In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite (Dermanyssus gallinae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silver Nanoparticles Production
2.2. Physicochemical Characterization
2.3. Mite Collection and Identification
2.4. Contact Toxicity Bioassays
2.5. Scanning Electron Microscopy
2.6. Statistical Analysis
- mortality >80% → strong,
- mortality 80–61% → moderate,
- mortality 60–40% → weak, and
- mortality <40% → little or no activity
3. Results
3.1. Physicochemical Characterization
3.2. Bioassays Results
3.3. Scanning Electron Microscopy Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparagano, O.; George, D.R.; Harrington, D.W.J.; Giangaspero, A. Significance and control of the poultry red mite, Dermanyssus gallinae. Annu. Rev. Entomol. 2014, 59, 447–466. [Google Scholar] [CrossRef] [Green Version]
- Marangi, M.; Cafiero, M.A.; Capelli, G.; Camarda, A.; Sparagano, O.A.E.; Giangaspero, A. Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. Exp. Appl. Acarol. 2009, 48, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Koziatek, S.; Sokół, R. Dermanyssus gallinae still poses a serious threat for the rearing of laying hens. Polish J. Nat. Sci. 2015, 30, 439–450. [Google Scholar]
- Sleeckx, N.; Van Gorp, S.; Koopman, R.; Kempen, I.; Van Hoye, K.; De Baere, K.; Zoons, J.; De Herdt, P. Production losses in laying hens during infestation with the poultry red mite Dermanyssus gallinae. Avian Pathol. 2019, 48, S17–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocciolo, G.; Circella, E.; Pugliese, N.; Lupini, C.; Mescolini, G.; Catelli, E.; Borchert-Stuhlträger, M.; Zoller, H.; Thomas, E.; Camarda, A. Evidence of vector borne transmission of Salmonella enterica enterica serovar Gallinarum and fowl typhoid disease mediated by the poultry red mite, Dermanyssus gallinae (De Geer, 1778). Parasites Vectors 2020, 13, 513. [Google Scholar] [CrossRef]
- Sommer, D.; Heffels-Redmann, U.; Köhler, K.; Lierz, M.; Kaleta, E.F. Rolle der roten vogelmilbe (Dermanyssus gallinae) bei der übertragung von aviärem influenza-a-virus. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2016, 44, 26–33. [Google Scholar] [CrossRef]
- Schiavone, A.; Pugliese, N.; Circella, E.; Camarda, A. Association between the poultry red mite Dermanyssus gallinae and potential avian pathogenic Escherichia coli (APEC). Vet. Parasitol. 2020, 284, 109198. [Google Scholar] [CrossRef]
- Sioutas, G.; Minoudi, S.; Tiligada, K.; Chliva, C.; Triantafyllidis, A.; Papadopoulos, E. Case of human infestation with Dermanyssus gallinae (poultry red mite) from swallows (Hirundinidae). Pathogens 2021, 10, 299. [Google Scholar] [CrossRef]
- Raele, D.A.; Galante, D.; Pugliese, N.; La Salandra, G.; Lomuto, M.; Cafiero, M.A. First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae (Mesostigmata, Acari), related to urban outbreaks of dermatitis in Italy. New Microbes New Infect. 2018, 23, 103–109. [Google Scholar] [CrossRef]
- Sigognault Flochlay, A.; Thomas, E.; Sparagano, O. Poultry red mite (Dermanyssus gallinae) infestation: A broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasites Vectors 2017, 10, 4–9. [Google Scholar] [CrossRef]
- Arsenopoulos, K.; Angelou, A.; Papadopoulos, E. Dermanyssus gallinae—A ghost ectoparasite for Greek laying hen industry: Results of a preliminary study. Bulg. J. Vet. Med. 2017, 20, 383–388. [Google Scholar]
- Maurer, V.; Perler, E.; Heckendorn, F. In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae. Exp. Appl. Acarol. 2009, 48, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Zeman, P.; Železný, J. The susceptibility of the poultry red mite, Dermanyssus gallinae (De Geer, 1778), to some acaricides under laboratory conditions. Exp. Appl. Acarol. 1985, 1, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Fiddes, M.D.; Le Gresley, S.; Parsons, D.G.; Epe, C.; Coles, G.C.; Stafford, K.A. Prevalence of the poultry red mite (Dermanyssus gallinae) in England. Vet. Rec. 2005, 157, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Zoller, H.; Liebisch, G.; Alves, L.F.A.; Vettorato, L.; Chiummo, R.M.; Sigognault-Flochlay, A. In vitro activity of fluralaner and commonly used acaricides against Dermanyssus gallinae isolates from Europe and Brazil. Parasites Vectors 2018, 11, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.I.; Na, Y.E.; Yi, J.H.; Kim, B.S.; Ahn, Y.J. Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet. Parasitol. 2007, 145, 377–382. [Google Scholar] [CrossRef]
- Marangi, M.; Morelli, V.; Pati, S.; Camarda, A.; Cafiero, M.A.; Giangaspero, A. Acaricide residues in laying hens naturally infested by red mite Dermanyssus gallinae. PLoS ONE 2012, 7, e31795. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhao, S.; Zhang, J.; Qi, K.; Du, Z.; Shao, B. Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS. Food Addit. Contam. Part A 2018, 35, 1543–1552. [Google Scholar] [CrossRef]
- Pritchard, J.; Kuster, T.; Sparagano, O.; Tomley, F. Understanding the biology and control of the poultry red mite Dermanyssus gallinae: A review. Avian Pathol. 2015, 44, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Nordenfors, H.; Höglund, J.; Uggla, A. Effects of temperature and humidity on oviposition, molting, and longevity of Dermanyssus gallinae (Acari: Dermanyssidae). J. Med. Entomol. 1999, 36, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Maurer, V.; Baumgärtner, J. Temperature influence on life table statistics of the chicken mite Dermanyssus gallinae (Acari: Dermanyssidae). Exp. Appl. Acarol. 1992, 15, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Zriki, G.; Blatrix, R.; Roy, L. Predation interactions among henhouse-dwelling arthropods, with a focus on the poultry red mite Dermanyssus gallinae. Pest Manag. Sci. 2020, 76, 3711–3719. [Google Scholar] [CrossRef]
- Torres, E.C.; Hernández, J.F. Actividad acaricida de Bacillus thuringiensis sobre el acaro rojo de las aves, Dermanyssus gallinae. Rev. Vet. 2018, 29, 128. [Google Scholar] [CrossRef]
- Locher, N.; Al-Rasheid, K.A.S.; Abdel-Ghaffar, F.; Mehlhorn, H. In vitro and field studies on the contact and fumigant toxicity of a neem-product (Mite-Stop®) against the developmental stages of the poultry red mite Dermanyssus gallinae. Parasitol. Res. 2010, 107, 417–423. [Google Scholar] [CrossRef]
- Tomer, H.; Blum, T.; Arye, I.; Faigenboim, A.; Gottlieb, Y.; Ment, D. Activity of native and commercial strains of Metarhizium spp. against the poultry red mite Dermanyssus gallinae under different environmental conditions. Vet. Parasitol. 2018, 262, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Sparagano, O.; Khallaayoune, K.; Duvallet, G.; Nayak, S.; George, D. Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae). Transbound. Emerg. Dis. 2013, 60, 150–153. [Google Scholar] [CrossRef]
- Harrington, D.; Canales, M.; de la Fuente, J.; de Luna, C.; Robinson, K.; Guy, J.; Sparagano, O. Immunisation with recombinant proteins subolesin and Bm86 for the control of Dermanyssus gallinae in poultry. Vaccine 2009, 27, 4056–4063. [Google Scholar] [CrossRef]
- Alves, L.F.A.; Oliveira, D.G.P.; Kasburg, C.R.; Nardelli, M.S. Acaricidal activity of inert powders against the poultry red mite Dermanyssus gallinae (De Geer, 1778) (Mesostigmata: Dermanyssidae). Arch. Vet. Sci. 2019, 24, 81–92. [Google Scholar] [CrossRef]
- Abbasi, B.A.; Iqbal, J.; Khan, Z.; Ahmad, R.; Uddin, S.; Shahbaz, A.; Zahra, S.A.; Shaukat, M.; Kiran, F.; Kanwal, S.; et al. Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc. Res. Tech. 2021, 84, 192–201. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Shahbaz, A.; Shah, S.A.; Uddin, S.; Ma, X.; Raouf, B.; Kanwal, S.; et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 2021, 11, 20988. [Google Scholar] [CrossRef]
- Shah, I.H.; Ashraf, M.; Sabir, I.A.; Manzoor, M.A.; Malik, M.S.; Gulzar, S.; Ashraf, F.; Iqbal, J.; Niu, Q.; Zhang, Y. Green synthesis and characterization of copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J. Mol. Struct. 2022, 1259, 132696. [Google Scholar] [CrossRef]
- Bajwa, H.U.R.; Khan, M.K.; Abbas, Z.; Riaz, R.; Rehman, T.U.; Abbas, R.Z.; Aleem, M.T.; Abbas, A.; Almutairi, M.M.; Alshammari, F.A.; et al. Nanoparticles: Synthesis and their role as potential drug candidates for the treatment of parasitic diseases. Life 2022, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, M.A.; Mossalem, H.S.; Sarhan, R.M.; Abdel-Rahman, A.A.; Hassan, E.M. The potential effects of silver and gold nanoparticles as molluscicides and cercaricides on Schistosoma mansoni. Parasitol. Res. 2018, 117, 3867–3880. [Google Scholar] [CrossRef] [PubMed]
- Kausar, S.; Khan, W.; Dwivedi, S.; Azam, A. Antifilarial effect of nanocomposite of silver nanoparticles with nitazoxanide against the microfilariae of Setaria cervi-infected albino rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 2020, 393, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
- Nassef, N.E.; Saad, A.G.E.; Harba, N.M.; Beshay, E.V.N.; Gouda, M.A.; Shendi, S.S.; Mohamed, A.S.E.D. Evaluation of the therapeutic efficacy of albendazole-loaded silver nanoparticles against Echinococcus granulosus infection in experimental mice. J. Parasit. Dis. 2019, 43, 658–671. [Google Scholar] [CrossRef]
- Alajmi, R.A.; AL-Megrin, W.A.; Metwally, D.; AL-Subaie, H.; Altamrah, N.; Barakat, A.M.; Abdel Moneim, A.E.; Al-Otaibi, T.T.; El-Khadragy, M. Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci. Rep. 2019, 39, BSR20190379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanti, J.R.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Cataneo, A.H.D.; de Jesus Andrade, C.G.T.; Panis, C.; da S. Rodrigues, J.H.; Wowk, P.F.; Kuczera, D.; Costa, I.N.; et al. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop. 2018, 178, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.S.; Caixeta, M.B.; Canedo, A.; Nunes, E.d.S.; Monteiro, C.; Rocha, T.L. Toxicity of plant-based silver nanoparticles to vectors and intermediate hosts: Historical review and trends. Sci. Total Environ. 2022, 834, 155299. [Google Scholar] [CrossRef]
- Platania, V.; Kaldeli-Kerou, A.; Karamanidou, T.; Kouki, M.; Tsouknidas, A.; Chatzinikolaidou, M. Antibacterial effect of colloidal suspensions varying in silver nanoparticles and ions concentrations. Nanomaterials 2022, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Van Dong, P.; Ha, C.H.; Binh, L.T.; Kasbohm, J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012, 2, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Chekin, F.; Ghasemi, S. Silver nanoparticles prepared in presence of ascorbic acid and gelatin, and their electrocatalytic application. Bull. Mater. Sci. 2014, 37, 1433–1437. [Google Scholar] [CrossRef]
- Christy, C.; Adams, G.; Kuriyel, R.; Bolton, G.; Seilly, A. High-performance tangential flow filtration: A highly selective membrane separation process. Desalination 2002, 144, 133–136. [Google Scholar] [CrossRef]
- Lammers, G.A.; Bronneberg, R.G.G.; Vernooij, J.C.M.; Stegeman, J.A. Experimental validation of the AVIVET trap, a tool to quantitatively monitor the dynamics of Dermanyssus gallinae populations in laying hens. Poult. Sci. 2017, 96, 1563–1572. [Google Scholar] [CrossRef]
- Di Palma, A.; Giangaspero, A.; Cafiero, M.A.; Germinara, G.S. A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macronyssidae). Parasites Vectors 2012, 5, 104. [Google Scholar] [CrossRef] [Green Version]
- Sulzbach, A.; Mallmann, D.; Silva, F.R.; Ferla, N.J.; da Silva, G.L.; Johann, L. In vitro evaluation of the response of Dermanyssus gallinae to products in aqueous suspension. Exp. Appl. Acarol. 2022, 86, 201–209. [Google Scholar] [CrossRef]
- Masoumi, F.; Youssefi, M.R.; Tabari, M.A. Combination of carvacrol and thymol against the poultry red mite (Dermanyssus gallinae). Parasitol. Res. 2016, 115, 4239–4243. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, F.; Semmler, M.; Al-Rasheid, K.; Mehlhorn, H. In vitro efficacy of ByeMite® and Mite-Stop® on developmental stages of the red chicken mite Dermanyssus gallinae. Parasitol. Res. 2009, 105, 1469–1471. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, S.J.; Hwang, B.Y.; Yoon, J.U.; Kim, G.H. Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae). Exp. Appl. Acarol. 2018, 74, 403–414. [Google Scholar] [CrossRef]
- Keïta, A.; Pagot, E.; Pommier, P.; Baduel, L.; Heine, J. Efficacy of phoxim 50% E.G. (ByeMite) for treatment of Dermanyssus gallinae in laying hens under field conditions. Rev. Med. Vet. 2006, 157, 588–592. [Google Scholar]
- Bartley, K.; Chen, W.; Mills, R.L.; Nunn, F.; Price, D.; Nisbet, A. Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genom. 2021, 22, 248. [Google Scholar] [CrossRef]
- Kočišová, A.; Plachý, J. Novel approach to controlling the poultry red mite (Acarina: Mesostigmata). In Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13–16 July 2008; pp. 349–354. [Google Scholar]
- Liu, P.; Sehaqui, H.; Tingaut, P.; Wichser, A.; Oksman, K.; Mathew, A.P. Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 2014, 21, 449–461. [Google Scholar] [CrossRef]
- Guo, L.; Duan, B.; Zhang, L. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res. 2016, 9, 2149–2161. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Almasi, H.; Esmaiili, M. Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films. Mater. Chem. Phys. 2021, 268, 124719. [Google Scholar] [CrossRef]
- Fajardo, A.R.; Pereira, A.G.B.; Martins, A.F.; Paulino, A.T.; Muniz, E.C.; Hsieh, Y. Lo Chitin and chitosan-based (NANO) composites. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2017; Volume 1–8, pp. 671–700. ISBN 9781119441632. [Google Scholar]
- Patel, N.G.; Kumar, A.; Jayawardana, V.N.; Woodworth, C.D.; Yuya, P.A. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites. Mater. Sci. Eng. C 2014, 44, 336–344. [Google Scholar] [CrossRef] [Green Version]
- So, P.K.; Broutman, L.J. The fracture behavior of surface embrittled polymers. Polym. Eng. Sci. 1986, 26, 1173–1179. [Google Scholar] [CrossRef]
- Barbosa, A.C.M.S.; Costa Silva, L.P.; Ferraz, C.M.; Tobias, F.L.; De Araújo, J.V.; Loureiro, B.; Braga, G.M.A.M.; Veloso, F.B.R.; Soares, F.E.D.F.; Fronza, M.; et al. Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans. Int. J. Nanomed. 2019, 14, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Murillo, P.; Aguilar, H.; Sanchez, E. Use of different SEM techniques in the study of Tyrophagus putrescentiae (Acari: Acaridae) in Costa Rica. UNED Res. J. 2013, 5, 201–208. [Google Scholar] [CrossRef] [Green Version]
Concentration of AgNPs (ppm) | Mean Mortality Rate ± S.E. | Classification of Acaricidal Activity |
---|---|---|
0 | 0.07 ± 0.013 | - |
20 | 0.39 ± 0.027 | Little or no activity |
40 | 0.66 ± 0.019 | Moderate |
60 | 0.93 ± 0.064 | Strong |
80 | 1.00 ± 0.00 | Strong |
Treatment I | Treatment J | Mean Difference (I − J) | S.E. | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
0 ppm | 20 ppm | −0.32 | 0.024 | 0.000 | −0.39 | −0.26 |
40 ppm | −0.59 | 0.020 | 0.000 | −0.65 | −0.54 | |
60 ppm | −0.86 | 0.020 | 0.000 | −0.91 | −0.80 | |
80 ppm | −0.93 | 0.024 | 0.000 | −1.00 | −0.86 | |
20 ppm | 40 ppm | −0.27 | 0.024 | 0.000 | −0.34 | −0.20 |
60 ppm | −0.53 | 0.024 | 0.000 | −0.60 | −0.47 | |
80 ppm | −0.61 | 0.028 | 0.000 | −0.68 | −0.53 | |
40 ppm | 60 ppm | −0.27 | 0.020 | 0.000 | −0.32 | −0.21 |
80 ppm | −0.34 | 0.024 | 0.000 | −0.41 | −0.27 | |
60 ppm | 80 ppm | −0.07 | 0.024 | 0.028 | −0.14 | −0.01 |
LC50 (95% CI) | LC90 (95% CI) | LC99 (95% CI) | |
---|---|---|---|
Farm 1 | 24.5 (21.2–28.1) | 51.4 (44.6–60.0) | 94.1 (79.2–115.0) |
Farm 2 | 29.1 (24.9–33.9) | 61.1 (52.0–73.1) | 111.9 (92.2–140.4) |
Farm 3 | 21.2 (17.6–25.2) | 44.4 (37.4–53.3) | 81.4 (67.1–101.2) |
Farm 4 | 20.4 (16.3–25.1) | 42.8 (34.7–53.1) | 78.3 (62.6–100.2) |
Farm 5 | 23.9 (19.4–29.3) | 50.2 (41.0–62.4) | 92.0 (73.5–118.4) |
Farm 6 | 25.2 (20.9–30.1) | 52.9 (44.0–64.3) | 96. 8 (78.7–122.5) |
Farm 7 | 31.2 (26.1–37.1) | 65.5 (55.0–79.1) | 119.9 (98.3–150.7) |
Farm 8 | 32.4 (27.9–37.5) | 68.0 (58.2–80.8) | 124.5 (103.1–155.3) |
Farm 9 | 29.3 (24.4–35.1) | 61.5 (50.9–75.5) | 112.6 (90.7–144.4) |
Farm 10 | 27.1 (21.6–33.5) | 57.0 (46.3–70.2) | 104.3 (84.2–131.6) |
Farm 11 | 29.6 (23.6–36.5) | 62.1 (50.6–76.5) | 113.7 (91.8–143.7) |
Farm 12 | 26.2 (21.0–32.2) | 55.1 (45.1–67.4) | 100.8 (82.0–126.3) |
Farm 13 | 26.2 (20.8–32.5) | 55.0 (44.6–68.2) | 100.7 (80.9–127.8) |
Farm 14 | 27.3 (21.8–33.7) | 57.3 (46.7–70.7) | 104.9 (84.7–132.7) |
Farm 15 | 31.7 (26.1–37.9) | 66.5 (55.7–80.0) | 121.7 (100.3–151.3) |
Farm 16 | 27.9 (22.3–34.4) | 58.6 (47.7–72.2) | 107.2 (86.6–135.5) |
Farm 17 | 30.8 (25.0–37.4) | 64.7 (53.5–78.7) | 118.4 (96.7–148.3) |
Farm 18 | 32.4 (26.6–38.9) | 68.0 (56.7–82.2) | 124.5 (102.1–155.3) |
Overall | 26.5 (24.8–28.1) | 58.8 (55.5–62.8) | 112.3 (100.9–128.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sioutas, G.; Tsouknidas, A.; Gelasakis, A.I.; Vlachou, A.; Kaldeli, A.K.; Kouki, M.; Symeonidou, I.; Papadopoulos, E. In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite (Dermanyssus gallinae). Pharmaceutics 2023, 15, 659. https://doi.org/10.3390/pharmaceutics15020659
Sioutas G, Tsouknidas A, Gelasakis AI, Vlachou A, Kaldeli AK, Kouki M, Symeonidou I, Papadopoulos E. In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite (Dermanyssus gallinae). Pharmaceutics. 2023; 15(2):659. https://doi.org/10.3390/pharmaceutics15020659
Chicago/Turabian StyleSioutas, Georgios, Alexandros Tsouknidas, Athanasios I. Gelasakis, Afrodite Vlachou, Alexandra K. Kaldeli, Maria Kouki, Isaia Symeonidou, and Elias Papadopoulos. 2023. "In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite (Dermanyssus gallinae)" Pharmaceutics 15, no. 2: 659. https://doi.org/10.3390/pharmaceutics15020659
APA StyleSioutas, G., Tsouknidas, A., Gelasakis, A. I., Vlachou, A., Kaldeli, A. K., Kouki, M., Symeonidou, I., & Papadopoulos, E. (2023). In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite (Dermanyssus gallinae). Pharmaceutics, 15(2), 659. https://doi.org/10.3390/pharmaceutics15020659