In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Floating Tablet
2.2.1. In Vitro Dissolution Studies
2.2.2. Radiolabelling the Floating Tablet with Technetium-99 (99m-Tc)
2.3. In Vivo Oral Bioavailability Study
2.3.1. Analysis of Thiamine in Human Plasma
2.3.2. Data Analysis of the In Vivo Oral Bioavailability Study
3. Results
3.1. In Vitro Dissolution Studies
3.2. In Vivo Oral Bioavailability Study
3.3. In Vivo Evaluation of the Floating Properties Using Gamma Scintigraphy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, H.L.; Robinson, J.R. Influence of drug properties and route of drug administration on the design of sustained and controlled release systems. In Controlled Drug Delivery: Fundamentals and Applications, 2nd ed.; Robinson, J.R., Vincent Lee, H.L., Eds.; CRC Press: Boca Raton, FL, USA, 1987; pp. 4–95. [Google Scholar]
- Yun, Y.H.; Lee, B.K.; Park, K. Controlled drug delivery: Historical perspective for the next generation. J. Control. Release 2015, 10, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S. Formulation strategies for absorption windows. Drug Discov. Today 2005, 10, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Streubel, A.; Siepmann, J.; Bodmeier, R. Drug delivery to the upper small intestine window using gastroretentive technologies. Curr. Opin. Pharmacol. 2006, 6, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—Influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Park, H.; Park, K. Gastric retentive drug-delivery system. Crit. Rev. Ther. Drug Carrier Syst. 1998, 15, 243–284. [Google Scholar]
- Klausner, E.A.; Lavy, E.; Friedman, M.; Hoffman, A. Expandable gastroretentive dosage forms. J. Control. Release 2003, 90, 143–162. [Google Scholar] [CrossRef]
- Groning, R.; Cloer, C.; Muller, R.S. Development and in vitro evaluation of expandable gastroretentive dosage forms based on compressed collagen sponges. Pharmazie 2006, 61, 608–612. [Google Scholar]
- Rimawi, I.B.; Muqedi, R.H.; Kanaze, F.I. Development of gabapentin expandable gastroretentive controlled drug delivery system. Sci. Rep. 2019, 9, 11675. [Google Scholar] [CrossRef] [Green Version]
- Chavanpatil, M.; Jain, P.; Chaudhari, S.; Shear, R.; Vavia, P. Development of sustained release gastroretentive drug delivery system for ofloxacin: In vitro and in vivo evaluation. Int. J. Pharm. 2005, 304, 178–184. [Google Scholar] [CrossRef]
- Sarkar, D.; Nandi, G.; Changder, A.; Hudati, P.; Sarkar, S.; Ghosh, L.K. Sustained release gastroretentive tablet of metformin hydrochloride based on poly (acrylic acid)-grafted-gellan. Int. J. Biol. Macromol. 2017, 96, 137–148. [Google Scholar] [CrossRef]
- Patil, S.H.; Talele, G.S. Natural gum as mucoadhesive controlled release carriers: Evaluation of cefpodoxime proxetil by D-optimal design technique. Drug Deliv. 2014, 21, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, M.; Zhi, F.; Hu, Y. Floating matrix dosage form for phenoporlamine hydrochloride based on gas forming agent: In vitro and in vivo evaluation in healthy volunteers. Int. J. Pharm. 2006, 310, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, A.; Emami, J.; Varshosaz, J.; Davies, N.M.; Rezazadeh, M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. Int. J. Pharm. 2011, 409, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.Q.; Feng, X.; Morott, J.T.; Pimparade, M.B.; Tiwari, R.V.; Zhang, F.; Repka, M.A. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur. J. Pharm. Biopharm. 2016, 98, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.W. Method of Swallowing a Pill. U.S. Patent 3,418,999, 31 December 1968. [Google Scholar]
- Ichikawa, M.; Watanabe, S.; Miyake, Y. A new multiple-unit oral floating dosage system. I: Preparation and in vitro evaluation of floating and sustained-release characteristics. J. Pharm. Sci. 1991, 80, 1062–1066. [Google Scholar] [CrossRef]
- Kotreka, U.K.; Adeyeye, M.C. Gastroretentive floating drug-delivery systems: A critical review. Crit. Rev. Ther. Drug Carrier Syst. 2011, 28, 47–99. [Google Scholar] [CrossRef]
- Iglesias, N.; Galbis, E.; Romero-Azogil, L.; Benito, E.; Lucas, R.; García-Martín, M.G.; de-Paz, M.V. In-Depth Study into Polymeric Materials in Low-Density Gastroretentive Formulations. Pharmaceutics 2020, 12, 636. [Google Scholar] [CrossRef]
- Razavi, M.; Karimian, H.; Yeong, C.H.; Chung, L.Y.; Nyamathulla, S.; Noordin, M.I. Gamma scintigraphic evaluation of floating gastroretentive tablets of metformin HCl using a combination of three natural polymers in rabbits. Drug Des. Dev. Ther. 2015, 6, 4373–4386. [Google Scholar] [CrossRef]
- Said, H.M.; Ortiz, A.; Kumar, C.K.; Chatterjee, N.; Dudeja, P.K.; Rubin, S. Transport of thiamine in human intestine: Mechanism and regulation in intestinal epithelial cell model Caco-2. Am. J. Physiol. 1999, 277, C645–C651. [Google Scholar] [CrossRef]
- Manzetti, S.; Zhang, J.; van der Spoel, D. Thiamine function, metabolism, uptake and transport. Biochemistry 2014, 53, 821–835. [Google Scholar] [CrossRef]
- Tanaka, C.; Cooper, J.R. The fluorescent microscopic localization of thiamine in nervous tissue. J. Histochem. Cytochem. 1968, 16, 362–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G. Defects of thiamine transport and metabolism. J. Inherit. Metab. Dis. 2014, 37, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Smithline, H.A.; Donnino, M.; Greenblatt, D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol. 2012, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rindi, G.; Laforenza, U. Thiamine intestinal transport and related issues: Recent aspects. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 2000, 224, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Dudeja, P.K.; Tyagi, S.; Gill, R.; Said, H.M. Evidence for a carrier-mediated mechanism for thiamine transport to human jejunal basolateral membrane vesicles. Dig. Dis. Sci. 2003, 48, 109–115. [Google Scholar] [CrossRef]
- Strübing, S.; Metz, H.; Mäder, K. Characterization of poly(vinyl acetate) based floating matrix tablets. J. Control. Release 2008, 126, 149–155. [Google Scholar] [CrossRef]
- Wagner, J.G. Bioavailability. In Fundamentals of Clinical Pharmacokinetics, 1st ed.; Drug Intelligence Publications: Hamilton, IL, USA, 1975; pp. 337–358. [Google Scholar]
- Campos-Aldrete, M.E.; Villafuerte-Robles, L. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. Eur. J. Pharm. Biopharm. 1997, 43, 173–178. [Google Scholar] [CrossRef]
- Mex, X. Effect of formulation variables on verapamil hydrochloride release from hydrated HPMC matrices. Rev. Soc. Quim. Méx. 2004, 48, 326–331. [Google Scholar]
- Sahoo, J.; Murthy, P.; Biswal, S.; Sahoo, S.; Mahapatra, A. Comparative study of propranolol hydrochloride release from matrix tablets with Kollidon® SR or hydroxypropyl methyl cellulose. AAPS PharmSci. Tech. 2008, 9, 577–582. [Google Scholar] [CrossRef]
- Nerurkar, M.J.; Duddu, S.; Grant, D.J.W.; Rytting, L.H. Properties of solids that affect transport. In Transport Processes in Pharmaceutical Systems; Amidon, G.L., Lee, P.I., Topp, E.M., Eds.; Marcel Dekker: New York, NY, USA, 1999; pp. 600–601. [Google Scholar]
- Moore, J.W.; Flanner, H.H. Mathematical comparison of dissolution profiles. Pharm. Technol. 1996, 20, 64–74. [Google Scholar]
- Whitehead, L.; Fell, J.T.; Collett, J.H.; Sharma, H.L.; Smith, A.M. Floating dosage forms: An in vivo study demonstrating prolonged gastric retention. J. Control. Release 1998, 55, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kawashima, Y.; Takeuchi, H.; Yamamoto, H. In vitro and in vivo evaluation of riboflavin-containing microballoons for a floating controlled drug delivery system in healthy humans. Int. J. Pharm. 2004, 275, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bomma, R.; Swamy, N.R.A.; Yamsani, M.R.; Veerabrahma, K. Development and evaluation of gastroretentive norfloxacin floating tablets. Acta Pharm. 2009, 59, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomma, R.; Veerabrahma, K. Development of gastroretentive drug delivery system for cefuroxime axetil: In vitro and in vivo evaluation in human volunteers. Pharm. Dev. Technol. 2013, 18, 1230–1237. [Google Scholar] [CrossRef]
- Strusi., O.L.; Sonvico, F.; Bettini, R.; Santi, P.; Colombo, G.; Barata, P.; Oliveira, A.; Santos, D.; Colombo, P. Module assemblage technology for floating systems: In vitro flotation and in vivo gastro-retention. J. Control. Release 2008, 129, 88–92. [Google Scholar] [CrossRef]
- Groning, R.; Cloer, C.; Georgarakis, M.; Muller, R.S. Compressed collagen sponges as gastroretentive dosage forms: In Vitro and in vivo studies. Eur. J. Pharm. Sci. 2007, 30, 1–6. [Google Scholar] [CrossRef]
- Sawicki, W. Pharmacokinetics of verapamil and norverapamil from controlled release floating pellets in humans. Eur. J. Pharm. Biopharm. 2002, 53, 29–35. [Google Scholar] [CrossRef]
- Chen, J.; Blevins, W.E.; Park, H.; Park, K. Gastric retention properties of superporous hydrogel composites. J. Control. Release 2000, 64, 39–51. [Google Scholar] [CrossRef]
- Rubinstein, A.; Friend, D.R. Specific delivery to the gastrointestinal tract. In Polymeric Site-Specific Pharmacotherapy; Domb, A.J., Ed.; Wiley: Chichester, UK, 1994; pp. 282–283. [Google Scholar]
Ingredients | Weight per Tablet (mg) | Percentage by Weight (%) |
---|---|---|
Thiamine hydrochloride | 100 | 25.0 |
HPMC K15M | 108 | 27.0 |
HPMC E4M | 72 | 18.0 |
Sodium bicarbonate | 100 | 25.0 |
Microcrystalline cellulose PH102 | 16 | 4.0 |
Magnesium stearate | 4 | 1.0 |
Total tablet weight | 400 |
Group | Sequence of Administration | |||
---|---|---|---|---|
Period 1 | Period 2 | Period 3 | Period 4 | |
1 | T (Fasted) | T (Fed) | R (Fasted) | R (Fed) |
2 | T (Fed) | T (Fasted) | R (Fed) | R (Fasted) |
3 | R (Fasted) | R (Fed) | T (Fasted) | T (Fed) |
4 | R (Fed) | R (Fasted) | T (Fed) | T (Fasted) |
Volunteer | Floating Tablet | Reference Preparation | ||||
---|---|---|---|---|---|---|
Cmax (ng/mL) | Tmax (h) | AUC0-t (ng.h/mL) | Cmax (ng/mL) | Tmax (h) | AUC0-t (ng.h/mL) | |
1 | 4.4 | 3.0 | 35.5 | 7.2 | 1.5 | 34.3 |
2 | 17.3 | 8.0 | 136.9 | 19.9 | 1.5 | 132.6 |
3 | 6.3 | 4.0 | 42.5 | 30.7 | 2.0 | 146.8 |
4 | 7.2 | 3.0 | 51.8 | 11.8 | 2.0 | 75.6 |
5 | 6.5 | 2.0 | 30.5 | 22.0 | 1.0 | 59.0 |
6 | 13.1 | 1.0 | 43.0 | 11.3 | 1.0 | 15.7 |
7 | 4.9 | 1.5 | 10.5 | 10.3 | 1.0 | 43.5 |
8 | 5.5 | 1.5 | 17.3 | 18.9 | 3.0 | 89.6 |
Mean | 8.2 * | 3.0 | 46.0 | 16.5 | 1.6 | 74.6 |
SD | 4.6 | 2.3 | 39.2 | 7.8 | 0.7 | 46.5 |
C.I. | 0.3–0.8 | 0.3–1.1 |
Volunteer | Floating Tablet | Reference Preparation | ||||
---|---|---|---|---|---|---|
Cmax (ng/mL) | Tmax (h) | AUC0-t (ng.h/mL) | Cmax (ng/mL) | Tmax (h) | AUC0-t (ng.h/mL) | |
1 | 8.4 | 6.0 | 66.0 | 8.6 | 3.0 | 47.1 |
2 | 20.6 | 8.0 | 171.4 | 19.4 | 1.0 | 101.2 |
3 | 13.2 | 4.0 | 76.5 | 17.4 | 2.0 | 78.4 |
4 | 16.5 | 8.0 | 152.1 | 23.5 | 3.0 | 104.5 |
5 | 4.8 | 3.0 | 41.4 | 10.4 | 2.0 | 52.3 |
6 | 11.1 | 8.0 | 87.5 | 10.8 | 3.0 | 51.3 |
7 | 8.2 | 4.0 | 52.4 | 6.3 | 3.0 | 21.7 |
8 | 11.4 | 8.0 | 83.4 | 8.0 | 1.5 | 51.4 |
Mean | 11.8 | 6.1 | 91.4 * | 13.0 | 2.3 | 63.5 |
SD | 5.0 | 2.2 | 46.4 | 6.2 | 0.8 | 28.7 |
C.I. | 0.7–1.1 | 1.2–1.7 |
Volunteer | Fasted (Minutes) | Fed (Minutes) |
---|---|---|
1 | 15 | 330 |
2 | More than 600 | 585 |
3 | 15 | 165 |
4 | 75 | More than 600 |
5 | 45 | 225 |
6 | 30 | More than 600 |
7 | 15 | 195 |
8 | 45 | More than 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kam, L.-Y.; Wong, J.-W.; Yuen, K.-H. In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy. Pharmaceutics 2023, 15, 691. https://doi.org/10.3390/pharmaceutics15020691
Kam L-Y, Wong J-W, Yuen K-H. In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy. Pharmaceutics. 2023; 15(2):691. https://doi.org/10.3390/pharmaceutics15020691
Chicago/Turabian StyleKam, Li-Ying, Jia-Woei Wong, and Kah-Hay Yuen. 2023. "In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy" Pharmaceutics 15, no. 2: 691. https://doi.org/10.3390/pharmaceutics15020691
APA StyleKam, L.-Y., Wong, J.-W., & Yuen, K.-H. (2023). In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy. Pharmaceutics, 15(2), 691. https://doi.org/10.3390/pharmaceutics15020691