Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of Hyaluronic Acid with Octenyl Succinic Anhydride
2.3. Preparation of Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels
2.4. Physicochemical Properties of OSA-HA Nanogels
2.5. Transmission Electron Microscopy
2.6. Quantification of SAAP-148
2.7. Encapsulation Efficiency and Drug Loading of SAAP-148 in OSA-HA Nanogels
2.8. Release of SAAP-148 from PVA-Lyophilized OSA-HA Nanogels
2.9. Bacteria
2.10. In Vitro Killing Assay
2.11. In Vitro Biofilm Breakdown Assay
2.12. Hemolysis Assay
2.13. Cytotoxicity Assays Using Human Primary Skin Fibroblasts and Human Ker-CT Keratinocytes
2.14. 3D Human Epidermal Infection Model
2.15. Cytotoxicity Assays in a 3D Human Epidermal Model
2.16. Confocal Microscopy of an MRSA-Colonized 3D Human Epidermal Model
2.17. Statistics
3. Results
3.1. Physicochemical Properties of Freshly Produced OSA-HA Nanogels Containing SAAP-148
3.2. Effect of Lyophilization on the Physicochemical Properties and Morphology of SAAP-148-Loaded OSA-HA Nanogels
3.3. Sustained Release of SAAP-148 from PVA-Lyophilized OSA-HA Nanogels
3.4. Antimicrobial Activities of PVA-Lyophilized SAAP-148 OSA-HA Nanogels
3.5. Hemolytic and Cytotoxic Activities of PVA-Lyophilized SAAP-148 OSA-HA Nanogels
3.6. SAAP-148-Loaded OSA-HA Nanogels Protected with PVA during Lyophilization Effectively Eradicate AMR S. aureus and A. baumannii Infections from a 3D Human Epidermal Model
3.7. SAAP-148-Loaded OSA-HA Nanogels Protected with PVA during Lyophilization Reduce Cytotoxic Activities of the Peptide in a 3D Human Epidermal Model
3.8. TAMRA-SAAP-148-Loaded OSA-HA Nanogels Protected with PVA during Lyophilization Penetrate into the Superficial Layers of a 3D Human Epidermal Model
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinengo, L.; Olsson, M.; Bajpai, R.; Soljak, M.; Upton, Z.; Schmidtchen, A.; Car, J.; Järbrink, K. Prevalence of chronic wounds in the general population: Systematic review and meta-analysis of observational studies. Ann. Epidemiol. 2019, 29, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.; Järbrink, K.; Divakar, U.; Bajpai, R.; Upton, Z.; Schmidtchen, A.; Car, J. The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair Regen. 2019, 27, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shu, W.; Yu, Q.; Qu, W.; Wang, Y.; Li, R. Functional Biomaterials for Treatment of Chronic Wound. Front. Bioeng. Biotechnol. 2020, 8, 516. [Google Scholar] [CrossRef]
- Maslova, E.; Eisaiankhongi, L.; Sjöberg, F.; McCarthy, R.R. Burns and biofilms: Priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.R.; Bernstein, J.M. Chronic wound infection: Facts and controversies. Clin. Dermatol. 2010, 28, 519–526. [Google Scholar] [CrossRef]
- O’Neill, J. Review on antimicrobial resistance. In Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; National Center for Biotechnology Information: Bethesda, MD, USA, 2014; Volume 2014. [Google Scholar]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, J.E.; Lam, H. Evolution of Bacterial Tolerance Under Antibiotic Treatment and Its Implications on the Development of Resistance. Front. Microbiol. 2021, 12, 617412. [Google Scholar] [CrossRef] [PubMed]
- De Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.; van der Heijde, T.; Boekema, B.K.; et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 2018, 10, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheper, H.; Wubbolts, J.M.; Verhagen, J.A.M.; de Visser, A.W.; van der Wal, R.J.P.; Visser, L.G.; de Boer, M.G.J.; Nibbering, P.H. SAAP-148 Eradicates MRSA Persisters Within Mature Biofilm Models Simulating Prosthetic Joint Infection. Front. Microbiol. 2021, 12, 625952. [Google Scholar] [CrossRef]
- Dijksteel, G.S.; Ulrich, M.M.W.; Vlig, M.; Nibbering, P.H.; Cordfunke, R.A.; Drijfhout, J.W.; Middelkoop, E.; Boekema, B.K.H.L. Potential factors contributing to the poor antimicrobial efficacy of SAAP-148 in a rat wound infection model. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 38. [Google Scholar] [CrossRef]
- Carmona-Ribeiro, A.M.; Araujo, P.M. Antimicrobial Polymer-Based Assemblies: A Review. Int. J. Mol. Sci. 2021, 22, 5424. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.K.; Diep, D.B.; Tønnesen, H.H. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: Recent advances and future prospects. J. Pharm. Investig. 2021, 51, 377–398. [Google Scholar] [CrossRef]
- Månsson, R.; Frenning, G.; Malmsten, M. Factors Affecting Enzymatic Degradation of Microgel-Bound Peptides. Biomacromolecules 2013, 14, 2317–2325. [Google Scholar] [CrossRef]
- Klodzinska, S.N.; Pletzer, D.; Rahanjam, N.; Rades, T.; Hancock, R.E.W.; Nielsen, H.M. Hyaluronic acid-based nanogels improve in vivo compatibility of the anti-biofilm peptide DJK-5. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 102022. [Google Scholar] [CrossRef]
- Ron-Doitch, S.; Sawodny, B.; Kühbacher, A.; Nordling-David, M.M.; Samanta, A.; Phopase, J.; Burger-Kentischer, A.; Griffith, M.; Golomb, G.; Rupp, S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release 2016, 229, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Menina, S.; Eisenbeis, J.; Kamal, M.A.M.; Koch, M.; Bischoff, M.; Gordon, S.; Loretz, B.; Lehr, C.M. Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica. Adv. Healthc. Mater. 2019, 8, e1900564. [Google Scholar] [CrossRef] [Green Version]
- Faya, M.; Hazzah, H.A.; Omolo, C.A.; Agrawal, N.; Maji, R.; Walvekar, P.; Mocktar, C.; Nkambule, B.; Rambharose, S.; Albericio, F.; et al. Novel formulation of antimicrobial peptides enhances antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Amino Acids 2020, 52, 1439–1457. [Google Scholar] [CrossRef]
- Sahli, C.; Moya, S.E.; Lomas, J.S.; Gravier-Pelletier, C.; Briandet, R.; Hémadi, M. Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics 2022, 12, 2383–2405. [Google Scholar] [CrossRef]
- Eaglstein, W.H. Optimal use of an occlusive dressing to enhance healing. Effect of delayed application and early removal on wound healing. Arch. Dermatol. 1988, 124, 392–395. [Google Scholar] [CrossRef]
- Kabanov, A.V.; Vinogradov, S.V. Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities. Angew. Chem. Int. Ed. 2009, 48, 5418–5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv. 2015, 12, 1895–1909. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; Cappelletti, L.; De Vecchi, E.; Pignataro, L.; Torretta, S.; Mattina, R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. Apmis 2014, 122, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Eenschooten, C.; Guillaumie, F.; Kontogeorgis, G.M.; Stenby, E.H.; Schwach-Abdellaoui, K. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride–modified hyaluronic acid derivatives. Carbohydr. Polym. 2010, 79, 597–605. [Google Scholar] [CrossRef]
- Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci. 2017, 242, 17–34. [Google Scholar] [CrossRef]
- Water, J.J.; Kim, Y.; Maltesen, M.J.; Franzyk, H.; Foged, C.; Nielsen, H.M. Hyaluronic Acid-Based Nanogels Produced by Microfluidics-Facilitated Self-Assembly Improves the Safety Profile of the Cationic Host Defense Peptide Novicidin. Pharm. Res. 2015, 32, 2727–2735. [Google Scholar] [CrossRef]
- Klodzinska, S.N.; Molchanova, N.; Franzyk, H.; Hansen, P.R.; Damborg, P.; Nielsen, H.M. Biopolymer nanogels improve antibacterial activity and safety profile of a novel lysine-based alpha-peptide/beta-peptoid peptidomimetic. Eur. J. Pharm. Biopharm. 2018, 128, 1–9. [Google Scholar] [CrossRef]
- Van Gent, M.E.; van der Reijden, T.J.; Lennard, P.R.; de Visser, A.W.; Schonkeren-Ravensbergen, B.; Dolezal, N.; Cordfunke, R.A.; Drijfhout, J.W.; Nibbering, P.H. Synergism between the Synthetic Antibacterial and Antibiofilm Peptide (SAAP)-148 and Halicin. Antibiotics 2022, 11, 673. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, B.L.; Ma, M.; Mulder, W.J.M.; Fayad, Z.A.; Farokhzad, O.C.; Langer, R. Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices. Nano Lett. 2012, 12, 3587–3591. [Google Scholar] [CrossRef] [Green Version]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, L.; Su, L.; van der Mei, H.C.; Jutte, P.C.; Ren, Y.; Busscher, H.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019, 48, 428–446. [Google Scholar] [CrossRef] [PubMed]
- Rosu, M.-C.; Bratu, I. Promising psyllium-based composite containing TiO2 nanoparticles as aspirin-carrier matrix. Prog. Nat. Sci. 2014, 24, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Capretto, L.; Cheng, W.; Hill, M.; Zhang, X. Micromixing Within Microfluidic Devices. Microfluid. Technol. Appl. 2011, 304, 27–68. [Google Scholar]
- Press, A.T.; Ramoji, A.; Lühe, M.V.; Rinkenauer, A.C.; Hoff, J.; Butans, M.; Rössel, C.; Pietsch, C.; Neugebauer, U.; Schacher, F.H.; et al. Cargo–carrier interactions significantly contribute to micellar conformation and biodistribution. NPG Asia Mater. 2017, 9, e444. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085–4109. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 2007, 90, 369–383. [Google Scholar] [CrossRef]
- Bahnsen, J.S.; Franzyk, H.; Sandberg-Schaal, A.; Nielsen, H.M. Antimicrobial and cell-penetrating properties of penetratin analogs: Effect of sequence and secondary structure. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, N.; Nakanouchi, J.; Yüzen, D.I.; Fung, S.; Fernandez, J.S.; Barberis, C.; Tuchscherr, L.; Ramirez, M.S. A Study on Acinetobacter baumannii and Staphylococcus aureus Strains Recovered from the Same Infection Site of a Diabetic Patient. Curr. Microbiol. 2019, 76, 842–847. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Huang, T.-H.; Yang, S.-C.; Chen, C.-C.; Fang, J.-Y. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front. Chem. 2020, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Canaparo, R.; Foglietta, F.; Giuntini, F.; Della Pepa, C.; Dosio, F.; Serpe, L. Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles. Molecules 2019, 24, 1991. [Google Scholar] [CrossRef] [Green Version]
- Gutowska-Owsiak, D.; Podobas, E.I.; Eggeling, C.; Ogg, G.S.; de la Serna, J.B. Addressing Differentiation in Live Human Keratinocytes by Assessment of Membrane Packing Order. Front. Cell Dev. Biol. 2020, 8, 573230. [Google Scholar] [CrossRef]
- Omardien, S.; Drijfhout, J.W.; Vaz, F.M.; Wenzel, M.; Hamoen, L.W.; Zaat, S.A.J.; Brul, S. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim. Biophys. Acta (BBA) Biomembr. 2018, 1860, 2404–2415. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, C.M.A.; van Lier, A.; Roffel, S.; Kramer, D.; Scheper, R.J.; Gibbs, S. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng. Part A 2015, 21, 2448–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ghalbzouri, A.; Hensbergen, P.; Gibbs, S.; Kempenaar, J.; van der Schors, R.; Ponec, M. Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab. Investig. 2004, 84, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakoersing, V.S.; Gooris, G.S.; Mulder, A.; Rietveld, M.; El Ghalbzouri, A.; Bouwstra, J.A. Unraveling Barrier Properties of Three Different In-House Human Skin Equivalents. Tissue Eng. Part C Methods 2012, 18, 253–262. [Google Scholar] [CrossRef]
SAAP-148 (µg/mL) | OSA-HA (µg/mL) | Size (nm) | PDI | ZP (mV) | EE (%) | DL (%) |
---|---|---|---|---|---|---|
0 | 500 | 226 ± 11 | 0.16 ± 0.04 | −32.3 ± 3.4 | - | - |
150 | 500 | 229 ± 24 | 0.03 ± 0.01 | −14.5 ± 1.2 | 98.7 ± 0.4 | 22.8 ± 0.1 |
175 | 583 | 295 ± 32 * | 0.05 ± 0.00 | −14.6 ± 0.9 | 98.9 ± 0.5 | 22.9 ± 0.1 |
200 | 667 | 419 ± 80 * | 0.04 ± 0.03 | −12.3 ± 1.3 | 99.0 ± 0.6 | 22.9 ± 0.1 |
Lyophilized, Cryoprotectant | Size (nm) | PDI | ZP (mV) | EE (%) | DL (%) | |
---|---|---|---|---|---|---|
SAAP-148-loaded nanogel (150 µg/mL) | No | 229 ± 24 | 0.03 ± 0.01 | −14.5 ± 1.2 | 98.7 ± 0.4 | 22.8 ± 0.1 |
Yes, none | 435 ± 38 | 0.80 ± 0.35 | −24.4 ± 0.2 | 82.0 ± 1.0 | 19.7 ± 0.2 | |
Yes, 1 mg/mL PVA | 306 ± 6 | 0.67 ± 0.35 | −29.5 ± 0.4 | 90.6 ± 1.0 | 21.4 ± 0.2 | |
Yes, 5 mg/mL PVA | 294 ± 27 | 0.13 ± 0.01 | −30.1 ± 0.7 | 86.1 ± 2.9 | 20.5 ± 0.5 | |
Yes, 10 mg/mL PVA | 262 ± 53 * | 0.12 ± 0.00 | −29.9 ± 0.6 | 93.4 ± 2.2 | 21.9 ± 0.4 | |
Yes, 1 mg/mL dextran-40 | 433 ± 56 | 0.88 ± 0.21 | −25.2 ± 0.2 | 90.9 ± 1.0 | 21.4 ± 0.2 | |
Yes, 5 mg/mL dextran-40 | 379 ± 4 | 0.35 ± 0.06 | −25.6 ± 0.2 | 88.2 ± 7.8 | 20.9 ± 1.5 | |
Yes, 10 mg/mL dextran-40 | 388 ± 20 | 0.24 ± 0.04 | −25.0 ± 0.2 | 91.6 ± 2.0 | 21.6 ± 0.4 | |
Placebo nanogel | No | 226 ± 11 | 0.16 ± 0.04 | −32.3 ± 3.4 | - | - |
Yes, 10 mg/mL PVA | 284 ± 8 | 0.68 ± 0.05 | −25.6 ± 3.1 | - | - |
LC99.9 or BEC99.9 (µM) | |||||
---|---|---|---|---|---|
Species | Strain | Exposure | SAAP-148 | SAAP-148 Nanogel | Placebo Nanogel |
Planktonic bacteria | |||||
S. aureus | LUH14616 RUH875 | 4 h | 6.4 | 12.8 | >102.4 |
24 h | 6.4 | 6.4 | >102.4 | ||
A. baumannii | 4 h | 6.4 | 12.8 | >25.6 | |
24 h | 6.4 | 6.4 | >25.6 | ||
Biofilm-residing bacteria | |||||
S. aureus | LUH14616 RUH875 | 24 h | 51.2 | 51.2 | >204.8 |
A. baumannii | 24 h | 51.2 (51.2–102.4) | 102.4 | >204.8 |
Hemolytic Activity or Cytotoxicity (µM) | |||
---|---|---|---|
Exposure | SAAP-148 | SAAP-148 Nanogel | Placebo Nanogel |
Human erythrocytes | |||
1 h (PBS) | 6.9 (6.4–7.3) | 13.1 (7.5–15.6) | >51.2 |
1 h (50% plasma) | 160.1 (156.7–267.8) | 400.5 (270.6–474.8) | >204.8 |
Human primary skin fibroblasts | |||
4 h | 6.0 (4.9–6.1) | 21.4 (12.3–28.0) | >51.2 |
24 h | 4.4 (3.2–5.3) | 12.9 (12.5–28.0) | >51.2 |
Ker-CT keratinocytes | |||
4 h | 2.2 (1.8–2.9) | 5.0 (4.3–9.2) | >51.2 |
24 h | 2.6 (2.2–2.8) | 4.0 (3.6–9.4) | >51.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Gent, M.E.; van Baaren, T.; Kłodzińska, S.N.; Ali, M.; Dolezal, N.; van Doodewaerd, B.R.; Bos, E.; de Waal, A.M.; Koning, R.I.; Drijfhout, J.W.; et al. Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections. Pharmaceutics 2023, 15, 429. https://doi.org/10.3390/pharmaceutics15020429
van Gent ME, van Baaren T, Kłodzińska SN, Ali M, Dolezal N, van Doodewaerd BR, Bos E, de Waal AM, Koning RI, Drijfhout JW, et al. Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections. Pharmaceutics. 2023; 15(2):429. https://doi.org/10.3390/pharmaceutics15020429
Chicago/Turabian Stylevan Gent, Miriam E., Tom van Baaren, Sylvia N. Kłodzińska, Muhanad Ali, Natasja Dolezal, Bjorn R. van Doodewaerd, Erik Bos, Amy M. de Waal, Roman I. Koning, Jan Wouter Drijfhout, and et al. 2023. "Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections" Pharmaceutics 15, no. 2: 429. https://doi.org/10.3390/pharmaceutics15020429
APA Stylevan Gent, M. E., van Baaren, T., Kłodzińska, S. N., Ali, M., Dolezal, N., van Doodewaerd, B. R., Bos, E., de Waal, A. M., Koning, R. I., Drijfhout, J. W., Nielsen, H. M., & Nibbering, P. H. (2023). Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections. Pharmaceutics, 15(2), 429. https://doi.org/10.3390/pharmaceutics15020429