Development of Gelatin-Coated Hydrogel Microspheres for Novel Bioink Design: A Crosslinker Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ca-Pectin Hydrogel Microsphere Fabrication
2.3. Coating and Crosslinking of PM
2.4. Characterization Studies
2.5. Degradability Study
2.6. Preparation and Characterization of Microsphere-incorprated Bioink
2.7. Scaffold Fabrication Process
3. Results and Discussion
3.1. Effects of Crosslinking on Microsphere’s Stability and Size
3.2. Surface Morphology of Microspheres
3.3. Chemistry of Microspheres
3.4. Degradability of Microspheres
3.5. Effects of Microsphere-Incropration on Bioink Properties and Scaffolding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organ Donation Statistics|Organdonor.Gov. Available online: https://www.organdonor.gov/learn/organ-donation-statistics (accessed on 20 August 2021).
- Stealey, S.; Guo, X.; Majewski, R.; Dyble, A.; Lehman, K.; Wedemeyer, M.; Steeber, D.A.; Kaltchev, M.G.; Chen, J.; Zhang, W. Calcium-Oligochitosan-Pectin Microcarrier for Colonic Drug Delivery. Pharm. Dev. Technol. 2020, 25, 260–265. [Google Scholar] [CrossRef]
- Johnson, D.L.; Ziemba, R.M.; Shebesta, J.H.; Lipscomb, J.C.; Wang, Y.; Wu, Y.; O’Connell, K.D.; Kaltchev, M.G.; van Groningen, A.; Chen, J.; et al. Design of Pectin-Based Bioink Containing Bioactive Agent-Loaded Microspheres for Bioprinting. Biomed. Phys. Eng. Express 2019, 5, 067004. [Google Scholar] [CrossRef]
- Günter, E.A.; Popeyko, O.V.; Belozerov, V.S.; Martinson, E.A.; Litvinets, S.G. Physicochemical and Swelling Properties of Composite Gel Microparticles Based on Alginate and Callus Cultures Pectins with Low and High Degrees of Methylesterification. Int. J. Biol. Macromol. 2020, 164, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.; Morvan, C.; Jauneau, A.; Jarvis, M.C. Methyl-Esterification, de-Esterification and Gelation of Pectins in the Primary Cell Wall. In Progress in Biotechnology; Visser, J., Voragen, A.G.J., Eds.; Pectins and Pectinases; Elsevier: Amsterdam, The Netherlands, 1996; Volume 14, pp. 151–172. [Google Scholar]
- Tao, C.; Lina, X.; Changxuan, W.; Cong, L.; Xiaolan, Y.; Tao, H.; Hong, A. Orthogonal Test Design for the Optimization of Superparamagnetic Chitosan Plasmid Gelatin Microspheres That Promote Vascularization of Artificial Bone. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1439–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.; Wang, C.; Xiong, Z.; Pang, Y.; Sun, W. 3D-Printed Scaffold with Halloysite Nanotubes Laden as a Sequential Drug Delivery System Regulates Vascularized Bone Tissue Healing. Mater. Today Adv. 2022, 15, 100259. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, Y.; Wang, Y.; Chen, J.; Yang, J.; Sun, B. Evaluation of PLGA Microspheres with Triple Regimen on Long-term Survival of Vascularized Composite Allograft- an Experimental Study. Transpl. Int. 2020, 33, 450–461. [Google Scholar] [CrossRef]
- Harvestine, J.N.; Mikulski, B.A.; Mahuta, K.M.; Crouse, J.Z.; Guo, X.; Lee, J.C.; Midelfort, K.S.; Chen, J.; Zhang, W. A Novel Red-Blood-Cell-Shaped Pectin-Oligochitosan Hydrogel System. Part. Part. Syst. Charact. 2014, 31, 955–959. [Google Scholar] [CrossRef]
- Yao, R.; Alkhawtani, A.Y.F.; Chen, R.; Luan, J.; Xu, M. Rapid and Efficient in Vivo Angiogenesis Directed by Electro-Assisted Bioprinting of Alginate/Collagen Microspheres with Human Umbilical Vein Endothelial Cell Coating Layer. Int. J. Bioprint. 2019, 5, 194. [Google Scholar] [CrossRef]
- Kanda, N.; Anada, T.; Handa, T.; Kobayashi, K.; Ezoe, Y.; Takahashi, T.; Suzuki, O. Orthotopic Osteogenecity Enhanced by a Porous Gelatin Sponge in a Critical-Sized Rat Calvaria Defect. Macromol. Biosci. 2015, 15, 1647–1655. [Google Scholar] [CrossRef]
- Yeh, M.-K.; Liang, Y.-M.; Hu, C.-S.; Cheng, K.-M.; Hung, Y.-W.; Young, J.-J.; Hong, P.-D. Studies on a Novel Gelatin Sponge: Preparation and Characterization of Cross-Linked Gelatin Scaffolds Using 2-Chloro-1-Methylpyridinium Iodide as a Zero-Length Cross-Linker. J. Biomater. Sci. Polym. Ed. 2012, 23, 973–990. [Google Scholar] [CrossRef]
- Zeugolis, D.I.; Khew, S.T.; Yew, E.S.Y.; Ekaputra, A.K.; Tong, Y.W.; Yung, L.-Y.L.; Hutmacher, D.W.; Sheppard, C.; Raghunath, M. Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin? Biomaterials 2008, 29, 2293–2305. [Google Scholar] [CrossRef] [PubMed]
- Hasatsri, S.; Yamdech, R.; Chanvorachote, P.; Aramwit, P. Physical and Biological Assessments of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin for Clinical Applications. J. Biomater. Appl. 2015, 29, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Jinno, C.; Morimoto, N.; Ito, R.; Sakamoto, M.; Ogino, S.; Taira, T.; Suzuki, S. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing. BioMed. Res. Int. 2016, 2016, e4567146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, B.-L.; Zeng, X.; Ma, Y.-H.; Lai, B.-Q.; Wang, J.-M.; Ling, E.-A.; Wu, J.-L.; Zeng, Y.-S. Graft of the Gelatin Sponge Scaffold Containing Genetically-Modified Neural Stem Cells Promotes Cell Differentiation, Axon Regeneration, and Functional Recovery in Rat with Spinal Cord Transection. J. Biomed. Mater. Res. A 2015, 103, 1533–1545. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, J.; Lu, H. Histological Observation of a Gelatin Sponge Transplant Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Combined with Platelet-Rich Plasma in Repairing an Annulus Defect. PLoS ONE 2017, 12, e0171500. [Google Scholar] [CrossRef] [Green Version]
- Chimenti, I.; Rizzitelli, G.; Gaetani, R.; Angelini, F.; Ionta, V.; Forte, E.; Frati, G.; Schussler, O.; Barbetta, A.; Messina, E.; et al. Human Cardiosphere-Seeded Gelatin and Collagen Scaffolds as Cardiogenic Engineered Bioconstructs. Biomaterials 2011, 32, 9271–9281. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, B.S.; Kessler, H.; Kossatz, S.; Reuning, U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers 2021, 13, 1711. [Google Scholar] [CrossRef]
- Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the Characteristics and Biocompatibility of Gelatin Sponge Scaffolds Prepared by Various Crosslinking Methods. Sci. Rep. 2018, 8, 1616. [Google Scholar] [CrossRef] [Green Version]
- Yung, C.W.; Wu, L.Q.; Tullman, J.A.; Payne, G.F.; Bentley, W.E.; Barbari, T.A. Transglutaminase Crosslinked Gelatin as a Tissue Engineering Scaffold. J. Biomed. Mater. Res. Part A 2007, 83A, 1039–1046. [Google Scholar] [CrossRef]
- Nadeau, O.W.; Carlson, G.M. Zero Length Conformation-Dependent Cross-Linking of Phosphorylase Kinase Subunits by Transglutaminase. J. Biol. Chem. 1994, 269, 29670–29676. [Google Scholar] [CrossRef]
- Kanungo, M.; Wang, Y.; Hutchinson, N.; Kroll, E.; DeBruine, A.; Kumpaty, S.; Ren, L.; Wu, Y.; Hua, X.; Zhang, W. Development of Gelatin-Coated Microspheres for Novel Bioink Design. Polymers 2021, 13, 3339. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, N.; Kowalonek, J.; Kozlowska, J. Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. Materials 2021, 14, 3044. [Google Scholar] [CrossRef] [PubMed]
- Banks, A.; Guo, X.; Chen, J.; Kumpaty, S.; Zhang, W. Novel Bioprinting Method Using a Pectin Based Bioink. Technol. Health Care 2017, 25, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Stealey, S.; Guo, X.; Ren, L.; Bryant, E.; Kaltchev, M.; Chen, J.; Kumpaty, S.; Hua, X.; Zhang, W. Stability Improvement and Characterization of Bioprinted Pectin-Based Scaffold. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800018807108. [Google Scholar] [CrossRef] [Green Version]
- García-González, C.A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-Based Aerogel Microspheres for Oral Drug Delivery. Carbohydr. Polym. 2015, 117, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Munarin, F.; Petrini, P.; Tanzi, M.C.; Barbosa, M.A.; Granja, P.L. Biofunctional Chemically Modified Pectin for Cell Delivery. Soft Matter 2012, 8, 4731–4739. [Google Scholar] [CrossRef]
- Islan, G.A.; Dini, C.; Bartel, L.C.; Bolzán, A.D.L.S.; Castro, G.R. Characterization of Smart Auto-Degradative Hydrogel Matrix Containing Alginate Lyase to Enhance Levofloxacin Delivery against Bacterial Biofilms. Int. J. Pharm. 2015, 496, 953–964. [Google Scholar] [CrossRef]
- Munarin, F.; Giuliano, L.; Bozzini, S.; Tanzi, M.C.; Petrini, P. Mineral Phase Deposition on Pectin Microspheres. Mater. Sci. Eng. C 2010, 30, 491–496. [Google Scholar] [CrossRef]
- Sharonova, O.M.; Oreshkina, N.A.; Zhizhaev, A.M. Composition and Structure of Calcium Aluminosilicate Microspheres. Therm. Eng. 2017, 64, 415–421. [Google Scholar] [CrossRef]
- Werner, S.; Huck, O.; Frisch, B.; Vautier, D.; Elkaim, R.; Voegel, J.-C.; Brunel, G.; Tenenbaum, H. The Effect of Microstructured Surfaces and Laminin-Derived Peptide Coatings on Soft Tissue Interactions with Titanium Dental Implants. Biomaterials 2009, 30, 2291–2301. [Google Scholar] [CrossRef]
- De Falco, F.; Gentile, G.; Avolio, R.; Errico, M.E.; Di Pace, E.; Ambrogi, V.; Avella, M.; Cocca, M. Pectin Based Finishing to Mitigate the Impact of Microplastics Released by Polyamide Fabrics. Carbohydr. Polym. 2018, 198, 175–180. [Google Scholar] [CrossRef] [PubMed]
- García-Saldaña, J.S.; Campas-Baypoli, O.N.; López-Cervantes, J.; Sánchez-Machado, D.I.; Cantú-Soto, E.U.; Rodríguez-Ramírez, R. Microencapsulation of Sulforaphane from Broccoli Seed Extracts by Gelatin/Gum Arabic and Gelatin/Pectin Complexes. Food Chem. 2016, 201, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, A.; Ye, R.; Wang, W.; Li, X. Transglutaminase-Induced Crosslinking of Gelatin–Calcium Carbonate Composite Films. Food Chem. 2015, 166, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.; Narnoliya, L.K.; Jadaun, J.S. Pectinase: A Useful Tool in Fruit Processing Industries. NFSIJ 2018, 5, 555673. [Google Scholar] [CrossRef]
- Dulnik, J.; Sajkiewicz, P. Crosslinking of Gelatin in Bicomponent Electrospun Fibers. Materials 2021, 14, 3391. [Google Scholar] [CrossRef]
- Netti, P.A.; Biondi, M.; Frigione, M. Experimental Studies and Modeling of the Degradation Process of Poly(Lactic-Co-Glycolic Acid) Microspheres for Sustained Protein Release. Polymers 2020, 12, 2042. [Google Scholar] [CrossRef]
- Faisant, N.; Siepmann, J.; Benoit, J.P. PLGA-Based Microparticles: Elucidation of Mechanisms and a New, Simple Mathematical Model Quantifying Drug Release. Eur. J. Pharm. Sci. 2002, 15, 355–366. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Fukui, T.; Funamoto, K.; Tanaka, M.; Tanaka, M.; Murata, S.; Miyauchi, S.; Hayase, T. Viscosity Estimation of a Suspension with Rigid Spheres in Circular Microchannels Using Particle Tracking Velocimetry. Micromachines 2019, 10, 675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieman, J.; Cohan, M.; Wang, Y.; De La Sancha, A.; Kanungo, M.; Azzouz, R.; Smith, R.; Schmidt, K.; Kumpaty, S.; Chen, J.; et al. Development of Gelatin-Coated Hydrogel Microspheres for Novel Bioink Design: A Crosslinker Study. Pharmaceutics 2023, 15, 90. https://doi.org/10.3390/pharmaceutics15010090
Zieman J, Cohan M, Wang Y, De La Sancha A, Kanungo M, Azzouz R, Smith R, Schmidt K, Kumpaty S, Chen J, et al. Development of Gelatin-Coated Hydrogel Microspheres for Novel Bioink Design: A Crosslinker Study. Pharmaceutics. 2023; 15(1):90. https://doi.org/10.3390/pharmaceutics15010090
Chicago/Turabian StyleZieman, Joshua, Megan Cohan, Yale Wang, Alexa De La Sancha, Muskan Kanungo, Ryan Azzouz, Rebekah Smith, Keagan Schmidt, Subha Kumpaty, Junhong Chen, and et al. 2023. "Development of Gelatin-Coated Hydrogel Microspheres for Novel Bioink Design: A Crosslinker Study" Pharmaceutics 15, no. 1: 90. https://doi.org/10.3390/pharmaceutics15010090
APA StyleZieman, J., Cohan, M., Wang, Y., De La Sancha, A., Kanungo, M., Azzouz, R., Smith, R., Schmidt, K., Kumpaty, S., Chen, J., & Zhang, W. (2023). Development of Gelatin-Coated Hydrogel Microspheres for Novel Bioink Design: A Crosslinker Study. Pharmaceutics, 15(1), 90. https://doi.org/10.3390/pharmaceutics15010090