 9.4 (±0.4) × 105 |
HpolS | 2.9 (±0.3) × 107 | 4.9 (±0.3) × 105 | 3.9 (±0.2) × 106 |
HpolH | 9.1 (±0.2) × 106 | 9.3 (±0.1) × 105 | 7.0 (±0.3) × 106 |
MpolH | 4.6 (±0.3) × 106 | 3.5 (±0.1) × 105 | 6.9 (±0.2) × 106 |
α-Helix | β-Sheets | β-Turns | Random Coils | |
---|---|---|---|---|
HSA | 64 ± 3 | 8 ± 0.5 | 12 ± 1 | 16 ± 1 |
Cef–HSA | 52 ± 2 | 13 ± 1 | 16 ± 1 | 18 ± 2 |
Cef–MCD–HSA | 41 ± 2 | 14 ± 1 | 22 ± 1 | 23 ± 2 |
Cef–HpolC–HSA | 60 ± 2 | 10 ± 1 | 11 ± 1 | 18 ± 2 |
Mer–HSA | 39 ± 2 | 15 ± 1 | 21 ± 2 | 26 ± 2 |
Mer–MCD–HSA | 40 ± 2 | 16 ± 1 | 22 ± 2 | 21 ± 2 |
Mer–HpolH–HSA | 55 ± 2 | 13 ± 1 | 17 ± 2 | 24 ± 2 |
Lev–HSA | 55 ± 2 | 9 ± 1 | 15 ± 1 | 22 ± 2 |
Lev–HPCD–HSA | 57 ± 2 | 14 ± 1 | 14 ± 1 | 23 ± 2 |
Lev–MCD–HSA | 58 ± 2 | 14 ± 1 | 9 ± 1 | 20 ± 2 |
Lev–HpolH–HSA | 60 ± 2 | 13 ± 1 | 10 ± 1 | 17 ± 2 |
Sample Type | CD Carrier | Cef | Mer | Lev |
---|---|---|---|---|
AM | – | 0.17 ± 0.3 | 0.12 ± 0.1 | 0.08 ± 0.02 |
AM–CD carrier | HPCD | 0.17 ± 0.2 | 0.13 ± 0.2 | 0.06 ± 0.02 |
HpolC | 0.16 ± 0.2 | 0.11 ± 0.2 | 0.07 ± 0.02 | |
AM–HSA | – | 0.18 ± 0.3 | 0.14 ± 0.2 | 0.09 ± 0.02 |
AM–CD carrier–HSA | HPCD | 0.18 ± 0.3 | 0.14 ± 0.2 | 0.07 ± 0.01 |
HpolC | 0.18 ± 0.2 | – | – | |
HpolH | – | 0.14 ± 0.2 | 0.08 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skuredina, A.A.; Yakupova, L.R.; Kopnova, T.Y.; Le-Deygen, I.M.; Belogurova, N.G.; Kudryashova, E.V. Cyclodextrins and Their Polymers Affect Human Serum Albumin’s Interaction with Drugs Used in the Treatment of Pulmonary Infections. Pharmaceutics 2023, 15, 1598. https://doi.org/10.3390/pharmaceutics15061598
Skuredina AA, Yakupova LR, Kopnova TY, Le-Deygen IM, Belogurova NG, Kudryashova EV. Cyclodextrins and Their Polymers Affect Human Serum Albumin’s Interaction with Drugs Used in the Treatment of Pulmonary Infections. Pharmaceutics. 2023; 15(6):1598. https://doi.org/10.3390/pharmaceutics15061598
Chicago/Turabian StyleSkuredina, Anna A., Linara R. Yakupova, Tatiana Yu. Kopnova, Irina M. Le-Deygen, Natalya G. Belogurova, and Elena V. Kudryashova. 2023. "Cyclodextrins and Their Polymers Affect Human Serum Albumin’s Interaction with Drugs Used in the Treatment of Pulmonary Infections" Pharmaceutics 15, no. 6: 1598. https://doi.org/10.3390/pharmaceutics15061598
APA StyleSkuredina, A. A., Yakupova, L. R., Kopnova, T. Y., Le-Deygen, I. M., Belogurova, N. G., & Kudryashova, E. V. (2023). Cyclodextrins and Their Polymers Affect Human Serum Albumin’s Interaction with Drugs Used in the Treatment of Pulmonary Infections. Pharmaceutics, 15(6), 1598. https://doi.org/10.3390/pharmaceutics15061598