Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Design and Optimization Process
2.2.2. Preparation of Carvedilol-Loaded BSA-Based Nanoparticles
2.2.3. In Vitro Evaluation of Carvedilol-Loaded BSA-Based Nanoparticles
2.2.4. In Vitro Evaluation of Optimized Carvedilol-Loaded BSA-Based Nanoparticle Formulation
2.2.5. In Vivo Evaluation of Optimized Carvedilol-Loaded BSA-Based Nanoparticle Formulation
3. Results and Discussion
3.1. Preparation of Carvedilol-Loaded BSA-Based Nanoparticles
3.2. Experimental Design and Statistical Analysis
3.2.1. Effect of Independent Factors (A and B) on the Particle Size of Carvedilol-Loaded Nanoparticles (Y1 Response)
3.2.2. Effect of Independent Factors (A and B) on Entrapment Efficiency of Carvedilol-Loaded Nanoparticles (Y2 Response)
3.2.3. Effect of Independent Factors (A and B) on T50 of Carvedilol-Loaded Nanoparticles (Y3 Response)
3.2.4. Optimization Process
3.3. In Vitro Evaluation of Optimized Carvedilol-Loaded Nanoparticle Formulation
3.3.1. TEM Study
3.3.2. DSC Study
3.4. In Vivo Evaluation of Optimized Carvedilol-Loaded Nanoparticle Formulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Hypertension. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension. (accessed on 2 January 2023).
- Alam, T.; Khan, S.; Gaba, B.; Haider, M.F.; Baboota, S.; Ali, J. Nanocarriers as Treatment Modalities for Hypertension. Drug Deliv. 2017, 24, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Hypertension. 2022. Available online: https://www.fda.gov/consumers/minority-health-and-health-equity-resources/hypertension (accessed on 2 January 2023).
- Food and Drug Administration (FDA). High Blood Pressure–Understanding the Silent Killer. 2021. Available online: https://www.fda.gov/drugs/special-features/high-blood-pressure-understanding-silent-killer (accessed on 2 January 2023).
- Attia, M.S.; Hasan, A.A.; Ghazy, F.S.; Gomaa, E. Solid Dispersion as a Technical Solution to Boost the Dissolution Rate and Bioavailability of Poorly Water-Soluble Drugs. Indian J. Pharm. Educ. Res. 2021, 55, s327–s339. [Google Scholar] [CrossRef]
- El-Say, K.M.; Hosny, K.M. Optimization of Carvedilol Solid Lipid Nanoparticles: An Approach to Control the Release and Enhance the Oral Bioavailability on Rabbits. PLoS ONE 2018, 13, e0203405. [Google Scholar] [CrossRef] [PubMed]
- Nava, G.; Piñón, E.; Mendoza, L.; Mendoza, N.; Quintanar, D.; Ganem, A. Formulation and In Vitro, Ex Vivo and In Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine. Pharmaceutics 2011, 3, 954–970. [Google Scholar] [CrossRef]
- Ibrahim, T.M.; Abdallah, M.H.; El-Megrab, N.A.; El-Nahas, H.M. Upgrading of Dissolution and Anti-Hypertensive Effect of Carvedilol via Two Combined Approaches: Self-Emulsification and Liquisolid Techniques. Drug Dev. Ind. Pharm. 2018, 44, 873–885. [Google Scholar] [CrossRef]
- Cirri, M.; Mennini, N.; Maestrelli, F.; Mura, P.; Ghelardini, C.; Mannelli, L.D. Development and In Vivo Evaluation of an Innovative “Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles” Formulation with Sustained Release and Enhanced Oral Bioavailability for Potential Hypertension Treatment in Pediatrics. Int. J. Pharm. 2017, 521, 73–83. [Google Scholar] [CrossRef]
- Liu, D.; Xu, H.; Tian, B.; Yuan, K.; Pan, H.; Ma, S.; Yang, X.; Pan, W. Fabrication of Carvedilol Nanosuspensions Through the Anti-Solvent Precipitation–Ultrasonication Method for the Improvement of Dissolution Rate and Oral Bioavailability. AAPS PharmSciTech 2012, 13, 295–304. [Google Scholar] [CrossRef]
- Öztürk, K.; Arslan, F.B.; Öztürk, S.C.; Çalış, S. Mixed Micelles Formulation for Carvedilol Delivery: In-Vitro Characterization and In-Vivo Evaluation. Int. J. Pharm. 2022, 611, 121294. [Google Scholar] [CrossRef]
- Shamma, R.N.; Basha, M. Soluplus®: A Novel Polymeric Solubilizer for Optimization of Carvedilol Solid Dispersions: Formulation Design and Effect of Method of Preparation. Powder Technol. 2013, 237, 406–414. [Google Scholar] [CrossRef]
- Tazhbayev, Y.; Galiyeva, A.; Zhumagaliyeva, T.; Burkeyev, M.; Karimova, B. Isoniazid—Loaded Albumin Nanoparticles: Taguchi Optimization Method. Polymers 2021, 13, 3808. [Google Scholar] [CrossRef]
- Hobson, J.; Savage, A.; Dwyer, A.; Unsworth, C.; Arshad, U.; Pertinez, H.; Box, H.; Tatham, L.; Rajoli, R.K.; Neary, M.; et al. Scalable Nanoprecipitation of Niclosamide and In Vivo Demonstration of Long-Acting Delivery After Intramuscular Injection. Nanoscale 2021, 13, 6410–6416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-Based Nanoparticles as Drug Delivery Systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, M.; Greige-Gerges, H.; Elaissari, A. Protein-Based Nanoparticles: From Preparation to Encapsulation of Active Molecules. Int. J. Pharm. 2017, 522, 172–197. [Google Scholar] [CrossRef] [PubMed]
- Tabasum, S.; Younas, M.; Zaeem, M.A.; Majeed, I.; Majeed, M.; Noreen, A.; Iqbal, M.N.; Zia, K.M. A Review on Blending of Corn Starch with Natural and Synthetic Polymers, and Inorganic Nanoparticles with Mathematical Modeling. Int. J. Biol. Macromol. 2019, 122, 969–996. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-Based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J. Control. Release 2012, 157, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Kandav, G.; Bhatt, D.C.; Jindal, D.K.; Singh, S.K. Formulation, Optimization, and Evaluation of Allopurinol-Loaded Bovine Serum Albumin Nanoparticles for Targeting Kidney in Management of Hyperuricemic Nephrolithiasis. AAPS PharmSciTech 2020, 21, 164. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Zhang, X. Strategies for Preparing Albumin-Based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017, 7, 3667–3689. [Google Scholar] [CrossRef] [PubMed]
- Karami, E.; Behdani, M.; Kazemi-Lomedasht, F. Albumin Nanoparticles as Nanocarriers for Drug Delivery: Focusing on Antibody and Nanobody Delivery and Albumin-Based Drugs. J. Drug Deliv. Sci. Technol. 2020, 55, 101471. [Google Scholar] [CrossRef]
- Hassanin, I.; Elzoghby, A. Albumin-Based Nanoparticles: A Promising Strategy to Overcome Cancer Drug Resistance. Cancer Drug Resist. 2020, 3, 930–946. [Google Scholar] [CrossRef]
- Ibrahim, T.M.; Ayoub, M.M.; El-Bassossy, H.M.; El-Nahas, H.M.; Gomaa, E. Investigation of Alogliptin-Loaded In Situ Gel Implants by 23 Factorial Design with Glycemic Assessment in Rats. Pharmaceutics 2022, 14, 1867. [Google Scholar] [CrossRef]
- Sarkar, P.; Bhattacharya, S.; Pal, T.K. Application of Statistical Design to Evaluate Critical Process Parameters and Optimize Formulation Technique of Polymeric Nanoparticles. R. Soc. Open Sci. 2019, 6, 190896. [Google Scholar] [CrossRef] [PubMed]
- Hosny, K.M.; Rizg, W.Y.; Khallaf, R.A. Preparation and Optimization of In Situ Gel Loaded with Rosuvastatin-Ellagic Acid Nanotransfersomes to Enhance the Anti-Proliferative Activity. Pharmaceutics 2020, 12, 263. [Google Scholar] [CrossRef] [PubMed]
- Von Storp, B.; Engel, A.; Boeker, A.; Ploeger, M.; Langer, K. Albumin Nanoparticles with Predictable Size by Desolvation Procedure. J. Microencapsul. 2012, 29, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hong, G.; Liu, Z.; Yang, D.; Kankala, R.K.; Wu, W. Synergistic Antitumor Efficacy of Doxorubicin and Gambogic Acid-Encapsulated Albumin Nanocomposites. Colloids Surf. B Biointerfaces 2020, 196, 111286. [Google Scholar] [CrossRef]
- Mokhtar, M.; Sammour, O.A.; Hammad, M.A.; Megrab, N.A. Effect of Some Formulation Parameters on Flurbiprofen Encapsulation and Release Rates of Niosomes Prepared from Proniosomes. Int. J. Pharm. 2008, 361, 104–111. [Google Scholar] [CrossRef]
- Gao, Y.; Nai, J.; Yang, Z.; Zhang, J.; Ma, S.; Zhao, Y.; Li, H.; Li, J.; Yang, Y.; Yang, M.; et al. A Novel Preparative Method for Nanoparticle Albumin-Bound Paclitaxel with High Drug Loading and its Evaluation Both In Vitro and In Vivo. PLoS ONE 2021, 16, e0250670. [Google Scholar] [CrossRef]
- Fan, N.; Zhao, J.; Zhao, W.; Shen, Y.; Song, Q.; Shum, H.C.; Wang, Y.; Rong, J. Biodegradable Celastrol-Loaded Albumin Nanoparticles Ameliorate Inflammation and Lipid Accumulation in Diet-Induced Obese Mice. Biomater. Sci. 2022, 10, 984–996. [Google Scholar] [CrossRef]
- International Council on Harmonization (ICH). ICH Guideline Q3C (R6) on Impurities: Guideline for Residual Solvents. 2019. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-33.pdf (accessed on 19 March 2023).
- Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; Von Briesen, H.; Schubert, D. Optimization of the Preparation Process for Human Serum Albumin (HSA) Nanoparticles. Int. J. Pharm. 2003, 257, 169–180. [Google Scholar] [CrossRef]
- Kufleitner, J.; Worek, F.; Kreuter, J. Incorporation of Obidoxime into Human Serum Albumin Nanoparticles: Optimisation of Preparation Parameters for the Development of a Stable Formulation. J. Microencapsul. 2010, 27, 594–601. [Google Scholar] [CrossRef]
- Aniesrani Delfiya, D.S.; Thangavel, K.; Amirtham, D. Preparation of Curcumin Loaded Egg Albumin Nanoparticles Using Acetone and Optimization of Desolvation Process. Protein J. 2016, 35, 124–135. [Google Scholar] [CrossRef]
- Esim, O.; Gedik, M.E.; Dogan, A.L.; Gunaydin, G.; Hascicek, C. Development of Carboplatin Loaded Bovine Serum Albumin Nanoparticles and Evaluation of its Effect on an Ovarian Cancer Cell Line. J. Drug Deliv. Sci. Technol. 2021, 64, 102655. [Google Scholar] [CrossRef]
- İnan, B.; Özçimen, D. Microalgal Bioprocess Toward the Production of Microalgal Oil Loaded Bovine Serum Albumin Nanoparticles. Protein J. 2021, 40, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Rejinold, N.S.; Choi, G.; Piao, H.; Choy, J. Bovine Serum Albumin-Coated Niclosamide-Zein Nanoparticles as Potential Injectable Medicine Against COVID-19. Materials 2021, 14, 3792. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Selvam, J.; Mukundan, G.K.; Premakumari, K.B.; Jenita, J.L. Albumin Nanoparticles Coated with Polysorbate 80 for the Targeted Delivery of Antiepileptic Drug Levetiracetam into the Brain. Drug Deliv. Transl. Res. 2020, 10, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Katona, G.; Balogh, G.T.; Dargó, G.; Gáspár, R.; Márki, Á.; Ducza, E.; Sztojkov-Ivanov, A.; Tömösi, F.; Kecskeméti, G.; Janáky, T.; et al. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Huang, X.; Wu, H. Development of a Novel Intraarticular Injection of Diclofenac for the Treatment of Arthritis: A Preclinical Study in the Rabbit Model. Acta Biochim. Pol. 2021, 68, 71–76. [Google Scholar] [CrossRef]
- Şenol, Y.; Kaplan, O.; Varan, C.; Demirtürk, N.; Öncül, S.; Fidan, B.B.; Ercan, A.; Bilensoy, E.; Çelebier, M. Pharmacometabolomic Assessment of Vitamin E Loaded Human Serum Albumin Nanoparticles on HepG2 Cancer Cell Lines. J. Drug Deliv. Sci. Technol. 2023, 79, 104017. [Google Scholar] [CrossRef]
- Kimura, K.; Yamasaki, K.; Nakamura, H.; Haratake, M.; Taguchi, K.; Otagiri, M. Preparation and In Vitro Analysis of Human Serum Albumin Nanoparticles Loaded with Anthracycline Derivatives. Chem. Pharm. Bull. 2018, 66, 382–390. [Google Scholar] [CrossRef]
- Abolhassani, H.; Shojaosadati, S.A. A Comparative and Systematic Approach to Desolvation and Self-Assembly Methods for Synthesis of Piperine-Loaded Human Serum Albumin Nanoparticles. Colloids Surf. B Biointerfaces 2019, 184, 110534. [Google Scholar] [CrossRef]
- Yang, L.; Cui, F.; Cun, D.; Tao, A.; Shi, K.; Lin, W. Preparation, Characterization and Biodistribution of the Lactone form of 10-Hydroxycamptothecin (HCPT)-Loaded Bovine Serum Albumin (BSA) Nanoparticles. Int. J. Pharm. 2007, 340, 163–172. [Google Scholar] [CrossRef]
- Jose, P.; Sundar, K.; Anjali, C.H.; Ravindran, A. Metformin-Loaded BSA Nanoparticles in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug. Cell Biochem. Biophys. 2014, 71, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Llabot, J.M.; Redin, I.L.; Agüeros, M.; Caballero, M.J.D.; Boiero, C.; Irache, J.M.; Allemandi, D. In Vitro Characterization of New Stabilizing Albumin Nanoparticles as a Potential Topical Drug Delivery System in the Treatment of Corneal Neovascularization (CNV). J. Drug Deliv. Sci. Technol. 2019, 52, 379–385. [Google Scholar] [CrossRef]
- Gomaa, E.; Eissa, N.G.; Ibrahim, T.M.; El-Bassossy, H.M.; El-Nahas, H.M.; Ayoub, M.M. Development of Depot PLGA-Based In-Situ Implant of Linagliptin: Sustained Release and Glycemic Control. Saudi Pharm. J. 2023, 31, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Farahnaky, A.; Badii, F.; Farhat, I.A.; Mitchell, J.R.; Hill, S.E. Enthalpy Relaxation of Bovine Serum Albumin and Implications for its Storage in the Glassy State. Biopolymers 2005, 78, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.I.; El-Kamel, A.H.; Hammad, G.O.; Heikal, L.A. Design of Targeted Flurbiprofen Biomimetic Nanoparticles for Management of Arthritis: In Vitro and In Vivo Appraisal. Pharmaceutics 2022, 14, 140. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.K.; Ahmad, E.; Khan, J.M.; Alam, P.; Ishtikhar, M.; Khan, R.H. Elucidating the interaction of limonene with bovine serum albumin: A multi-technique approach. Mol. BioSyst. 2015, 11, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, M.; Matsuki, H.; Kaneshina, S.; Ogli, K. Study on the Interaction between Bovine Serum Albumin and Inhalation Anesthetic Halothane by Differential Scanning Calorimetry; Elsevier: Amsterdam, The Netherlands, 2005; pp. 326–327. [Google Scholar] [CrossRef]
- Yang, Z.; Du, Y.; Lei, L.; Xia, X.; Wang, X.; Tong, F.; Li, Y.; Gao, H. Co-Delivery of Ibrutinib and Hydroxychloroquine by Albumin Nanoparticles for Enhanced Chemotherapy of Glioma. Int. J. Pharm. 2023, 630, 122436. [Google Scholar] [CrossRef]
Independent Factors | Unit | Symbol | Actual Levels (Coded) | ||
---|---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |||
BSA concentration | % | A | 0.5 | 1 | 1.5 |
Carvedilol percentage in BSA nanoparticles | % | B | 6 | 8.5 | 11 |
Dependent responses | Unit | Symbol | Goal | ||
Particle size | nm | Y1 | Minimize | ||
Entrapment efficiency | % | Y2 | Maximize | ||
T50 | d | Y3 | Target to 3.5 d |
Formulation | Actual Levels | Responses | |||
---|---|---|---|---|---|
A (%) | B (%) | Y1 (nm) | Y2 (%) | Y3 (d) | |
F1 | 0.5 | 6 | 123.33 ± 7.83 | 93.14 ± 0.97 | 4.46 ± 0.62 |
F2 | 0.5 | 8.5 | 147.84 ± 22.84 | 88.32 ± 1.03 | 3.05 ± 0.38 |
F3 | 1 | 8.5 | 177.56 ± 13.21 | 94.41 ± 0.77 | 5.47 ± 0.71 |
F4 | 1.5 | 8.5 | 196.66 ± 16.11 | 97.57 ± 0.91 | 7.29 ± 0.79 |
F5 | 1 | 6 | 148.60 ± 22.16 | 96.19 ± 1.31 | 6.23 ± 0.78 |
F6 | 1.5 | 6 | 167.83 ± 7.08 | 98.89 ± 1.02 | 8.51 ± 0.79 |
F7 | 1.5 | 11 | 243.96 ± 13.26 | 94.13 ± 0.98 | 2.25 ± 0.55 |
F8 | 1 | 11 | 210.36 ± 13.39 | 90.34 ± 0.42 | 1.41 ± 0.33 |
F9 | 0.5 | 11 | 186.30 ± 18.41 | 78.28 ± 1.25 | 0.14 ± 0.05 |
Source | Y1 Response | Y2 Response | Y3 Response | ||||||
---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | Significance | F-Value | p-Value | Significance | F-Value | p-Value | Significance | |
Model | 164.01 | 0.0007 | Significant | 29.31 | 0.0095 | Significant | 66.20 | 0.0029 | Significant |
A | 292.75 | 0.0004 | Significant | 76.26 | 0.0032 | Significant | 95.27 | 0.0023 | Significant |
B | 518.14 | 0.0002 | Significant | 51.98 | 0.0055 | Significant | 208.89 | 0.0007 | Significant |
AB | 3.34 | 0.1652 | Non-significant | 12.26 | 0.0394 | Significant | 4.97 | 0.1120 | Non-significant |
A2 | 0.217 | 0.6731 | Non-significant | 3.56 | 0.1555 | Non-significant | 0.0794 | 0.7964 | Non-significant |
B2 | 5.63 | 0.0983 | Non-significant | 2.48 | 0.2136 | Non-significant | 21.82 | 0.0185 | Significant |
Formulation | Zero Order Model | First Order Model | Higuchi Model | Hixson–Crowell Model | Korsmeyer–Peppas Model | ||
---|---|---|---|---|---|---|---|
R2 | R2 | R2 | R2 | R2 | n | T50 | |
F1 | 0.4897 | 0.6793 | 0.9095 | 0.6239 | 0.9854 | 0.327 | 4.46 |
F2 | 0.4309 | 0.6665 | 0.8847 | 0.5990 | 0.9789 | 0.313 | 3.05 |
F3 | 0.6357 | 0.7785 | 0.9559 | 0.7370 | 0.9880 | 0.374 | 5.47 |
F4 | 0.7322 | 0.8309 | 0.9781 | 0.8023 | 0.9910 | 0.412 | 7.29 |
F5 | 0.7837 | 0.8824 | 0.9909 | 0.8547 | 0.9951 | 0.447 | 6.23 |
F6 | 0.8429 | 0.9075 | 0.9882 | 0.8887 | 0.9882 | 0.503 | 8.51 |
F7 | −0.0716 | 0.2968 | 0.6720 | 0.1896 | 0.9929 | 0.226 | 2.25 |
F8 | −0.0883 | 0.3443 | 0.6621 | 0.2227 | 0.9915 | 0.224 | 1.41 |
F9 | −1.1107 | 0.3320 | 0.0792 | −0.2575 | 0.9962 | 0.140 | 0.14 |
Optimized | 0.5762 | 0.7423 | 0.9436 | 0.6948 | 0.9959 | 0.348 | 4.77 |
Parameters | Pure Carvedilol Suspension | Optimized Carvedilol-BSA Nanoparticles |
---|---|---|
t1/2 (h) | 4.34 ± 0.77 | 23.56 ± 1.92 |
AUC0–72 (ng/mL.h) | 3115.09 ± 784.53 | 10,154.75 ± 2652.49 |
AUC0–∞ (ng/mL.h) | 3671.54 ± 1041.31 | 11,804.37 ± 3425.80 |
MRT (h) | 4.98 ± 0.77 | 32.21 ± 3.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, M.S.; Radwan, M.F.; Ibrahim, T.S.; Ibrahim, T.M. Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance. Pharmaceutics 2023, 15, 1425. https://doi.org/10.3390/pharmaceutics15051425
Attia MS, Radwan MF, Ibrahim TS, Ibrahim TM. Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance. Pharmaceutics. 2023; 15(5):1425. https://doi.org/10.3390/pharmaceutics15051425
Chicago/Turabian StyleAttia, Mohamed S., Mohamed F. Radwan, Tarek S. Ibrahim, and Tarek M. Ibrahim. 2023. "Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance" Pharmaceutics 15, no. 5: 1425. https://doi.org/10.3390/pharmaceutics15051425
APA StyleAttia, M. S., Radwan, M. F., Ibrahim, T. S., & Ibrahim, T. M. (2023). Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance. Pharmaceutics, 15(5), 1425. https://doi.org/10.3390/pharmaceutics15051425