Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Formation
2.3. Dynamic Light Scattering (DLS)
2.4. Zeta Potential
2.5. UV/Vis Spectrophotometry
2.6. LY294002 Release
2.7. Statistical Analysis
3. Results
3.1. LY294002 Incorporation in PEO-PDLLA Nanoparticles without Ion Pairing
3.2. Ion Pairing Agents Increase the LY294002 Loading of PEO-PDLLA Nanoparticles
3.3. Release of LY from PEO-PDLLA-Salt Former Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Manisekaran, R.; GarcÍa-Contreras, R.; Chettia, A.-D.R.; Serrano-DÍaz, P.; Lopez-Ayuso, C.A.; Arenas-Arrocena, M.C.; Hernández-Padrón, G.; López-MarÍn, L.M.; Acosta-Torres, L.S. 2D Nanosheets—A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021, 13, 1803. [Google Scholar] [CrossRef] [PubMed]
- Janku, F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From Laboratory to patients. Cancer Treat. Rev. 2017, 59, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantely, L.C.; Abraham, R.T. The PI3K Pathway in Humann Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef]
- Chambers, T.P.; Portalatin, G.M.; Paudel, I.; Robbins, C.J.; Chambers, J.W. Sub-chronic administration of LY294002 sensitizes cervical cancer cells to chemotherapy by enchancing mitochondrial JNK signaling. Biochem. Biophys. Res. Commun. 2015, 463, 538–544. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kawada, K.; Takano, D.; Tanimura, S.; Ozaki, K.-I.; Kohno, M. Inhibition of the PI3 kinase/Akt pathway enhances doxorubicin-induced apoptotic cell death in tumor cells in a p53-dependent manner. Biochem. Biophys. Res. Commun. 2006, 340, 560–566. [Google Scholar] [CrossRef]
- Santin, A.D.; Filiaci, V.; Bellone, S.; Ratner, E.S.; Mathews, C.A.; Cantuaria, G.; Gunderson, C.C.; Rutledge, T.; Buttin, B.M.; Lankes, H.A.; et al. Phase II evaluation of copanlisib, a selective inhibitor of Pi3kca, in patients with persistent or recurrent endometrial carcinoma harboring PIK3CA hotspot mutations: An NRG Oncology Study (NRG-GY008). Gynecol. Oncol. Rep. 2020, 31, 100532. [Google Scholar] [CrossRef]
- Rodrigues, D.A.; Sagrillo, F.S.; Fraga, C.A.M. Duvelisib: A 2018 Novel FDA-Approved Small Molecule Inhibiting Phosphionoxitide 3-Kinases. Pharmaceuticals 2019, 12, 69. [Google Scholar] [CrossRef]
- Harfouche, R.; Basu, S.; Soni, S.; Hentschel, D.M.; Mashelkar, R.A.; Sengupta, S. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 2009, 12, 325–338. [Google Scholar] [CrossRef]
- Xu, R.X.; Xu, J.S.; Zuo, T.; Shen, R.; Huang, T.H.; Tweedle, M.F. Drug-loaded biodegradalbe microspheres for image-guided combinatory epigenetic therapy in cells. J. Biomed. Opt. 2011, 16, 020507. [Google Scholar] [CrossRef]
- Saiyin, W.; Wang, D.; Li, L.; Zhu, L.; Liu, B.; Sheng, L.; Li, Y.; Zhu, B.; Mao, L.; Li, G.; et al. Sequential release of autophagy inhibitor and chemotherapeutic drug with polymeric delivery system for oral squamous cell carcinoma therapy. Mol. Pharm. 2014, 11, 1662–1675. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, Y.; Wang, D.; Xu, Z.; Sun, W.; Ren, P. Autophagy Inhibitor (LY294002) and 5-fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy Against Esophageal Squamous Cell Carcinoma. Nanoscale Res. Lett. 2018, 13, 325. [Google Scholar] [CrossRef]
- Cai, J.; Qian, K.; Zuo, X.; Yue, W.; Bian, Y.; Yang, J.; Wei, J.; Zhao, W.; Qian, H.; Liu, B. PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J. Biomater. Appl. 2019, 33, 1394–1406. [Google Scholar] [CrossRef] [PubMed]
- Allouche, J. Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. In Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective; Brayner, R., Fiévet, F., Coradin, T., Eds.; Springer: London, UK, 2013; pp. 27–74. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017, 80, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Johnson, B.K.; Prud’homme, R.K. Chemical processing and micromixing in confined impinging jets. AIChE J. 2003, 49, 2264–2282. [Google Scholar] [CrossRef]
- D’Addio, S.M.; Prud’homme, R.K. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Deliv. Rev. 2011, 63, 417–426. [Google Scholar] [CrossRef]
- Saad, W.S.; Prud’homme, R.K. Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 2016, 11, 212–227. [Google Scholar] [CrossRef]
- Akbulut, M.; Ginart, P.; Gindy, M.E.; Theriault, C.; Chin, K.H.; Soboyejo, W.; Prud’homme, R.K. Generic Method of Preparing Multifunctional Fluorescent Nanoparticles Using Flash NanoPrecipitation. Adv. Funct. Mater. 2009, 19, 718–725. [Google Scholar] [CrossRef]
- Pinkerton, N.M.; Grandeury, A.; Fisch, A.; Brozio, J.; Riebesehl, B.U.; Prud’homme, R.K. Formation of Stable Nanocarriers by in Situ Ion Pairing during Block-Copolymer-Directed Rapid Precipitation. Mol. Pharm. 2013, 10, 319–328. [Google Scholar] [CrossRef]
- Ristroph, K.D.; Salim, M.; Wilson, B.K.; Clulow, A.J.; Boyd, B.J.; Prud’homme, R.K. Internal Liquid Crystal Structures in Nanocarriers Containing Drug Hydrophobic Ion Pairs Dictate Drug Release. J. Colloid Interface Sci. 2021, 582, 815–824. [Google Scholar] [CrossRef]
- Lobovkina, T.; Jacobson, G.B.; Gonzalez-Gonzalez, E.; Hickerson, R.P.; Leake, D.; Kaspar, R.L.; Contag, C.H.; Zare, R.N. In Vivo Sustained Release of siRNA from Solid Lipid Nanoparticles. ACS Nano 2011, 5, 9977–9983. [Google Scholar] [CrossRef]
- Lu, H.D.; Rummaneethorn, P.; Ristroph, K.D.; Prud’homme, R.K. Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations. Mol. Pharm. 2018, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.D.; Ristroph, K.D.; Dobrijevic, E.L.K.; Feng, J.; McManus, S.A.; Zhang, Y.; Mulhearn, W.D.; Ramachandruni, H.; Patel, A.; Prud’homme, R.K. Encapsulation of OZ439 into Nanoparticles for Supersaturated Drug Release in Oral Malaria Therapy. ACS Infect. Dis. 2018, 4, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Hu, X.Y.; Szymusiak, M.; Wang, Z.J.; Liu, Y. Orally Administered Nanocurcumin to Attenuate Morphine Tolerance: Comparison between Negatively Charged PLGA and Partially and Fully PEGylated Nanoparticles. Mol. Pharm. 2013, 10, 4546–4551. [Google Scholar] [CrossRef]
- Jo, A.; Zhang, R.; Allen, I.C.; Riffle, J.S.; Davis, R.M. Design and Fabrication of Streptavidin-Functionalized, Fluorescently Labeled Polymeric Nanocarriers. Langmuir 2018, 34, 15783–15794. [Google Scholar] [CrossRef]
- McDaniel, D.K.; Jo, A.; Ringel-Scaia, V.M.; Coutermarsh-Ott, S.; Rothschild, D.E.; Powell, M.D.; Zhang, R.; Long, T.E.; Oestreich, K.J.; Riffle, J.S.; et al. TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments. Nanomedicine 2017, 13, 1255–1266. [Google Scholar] [CrossRef]
- D’Addio, S.M.; Saad, W.; Ansell, S.M.; Squiers, J.J.; Adamson, D.H.; Herrera-Alonso, M.; Wohl, A.R.; Hoye, T.R.; Macosko, C.W.; Mayer, L.D.; et al. Effects of block copolymer properties on nanocarrier protection from in vivo clearance. J. Control. Release 2012, 162, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhu, Z.X.; Qian, H.T.; Wohl, A.R.; Beaman, C.J.; Hoye, T.R.; Macosko, C.W. A simple confined impingement jets mixer for flash nanoprecipitation. J. Pharm. Sci. 2012, 101, 4018–4023. [Google Scholar] [CrossRef]
- Meyer, J.D.; Manning, M.C. Hydrophobic Ion Pairing: Altering the Solubility Properties of Biomolecules. Pharm. Res. 1998, 15, 188–193. [Google Scholar] [CrossRef]
- Pagels, R.F.; Prud’homme, R.K. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J. Control. Release 2015, 219, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Michel, A.R.; Lee, H.S.; Kalscheuer, S.; Wohl, A.; Hoye, T.R.; McCormick, A.V.; Panyam, J.; Macosko, C.W. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Mol. Pharm. 2015, 12, 4329–4335. [Google Scholar] [CrossRef]
- Levit, S.L.; Yang, H.; Tang, C. Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. Nanomaterials 2020, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Bteich, J.; McManus, S.A.; Ernsting, M.J.; Mohammed, M.Z.; Prud’homme, R.K.; Sokoll, K.K. Using Flash Nanoprecipitation To Produce Highly Potent and Stable Cellax Nanoparticles from Amphiphilic Polymers Derived from Carboxymethyl Cellulose, Polyethylene Glycol, and Cabazitaxel. Mol. Pharm. 2017, 14, 3998–4007. [Google Scholar] [CrossRef] [PubMed]
Inhibitor | Target | IC50 6 | Log P 5 | FDA Approval | Administration Notes |
---|---|---|---|---|---|
Alpelisib | p110α | 5 nM 1 | 3.81 | Approved | Oral dosage in combination with fulvestrant 2 |
Idelalisib | p110δ | 2.5 nM 1 | 3.68 | Approved | Oral dosage 3 |
Copanlisib | p110α/δ | 0.5 nM, 0.7 nM [7] | 0.5 | Approved | 1-h intravenous infusion 4 |
Duvelisib | p110γ/δ | 27 nM, 2.5 nM [8] | 4.56 | Approved | Oral dosage |
Wortmannin | Pan-PI3K | 1 nM [3] | 1.84 | --- | |
LY294002 | Pan-PI3K | 1.4 μM [3] | 3.64 | --- |
Criterion | Discussion |
---|---|
Cell type(s) affected by drug (LY294002) | All human cells |
Mode of administration | Intravenous, intraperitoneal |
Drug dosage | IC50: 1.4 µM Mouse study: 20 mg/kg Human: unknown |
Location of therapeutic effect | Intracellular |
Cellular membrane transport limitation? | No |
Intracellular processing of NPs | Lysosomal release |
Polymer carrier | PDLLA-PEG |
Drug loading range | 10 (mg NP)/mL IP injection at 50 wt% LY loading to reach 20 mg/kg dosage |
Drug Log P at drug release pH | 3.64 (Log P) |
Drug pKa | 3.47 |
Hydrophobic ion pairing agent | HDPA (pKa: 1.81) PA (pKa: 4.95) |
Solvent(s) suitable for drug dissolution in FNP process | Tetrahydrofuran, dimethylformamide |
Drug release kinetics | Burst release phase followed by slow, sustained release |
Importance of triggered release | pH-triggered release below pH 6.5 |
Chemical Name | Structure | pKa | Log P |
---|---|---|---|
PDLLA-PEG | -- | -- | |
LY294002 (LY) | 3.47 | 3.34 | |
Palmitic Acid (PA) | 4.95 | 7.60 | |
Hexadecylphosphonic Acid (HDPA) | 1.81 | 5.13 | |
TIPS Pentacene | -- | 9.28 |
Case | Intensity Average Diameter (nm) | Polydispersity Index | Zeta Potential (mV) | LY294002 Loading (wt%) 2 | ||||
---|---|---|---|---|---|---|---|---|
THF | DMF | THF | DMF | THF | DMF | THF | DMF | |
LY-only Control | 260 ± 130 | 128 ± 30 | 0.35 ± 0.10 | 0.34 ± 0.13 | −33 ± 3 | −29 ± 2 | 3.8 ± 0.7 | 0.5 ± 0.2 |
1:1 LY:PA 1 | -- | 382 ± 78 64 ± 8 | -- | -- | −35 ± 2 | −41 ± 2 | 12 ± 1 | 4.1 ± 0.9 |
1:1 LY:HDPA | 335 ± 34 | 213 ± 16 | 0.32 ± 0.04 | 0.23 ± 0.04 | −38 ± 3 | −46 ± 2 | 11 ± 2 | 7.9 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fergusson, A.D.; Zhang, R.; Riffle, J.S.; Davis, R.M. Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics 2023, 15, 1157. https://doi.org/10.3390/pharmaceutics15041157
Fergusson AD, Zhang R, Riffle JS, Davis RM. Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics. 2023; 15(4):1157. https://doi.org/10.3390/pharmaceutics15041157
Chicago/Turabian StyleFergusson, Austin D., Rui Zhang, Judy S. Riffle, and Richey M. Davis. 2023. "Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation" Pharmaceutics 15, no. 4: 1157. https://doi.org/10.3390/pharmaceutics15041157
APA StyleFergusson, A. D., Zhang, R., Riffle, J. S., & Davis, R. M. (2023). Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics, 15(4), 1157. https://doi.org/10.3390/pharmaceutics15041157