Transferability of Published Population Pharmacokinetic Models for Apixaban and Rivaroxaban to Subjects with Obesity Treated for Venous Thromboembolism: A Systematic Review and External Evaluations
Abstract
1. Introduction
2. Materials and Methods
2.1. Review of Published PPK Models
2.2. Independent External Validation Data Set
2.3. External Predictive Performance Evaluation of Apixaban and Rivaroxaban PPK Models
2.4. Prediction-Based Diagnostics
2.5. Simulation-Based Diagnostics
3. Results
3.1. Review of Published PPK Studies
3.1.1. Apixaban
3.1.2. Rivaroxaban
3.2. External Validation Dataset Cohort
3.3. External Predictability Evaluation
3.3.1. Prediction-Based Diagnostics
Apixaban
Rivaroxaban
3.3.2. Simulation-Based Diagnostics
Apixaban
Rivaroxaban
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallus, S.; Lugo, A.; Murisic, B.; Bosetti, C.; Boffetta, P.; La Vecchia, C. Overweight and Obesity in 16 European Countries. Eur. J. Nutr. 2015, 54, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Ogden, C.L. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016. JAMA 2018, 319, 1723–1725. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.J.; Kompaniyets, L.; Freedman, D.S.; Kraus, E.M.; Porter, R.; Blanck, H.M.; Goodman, A.B. Longitudinal Trends in Body Mass Index Before and During the COVID-19 Pandemic Among Persons Aged 2–19 Years—United States, 2018–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Ihaddadene, R.; Carrier, M. The Use of Anticoagulants for the Treatment and Prevention of Venous Thromboembolism in Obese Patients: Implications for Safety. Expert Opin. Drug Saf. 2016, 15, 65–74. [Google Scholar] [CrossRef]
- Kearon, C.; Ageno, W.; Cannegieter, S.C.; Cosmi, B.; Geersing, G.-J.; Kyrle, P.A. The Subcommittees on Control of Anticoagulation, and Predictive and Diagnostic Variables in Thrombotic Disease Categorization of Patients as Having Provoked or Unprovoked Venous Thromboembolism: Guidance from the SSC of ISTH. J. Thromb. Haemost. 2016, 14, 1480–1483. [Google Scholar] [CrossRef]
- van Es, N.; Coppens, M.; Schulman, S.; Middeldorp, S.; Buller, H.R. Direct Oral Anticoagulants Compared with Vitamin K Antagonists for Acute Venous Thromboembolism: Evidence from Phase 3 Trials. Blood 2014, 124, 1968–1975. [Google Scholar] [CrossRef]
- Byon, W.; Garonzik, S.; Boyd, R.A.; Frost, C.E. Apixaban: A Clinical Pharmacokinetic and Pharmacodynamic Review. Clin. Pharmacokinet. 2019, 58, 1265–1279. [Google Scholar] [CrossRef]
- Willmann, S.; Zhang, L.; Frede, M.; Kubitza, D.; Mueck, W.; Schmidt, S.; Solms, A.; Yan, X.; Garmann, D. Integrated Population Pharmacokinetic Analysis of Rivaroxaban Across Multiple Patient Populations. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 309–320. [Google Scholar] [CrossRef]
- Jain, R.; Chung, S.M.; Jain, L.; Khurana, M.; Lau, S.W.J.; Lee, J.E.; Vaidyanathan, J.; Zadezensky, I.; Choe, S.; Sahajwalla, C.G. Implications of Obesity for Drug Therapy: Limitations and Challenges. Clin. Pharmacol. Ther. 2011, 90, 77–89. [Google Scholar] [CrossRef]
- Morrish, G.A.; Pai, M.P.; Green, B. The Effects of Obesity on Drug Pharmacokinetics in Humans. Expert Opin. Drug Metab. Toxicol. 2011, 7, 697–706. [Google Scholar] [CrossRef]
- Smit, C.; De Hoogd, S.; Brüggemann, R.J.M.; Knibbe, C.A.J. Obesity and Drug Pharmacology: A Review of the Influence of Obesity on Pharmacokinetic and Pharmacodynamic Parameters. Expert Opin. Drug Metab. Toxicol. 2018, 14, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Han, P.Y.; Duffull, S.B.; Kirkpatrick, C.M.J.; Green, B. Dosing in Obesity: A Simple Solution to a Big Problem. Clin. Pharmacol. Ther. 2007, 82, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Beyer-Westendorf, J.; Davidson, B.L.; Huisman, M.V.; Sandset, P.M.; Moll, S. Use of the Direct Oral Anticoagulants in Obese Patients: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2016, 14, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.A.; Beyer-Westendorf, J.; Davidson, B.L.; Huisman, M.V.; Sandset, P.M.; Moll, S. Use of Direct Oral Anticoagulants in Patients with Obesity for Treatment and Prevention of Venous Thromboembolism: Updated Communication from the ISTH SSC Subcommittee on Control of Anticoagulation. J. Thromb. Haemost. 2021, 19, 1874–1882. [Google Scholar] [CrossRef]
- Brum, L. Population Pharmacokinetics; FDA Guidance; Food and Drug Administration: Rockville, MD, USA, 2022; p. 27. [Google Scholar]
- Ballerie, A.; Nguyen Van, R.; Lacut, K.; Galinat, H.; Rousseau, C.; Pontis, A.; Nédelec-Gac, F.; Lescoat, A.; Belhomme, N.; Guéret, P.; et al. Apixaban and Rivaroxaban in Obese Patients Treated for Venous Thromboembolism: Drug Levels and Clinical Outcomes. Thromb. Res. 2021, 208, 39–44. [Google Scholar] [CrossRef]
- Beal, S.L. Ways to Fit a PK Model with Some Data Below the Quantification Limit. J. Pharmacokinet. Pharmacodyn. 2001, 28, 481–504. [Google Scholar] [CrossRef]
- Hanafin, P.O.; Nation, R.L.; Scheetz, M.H.; Zavascki, A.P.; Sandri, A.M.; Kwa, A.L.; Cherng, B.P.Z.; Kubin, C.J.; Yin, M.T.; Wang, J.; et al. Assessing the Predictive Performance of Population Pharmacokinetic Models for Intravenous Polymyxin B in Critically Ill Patients. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1525–1537. [Google Scholar] [CrossRef]
- Zhang, H.; Sheng, C.; Liu, L.; Luo, B.; Fu, Q.; Zhao, Q.; Li, J.; Liu, Y.; Deng, R.; Jiao, Z.; et al. Systematic External Evaluation of Published Population Pharmacokinetic Models of Mycophenolate Mofetil in Adult Kidney Transplant Recipients Co-administered with Tacrolimus. Br. J. Clin. Pharmacol. 2019, 85, 746–761. [Google Scholar] [CrossRef]
- Bergstrand, M.; Hooker, A.C.; Wallin, J.E.; Karlsson, M.O. Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models. AAPS J. 2011, 13, 143–151. [Google Scholar] [CrossRef]
- Comets, E.; Brendel, K.; Mentré, F. Computing Normalised Prediction Distribution Errors to Evaluate Nonlinear Mixed-Effect Models: The Npde Add-on Package for R. Comput. Methods Programs Biomed. 2008, 90, 154–166. [Google Scholar] [CrossRef]
- Byon, W.; Sweeney, K.; Frost, C.; Boyd, R. Population Pharmacokinetics, Pharmacodynamics, and Exploratory Exposure-Response Analyses of Apixaban in Subjects Treated for Venous Thromboembolism: Subjects Treated for Venous Thromboembolism. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Cirincione, B.; Kowalski, K.; Nielsen, J.; Roy, A.; Thanneer, N.; Byon, W.; Boyd, R.; Wang, X.; Leil, T.; LaCreta, F.; et al. Population Pharmacokinetics of Apixaban in Subjects with Nonvalvular Atrial Fibrillation. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Goto, E.; Horinaka, S.; Ishimitsu, T.; Kato, T. Factor Xa Inhibitors in Clinical Practice: Comparison of Pharmacokinetic Profiles. Drug Metab. Pharmacokinet. 2020, 35, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Leil, T.A.; Frost, C.; Wang, X.; Pfister, M.; LaCreta, F. Model-Based Exposure–Response Analysis of Apixaban to Quantify Bleeding Risk in Special Populations of Subjects Undergoing Orthopedic Surgery. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, 136. [Google Scholar] [CrossRef]
- Ueshima, S.; Hira, D.; Kimura, Y.; Fujii, R.; Tomitsuka, C.; Yamane, T.; Tabuchi, Y.; Ozawa, T.; Itoh, H.; Ohno, S.; et al. Population Pharmacokinetics and Pharmacogenomics of Apixaban in Japanese Adult Patients with Atrial Fibrillation. Br. J. Clin. Pharmacol. 2018, 84, 1301–1312. [Google Scholar] [CrossRef]
- Barsam, S.J.; Patel, J.P.; Roberts, L.N.; Kavarthapu, V.; Patel, R.K.; Green, B.; Arya, R. The Impact of Body Weight on Rivaroxaban Pharmacokinetics. Res. Pract. Thromb. Haemost. 2017, 1, 180–187. [Google Scholar] [CrossRef]
- Girgis, I.G.; Patel, M.R.; Peters, G.R.; Moore, K.T.; Mahaffey, K.W.; Nessel, C.C.; Halperin, J.L.; Califf, R.M.; Fox, K.A.A.; Becker, R.C. Population Pharmacokinetics and Pharmacodynamics of Rivaroxaban in Patients with Non-Valvular Atrial Fibrillation: Results from ROCKET AF. J. Clin. Pharmacol. 2014, 54, 917–927. [Google Scholar] [CrossRef]
- Kaneko, M.; Tanigawa, T.; Hashizume, K.; Kajikawa, M.; Tajiri, M.; Mueck, W. Confirmation of Model-Based Dose Selection for a Japanese Phase III Study of Rivaroxaban in Non-Valvular Atrial Fibrillation Patients. Drug Metab. Pharmacokinet. 2013, 28, 321–331. [Google Scholar] [CrossRef]
- Mueck, W.; Becka, M.; Kubitza, D.; Voith, B.; Zuehlsdorf, M. Population Model of the Pharmacokinetics and Pharmacodynamics of Rivaroxaban--an Oral, Direct Factor Xa Inhibitor--in Healthy Subjects. Int. J. Clin. Pharmacol. Ther. 2007, 45, 335–344. [Google Scholar] [CrossRef]
- Mueck, W.; Eriksson, B.I.; Bauer, K.A.; Borris, L.; Dahl, O.E.; Fisher, W.D.; Gent, M.; Haas, S.; Huisman, M.V.; Kakkar, A.K.; et al. Population Pharmacokinetics and Pharmacodynamics of Rivaroxaban—an Oral, Direct Factor Xa Inhibitor—in Patients Undergoing Major Orthopaedic Surgery: Clin. Pharmacokinet. 2008, 47, 203–216. [Google Scholar] [CrossRef]
- Mueck, W.; Borris, L.C.; Dahl, O.E.; Haas, S.; Huisman, M.V.; Kakkar, A.K.; Kälebo, P.; Muelhofer, E.; Misselwitz, F.; Eriksson, B.I. Population Pharmacokinetics and Pharmacodynamics of Once and Twice-Daily Rivaroxaban for the Prevention of Venous Thromboembolism in Patients Undergoing Total Hip Replacement. Thromb. Haemost. 2008, 100, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Mueck, W.; Lensing, A.W.A.; Agnelli, G.; Decousus, H.; Prandoni, P.; Misselwitz, F. Rivaroxaban: Population Pharmacokinetic Analyses in Patients Treated for Acute Deep-Vein Thrombosis and Exposure Simulations in Patients with Atrial Fibrillation Treated for Stroke Prevention. Clin. Pharmacokinet. 2011, 50, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Ollier, E.; Hodin, S.; Lanoiselée, J.; Escal, J.; Accassat, S.; De Magalhaes, E.; Basset, T.; Bertoletti, L.; Mismetti, P.; Delavenne, X. Effect of Activated Charcoal on Rivaroxaban Complex Absorption. Clin. Pharmacokinet. 2017, 56, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Speed, V.; Green, B.; Roberts, L.N.; Woolcombe, S.; Bartoli-Abdou, J.; Barsam, S.; Byrne, R.; Gee, E.; Czuprynska, J.; Brown, A.; et al. Fixed Dose Rivaroxaban Can Be Used in Extremes of Bodyweight: A Population Pharmacokinetic Analysis. J. Thromb. Haemost. 2020, 18, 2296–2307. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Yamashita, T.; Kasai, H.; Otsuka, T.; Sagara, K. An Analysis on Distribution and Inter-Relationships of Biomarkers under Rivaroxaban in Japanese Patients with Non-Valvular Atrial Fibrillation (CVI ARO 1). Drug Metab. Pharmacokinet. 2018, 33, 188–193. [Google Scholar] [CrossRef]
- Tanigawa, T.; Kaneko, M.; Hashizume, K.; Kajikawa, M.; Ueda, H.; Tajiri, M.; Paolini, J.F.; Mueck, W. Model-Based Dose Selection for Phase III Rivaroxaban Study in Japanese Patients with Non-Valvular Atrial Fibrillation. Drug Metab. Pharmacokinet. 2013, 28, 59–70. [Google Scholar] [CrossRef]
- Xu, X.S.; Moore, K.; Burton, P.; Stuyckens, K.; Mueck, W.; Rossenu, S.; Plotnikov, A.; Gibson, M.; Vermeulen, A. Population Pharmacokinetics and Pharmacodynamics of Rivaroxaban in Patients with Acute Coronary Syndromes: Pharmacokinetics and Pharmacodynamics of Rivaroxaban. Br. J. Clin. Pharmacol. 2012, 74, 86–97. [Google Scholar] [CrossRef]
- Zdovc, J.; Petre, M.; Pišlar, M.; Repnik, K.; Mrhar, A.; Vogrin, M.; Potočnik, U.; Grabnar, I. Downregulation of ABCB1 Gene in Patients with Total Hip or Knee Arthroplasty Influences Pharmacokinetics of Rivaroxaban: A Population Pharmacokinetic-Pharmacodynamic Study. Eur. J. Clin. Pharmacol. 2019, 75, 817–824. [Google Scholar] [CrossRef]
- Zhang, L.; Peters, G.; Haskell, L.; Patel, P.; Nandy, P.; Moore, K.T. A Cross-Study Analysis Evaluating the Effects of Food on the Pharmacokinetics of Rivaroxaban in Clinical Studies. J. Clin. Pharmacol. 2017, 57, 1607–1615. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Kidd, K.K. Implications of Biogeography of Human Populations for “race” and Medicine. Nat. Genet. 2004, 36, S21–S27. [Google Scholar] [CrossRef]
- Olafuyi, O.; Parekh, N.; Wright, J.; Koenig, J. Inter-Ethnic Differences in Pharmacokinetics—Is There More That Unites than Divides? Pharmacol. Res. Perspect. 2021, 9, e00890. [Google Scholar] [CrossRef]
- Gosselin, R.C.; Adcock, D.M.; Bates, S.M.; Douxfils, J.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Kawai, Y.; Lindhoff-Last, E.; Kitchen, S. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2018, 118, 437–450. [Google Scholar] [CrossRef]
- Leven, C.; Coste, A.; Mané, C. Free and Open-Source Posologyr Software for Bayesian Dose Individualization: An Extensive Validation on Simulated Data. Pharmaceutics 2022, 14, 442. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, W.; Qin, W.; Du, W.; Wang, X.; Zuo, X.; Li, P. Population Pharmacokinetics and Hemorrhagic Risk Analysis of Rivaroxaban in Elderly Chinese Patients with Nonvalvular Atrial Fibrillation. J. Clin. Pharmacol. 2023, 63, 66–76. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Wu, T.; Huang, N.; Li, L.; Yuan, D.; Xiang, J.; Wang, N.; Chen, W.; Zhang, J. Population Pharmacokinetics of Rivaroxaban in Chinese Patients with Non-Valvular Atrial Fibrillation: A Prospective Multicenter Study. Clin. Pharmacokinet. 2022, 61, 881–893. [Google Scholar] [CrossRef]
- Singkham, N.; Phrommintikul, A.; Pacharasupa, P.; Norasetthada, L.; Gunaparn, S.; Prasertwitayakij, N.; Wongcharoen, W.; Punyawudho, B. Population Pharmacokinetics and Dose Optimization Based on Renal Function of Rivaroxaban in Thai Patients with Non-Valvular Atrial Fibrillation. Pharmaceutics 2022, 14, 1744. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Ding, H.; Yan, M.; Jiao, Z.; Zhong, M.; Ma, C. Population Pharmacokinetic and Pharmacodynamic Analysis of Rivaroxaban in Chinese Patients with Non-Valvular Atrial Fibrillation. Acta Pharmacol. Sin. 2022, 43, 2723–2734. [Google Scholar] [CrossRef]
- Esmaeili, T.; Rezaee, M.; Abdar Esfahani, M.; Davoudian, A.; Omidfar, D.; Rezaee, S. Rivaroxaban Population Pharmacokinetic and Pharmacodynamic Modeling in Iranian Patients. J. Clin. Pharm. Ther. 2022, 47, 1284–1292. [Google Scholar] [CrossRef]
- University Hospital. Brest Pharmacokinetics and Pharmacodynamics of RivAroxaban After Bariatric Surgery and in MORBid Obesity; clinicaltrials.gov: Bethesda, MD, USA, 2022. [Google Scholar]
Model Reference | PK Study Reference | N Patients | Age | Weight | Daily Dose (mg) | Dosing Frequency | N PK Samples | Sampling Regimen | Assay | Intended Application of the PPK Model |
---|---|---|---|---|---|---|---|---|---|---|
EVD apixaban | Ballerie 2021 [16] | 69 | 55 (20–86) | 99 (79–150) | 2.5, 5 | BID | 116 | Sparse | Anti-Xa chromogenic assay LLOQ 20 ng/mL | No PPK model |
A1 | Byon 2017 [22] | 970 | (18–89) | 167 patients > 100 kg | 2.5–50 | single dose, QD, BID | 8323 | Intensive + sparse | LC-MS/MS LLOQ 1 ng/mL | PKPD EER analysis in patients with VTE |
A2 | Cirincione 2018 [23] | 4385 | 68 (18–94) | 81.4 (32–198.2) | 2.5–50 | single dose, QD, BID | 11,968 | Intensive + sparse | LC-MS/MS LLOQ 1 ng/mL | Explain PK heterogeneity in patients with NVAF |
A3 | Goto 2020 [24] | 140 | 79.1 * ± 5.8 (2.5 mg BID) 70.9 * ± 7.5 (5 mg BID) | 55.7 * ± 10.6 (2.5 mg BID) 62.8 * ± 11.7 (5 mg BID) | 2.5, 5 | BID | 183 | Sparse | Anti-Xa chromogenic assay LLOQ 20 ng/mL | Compare anti-Xa DOAC PK |
A4 | Leil 2014 [25] | 1284 | NA | NA | 2.5–50 | single dose, QD, BID | 11,252 | Intensive + sparse | LC-MS/MS LLOQ 1 ng/mL | PKPD EER analysis in patients undergoing orthopedic surgery |
A5 | Ueshima 2018 [26] | 81 | 68 (40–85) | 65 (41–92) | 5–20 | BID | 276 | Sparse | LC-MS/MS LLOQ 2.5 ng/mL | Explain PK heterogeneity in patients with NVAF |
EVD rivaroxaban | Ballerie 2021 [16] | 81 | 64.5 (20–85) | 102 (73.0–178) | 20 | QD | 121 | Sparse | Anti-Xa chromogenic assay LLOQ 20 ng/mL | No PPK model |
R1 | Barsam 2017 [27] | 101 | 52 * (20–86) | 88 * ± 23.4 | 10–30 | QD, BID | 193 | Sparse | Anti-Xa chromogenic assay LLOQ 20 ng/mL | Study the impact of weight on rivaroxaban PK |
R2 | Girgis 2014 [28] | 161 | NA | NA | 15–20 | QD | 801 | Sparse | LC-MS/MS LLOQ 0.5 ng/mL | Confirm dose selection in patients with NVAF |
R3 | Goto 2020 [24] | 119 | 73.1 * ± 10.0 (10 mg QD) 66.7 * ± 10.0 (15 mg QD) | 60.3 * ± 15.5 (10 mg QD) 67.3 * ± 13.8 (15 mg QD) | 10, 15 | QD | 162 | Sparse | Anti-Xa chromogenic assay LLOQ 20 ng/mL | Compare anti-Xa DOAC PK |
R4 | Kaneko 2013 [29] | 597 | 72 (34–89) | 63.9 (35–104) | 10, 15 | QD | 1834 | Sparse | LC-MS/MS LLOQ 0.5 ng/mL | Confirm dose selection in Japanese patients with NVAF |
R5 | Mueck 2007 [30] | 43 | 33 * (20–45) | NA | 5–60 | QD, BID | 1809 | Intensive | LC-MS/MS LLOQ 0.5 ng/mL | Describe rivaroxaban PK in healthy subjects |
R6 | Mueck 2008 CPK [31] | 1009 | 65 (26–87) (hip study) 67 (39–92) (knee study) | 76 (45–125) (hip study) 86 (50–173) (knee study) | 5–60 | QD, BID | 7568 | Intensive + sparse | LC-MS/MS LLOQ 2.5 ng/mL | Describe rivaroxaban PK in patients undergoing major orthopaedic surgery |
R7 | Mueck 2008 TH [32] | 758 | 66 (26–93) | 75 (45–120) | 5–20 | QD, BID | 5743 | Sparse | LC-MS/MS LLOQ 2.5 ng/mL | Compare the PKPD of QD and BID rivaroxaban in patients undergoing total hip replacement |
R8 | Mueck 2011 [33] | 870 | 61 (18–94) | 85 * ± 17 (male) 73 * ± 16 (female) | 10–60 | QD, BID | 4634 | Sparse | LC-MS/MS LLOQ 2.5 ng/mL | Describe rivaroxaban PK in patients treated for acute DVT and simulate exposure in patients with NVAF |
R9 | Ollier 2016 [34] | 12 | 26 (20–30) | 71 (62–88) | 40 | Single dose | 192 | Intensive | LC-MS/MS LLOQ 5 ng/mL | Study the effect of activated charcoal on rivaroxaban absorption |
R10 | Speed 2020 [35] | 913 | 67.0 * ± 15.0 | 85.8 * ± 23.1 | 15–30 | QD, BID | 1108 | Sparse | Anti-Xa chromogenic assay LLOQ 20 ng/mL | Understand the influence of WT on rivaroxaban PK |
R11 | Suzuki 2018 [36] | 96 | 68.0 * ± 9.5 | 69.1 ± 11.4 | 10–15 | QD | 192 | Sparse | LC-MS/MS LLOQ 1 ng/mL | Describe rivaroxaban PK in Japanese patients with NVAF |
R12 | Tanigawa 2013 [37] | 182 | 65.6 (30–92) | 67.2 (45–103) | 5–40 | QD, BID | 842 | Sparse | LC-MS/MS LLOQ 0.5 ng/mL | Select dose for Japanese patients with NVAF |
R13 | Willman 2018 [8] | 4918 | 60.5 * ± 11.8 | 82.5 * ± 16.9 | 5–60 | QD, BID | 22,843 | Sparse | LC-MS/MS LLOQ 0.5 ng/mL | Describe rivaroxaban PK across multiple patient populations |
R14 | Xu 2012 [38] | 2290 | 57 (24–87) | 84 (36–181) | 5–20 | QD, BID | 6644 ** | Sparse | LC-MS/MS LLOQ 0.5 ng/mL | Describe rivaroxaban PKPD in patients with ACS |
R15 | Zdovc 2019 [39] | 17 | 64 (49–82) | 84 (54–125) | 10 | QD | 82 | Sparse | Anti-Xa chromogenic assay LLOQ 1 ng/mL | Investigate the influence of ABCB1 polymorphism on rivaroxaban PKPD |
R16 | Zhang 2017 [40] | 285 | 59 (31–83) (DVT study) 65 (51–81) (NVAF study) | 54.1 (40.1–72.7) (DVT study) 56.6 (42.5–73.6) (NVAF study) | 20–40 | QD | NA | Sparse | LC-MS/MS LLOQ 0.5 ng/mL | Evaluate the effect of food on rivaroxaban PK |
Model Reference | Modeling Software | Structural Model | Relative Bioavailability | Parameter Values | Covariates | Interpatient Variability | Residual Error |
---|---|---|---|---|---|---|---|
A1 | NONMEM 7.2 | 2 CMT | NA | Ka (1/h) = 0.440 CL (L/h) = 4.35 Vc (L) = 32.1 Q (L/h) = 1.62 Vp (L) = 19.8 | Ka: evening dosing CL: Sex, WT, CrCL *, Race, INH Vc: WT | ωKa = 0.474 ωCL = 0.322 ωVc = 0.232 | Additive |
A2 | NONMEM 7.1 | 2 CMT | I50 = −0.322 Gamma = 0.857 | Ka (1/h) = 0.473 CL (L/h) = 3.59 Vc (L) = 30.0 Q (L/h) = 1.91 Vp (L) = 27.0 | Ka: AMPM CL: CrCL *, Age, Sex, Race, INH, SUB Vc: WT, SUB | ωKa = 0.513 ωK = 0.309 ωk12 = 1.245 ωk21 = 0.490 ωVc = 0.172 | Proportional = 0.31 |
A3 | Phoenix NLME 8.1 | 1 CMT | NA | Ka (1/h) = 0.42 CL (L/h) = 4.74 Vc (L) = 30 | CL: CrCL | ωCL = 0.266 ωVc = 0.566 | Proportional = 0.34 |
A4 | NONMEM 6.1.1 | 2 CMT | ED50 = 32.5 Imax = 0.705 Gamma = 2.21 | Ka (1/h) = 0.188 CL (L/h) = 4.75 ** Vc (L) = 22.9 Q (L/h) = 2.60 Vp (L) = 22.2 | Ka: SUB CL: Age, Sex, Dose ***, CrCL, Vc: WT, HCT | ωKa = 0.532 ωCL = 0.375 ωVc = 0.252 ωQ = 0.491 ωVp = 0.735 correlation ωVc ωCL = 0.915 | Proportional = 0.34 Additive = 3.38 |
A5 | NONMEM 7.3.0 | 1 CMT | NA | Ka (1/h) = 0.42 CL (L/h) = 1.53 Vc (L) = 24.7 | CL: CrCL, PGx | ωCL = 0.266 ωVc = 0.566 | Proportional = 0.34 |
R1 | NONMEM 7.2.13 | 1 CMT | NA | Ka (1/h) = 1.21 CL (L/h) = 8.86 Vc (L) = 101 | CL: CrCL | ωCL = 0.480 ωVc = 0.600 | Proportional = 0.31 |
R2 | NONMEM 7.10 | 1 CMT | NA | Ka (1/h) = 1.16 CL (L/h) = 6.10 Vc (L) = 79.7 | CL: Age, SCre Vc: LBM, Age | ωCL = 0.342 ωVc = 0.175 | Proportional = 0.479 |
R3 | Phoenix NLME 8.1 | 1 CMT | F1 = 1 | Ka (1/h) = 0.617 CL (L/h) = 5.59 Vc (L) = 50.9 | CL: CrCL | ωKa = 0.540 ωCL = 0.394 ωVc = 0.583 ωF1 = 0.365 | Proportional = 0.131 |
R4 | NONMEM 6.2.0 | 1 CMT | F1 = 1 | Ka (1/h) = 0.617 CL (L/h) = 4.73 Vc (L) = 43.8 | CL: CrCL, HCT | ωKa = 0.582 ωCL = 0.410 ωVc = 0.636 ωF1 = 0.377 correlation ωVc ωCL = 0.729 | Proportional = 0.131 |
R5 | NONMEM 5.1.1 | 2 CMT | NA | Tlag (h) = 0.25 Ka (1/h) = 0.97 CL (L/h) = 9.17 Vc (L) = 55.3 Q (L/h) = 1.35 Vp (L) = 12.6 | Vc: Dose Vp: Dose | IOV Tlag = 0.847 ωKa = 0.497 IOV Ka = 0.794 ωCL = 0.173 ωVc = 0.300 ωVp = 0.373 | Proportional = 0.254 |
R6 | NONMEM 5.1.1 | 1 CMT | F1 = 1 | Ka (1/h) = 1.81 CL (L/h) = 7.3 Vc (L) = 49.1 | F1: Dose | ωCL = 0.373 | Proportional = 0.371 |
R7 | NONMEM 5.1.1 | 1 CMT | F1 = 1 | Ka (1/h) = 1.49 CL (L/h) = 7.51 Vc (L) = 58.2 | F1: Dose | ωCL = 0.369 ωVc = 0.316 | Proportional = 0.526 |
R8 | NONMEM 5.1.1 | 1 CMT | F1 = 1 | Ka (1/h) = 1.23 CL (L/h) = 5.67 Vc (L) = 54.4 | F1: Dose CL: Age, SCr Vc: LBM, Age | ωCL = 0.384 ωVc = 0.282 | Proportional = 0.407 |
R9 | Monolix 4.3.2 | 1 CMT | F = 0.569 | f1 = 0.748 f2 = 0.348 Tmax1 (h) = 0.274 dTmax2 (h) = 1.94 dTmax3 (h) = 11.5 CV1 = 0.495 CV2 = 0.167 CV3 = 0.651 CL (L/h)= 7.4 Vc (L) = 28.4 | Activated charcoal effect on input rate | ωF = 0.253 IOV F = 0.728 IOV f1 = 0.997 IOV correlation ωF ωf1 = −0.717 ωCV1 = 0.570 ωVc = 0.085 | Proportional = 0.194 |
R10 | NONMEM 7.4.2 | 1 CMT | NA | Ka (1/h) = 0.707 CL (L/h) = 5.57 Vc (L) = 59.4 Lambda = −1.83 | CL: CrCl ***** Vc: LBM ****** | ωCL = 0.227 ******* | Proportional = 0.4637 |
R11 | Phoenix NLME 1.4 | 1 CMT | NA | Ka (1/h) = 1.37 CL (L/h) = 4.40 Vc (L) = 38.2 | CL: CrCL, ALT, INH | ωKa = 0.426 ωCL = 0.204 ωVc = 0.583 | Proportional = 0.418 |
R12 | NONMEM 5.1.1 | 1 CMT | F1 = 1 | Ka (1/h) = 0.60 CL (L/h) = 4.72 Vc (L) = 42.9 | CL: BUN | ωF1 = 0.244 ωKa = 0.680 ωCL = 0.213 | Proportional = 0.402 |
R13 | NONMEM 7.3 | 1 CMT | Fmin = 0.590 Fmax = 1.25 D50 = 14.4 | Ka (1/h) = 0.821 CL (L/h) = 6.58 Vc (L) = 62.5 | CL: CrCL, WT, INH, SUB Vc: WT, Age, Sex | ωKa = 0.792 ωCL = 0.409 ωVc = 0.198 correlation ωCL ωVc = 0.834 | Proportional = 0.451 |
R14 | NONMEM 6.1.1 | 1 CMT | F1 = 1 | Ka (1/h) = 1.24 CL (L/h) = 6.48 Vc (L) = 57.9 | F: Dose CL: Age, SCr **** Vc: LBM, Age | ωKa = 1.037 ωCL = 0.306 IOV CL = 0.316 ωVc = 0.010 | Additive = 0.352 |
R15 | NONMEM 7.3 | 1 CMT | NA | Ka (1/h) = 0.147 CL (L/h) = 6.12 Vc (L) = 96.8 | CL: PGx | ωKa = 2.004 ωCL = 0.709 | Proportional = 0.595 |
R16 | NONMEM 7.2 | 1 CMT | F1 = 1 | Ka (1/h) = 0.982 CL (L/h) = 6.31 Vc (L) = 70.3 | F1: SUB CL: Age, SCr **** Vc: LBM, Age | ωCL = 0.336 ωVc = 0.154 | Proportional = 0.475 |
MDPE (%) | MDAE (%) | F20 (%) | F30 (%) | |
---|---|---|---|---|
A1 (Byon 2017 [22]) | −7.8 | 25.0 | 42.2 | 56.0 |
A2 (Cirincione 2018 SUB = ACS [23]) | 17.0 | 29.0 | 37.1 | 51.7 |
A2 (Cirincione 2018 SUB = NVAF [23]) | 5.5 | 24.8 | 41.4 | 55.2 |
A3 (Goto 2020 [24]) | −38.0 | 39.7 | 16.4 | 31.9 |
A4 (Leil 2014 SUB = patients [25]) | 1.7 | 27.3 | 37.1 | 52.6 |
A4 (Leil 2014 SUB = non patients [25]) | 7.6 | 27.2 | 39.7 | 56.0 |
A5 (Ueshima 2018 [26]) | 7.2 | 25.8 | 40.5 | 54.3 |
R1 (Barsam 2017 [27]) | −31.5 | 39.6 | 21.5 | 34.7 |
R2 (Girgis 2014 [28]) | 9.7 | 29.9 | 33.9 | 50.4 |
R3 (Goto 2020 [24]) | 11.6 | 34.0 | 36.4 | 45.4 |
R4 (Kaneko 2013 [29]) | −12.2 | 45.8 | 26.4 | 33.9 |
R5 (Mueck 2007 [30]) | −22.2 | 41.2 | 24.0 | 39.7 |
R6 (Mueck 2008 CPK [31]) | −3.4 | 41.7 | 25.6 | 38.8 |
R7 (Mueck 2008 TH [32]) | −7.3 | 36.0 | 25.6 | 42.1 |
R8 (Mueck 2011 [33]) | 24.8 | 35.4 | 34.7 | 43.8 |
R9 (Ollier 2016 [34]) | −53.4 | 53.9 | 14.9. | 20.7 |
R10 (Speed 2020 [35]) | 17.3 | 32.2 | 32.2 | 47.9 |
R11 (Suzuki 2018 [36]) | 36.2 | 46.4 | 19.8 | 33.1 |
R12 (Tanigawa 2013 [37]) | 49.0 | 49.4 | 25.6 | 35.5 |
R13 (Willman 2018 SUB = VTE [8]) | −30.4 | 42.7 | 23.1 | 33.1 |
R13 (Willman 2018 SUB = NVAF [8]) | 6.6 | 28.5 | 32.2 | 51.2 |
R14 (Xu 2012 [38]) | 10.9 | 37.5 | 30.6 | 46.2 |
R15 (Zdovc 2019 [39]) | 18.6 | 51.8 | 19.0 | 24.8 |
R16 (Zhang 2017 SUB = DVT [40]) | 7.6 | 30.1 | 25.6 | 48.8 |
R16 (Zhang 2017 SUB = NVAF [40]) | 8.5 | 31.0 | 25.6 | 48.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leven, C.; Ménard, P.; Gouin-Thibault, I.; Ballerie, A.; Lacut, K.; Ollier, E.; Théreaux, J. Transferability of Published Population Pharmacokinetic Models for Apixaban and Rivaroxaban to Subjects with Obesity Treated for Venous Thromboembolism: A Systematic Review and External Evaluations. Pharmaceutics 2023, 15, 665. https://doi.org/10.3390/pharmaceutics15020665
Leven C, Ménard P, Gouin-Thibault I, Ballerie A, Lacut K, Ollier E, Théreaux J. Transferability of Published Population Pharmacokinetic Models for Apixaban and Rivaroxaban to Subjects with Obesity Treated for Venous Thromboembolism: A Systematic Review and External Evaluations. Pharmaceutics. 2023; 15(2):665. https://doi.org/10.3390/pharmaceutics15020665
Chicago/Turabian StyleLeven, Cyril, Pauline Ménard, Isabelle Gouin-Thibault, Alice Ballerie, Karine Lacut, Edouard Ollier, and Jérémie Théreaux. 2023. "Transferability of Published Population Pharmacokinetic Models for Apixaban and Rivaroxaban to Subjects with Obesity Treated for Venous Thromboembolism: A Systematic Review and External Evaluations" Pharmaceutics 15, no. 2: 665. https://doi.org/10.3390/pharmaceutics15020665
APA StyleLeven, C., Ménard, P., Gouin-Thibault, I., Ballerie, A., Lacut, K., Ollier, E., & Théreaux, J. (2023). Transferability of Published Population Pharmacokinetic Models for Apixaban and Rivaroxaban to Subjects with Obesity Treated for Venous Thromboembolism: A Systematic Review and External Evaluations. Pharmaceutics, 15(2), 665. https://doi.org/10.3390/pharmaceutics15020665