Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus, Materials, and Analysis
2.2. General Procedure for the Synthesis of (E)-1-(Aryl)-N-(5-Phenyl-1,3,4-Oxadiazol-2-yl) Methanimine
2.3. General Procedure for the Synthesis of Dialkyl/aryl[(5-Phenyl-1,3,4-Oxadiazol-2-Ylamino) (Aryl)Methyl]phosphonate
2.4. General Procedure for the Synthesis of [(5-Phenyl-1,3,4-Oxadiazol-2-Ylamino)(Aryl) Methyl]Phosphonic acids
2.5. X-ray Crystal Structure Analysis
2.6. Biological Activities
2.6.1. Cells and Virus
2.6.2. Cell Toxicity and Viability
2.6.3. Virucidal Assay
2.6.4. Avian CoV-IBV Replication Inhibition Assay
2.6.5. Quantitative Real-Time PCR (qRT-PCR)
2.6.6. Statistical Analysis
2.7. Molecular Docking Method
3. Results and Discussion
3.1. Synthesis of α-Aminophosphonates and α-Aminophosphonic Acids
3.2. Biological Activity
3.2.1. Determination of Cell Growth and Viability
3.2.2. Determination of Cell Growth and Viability
3.2.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, C.M.; Frieman, M.B. Coronaviruses: Important emerging human pathogens. J. Virol. 2014, 88, 5209–5212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Langereis, M.A.; van Vliet, A.L.W.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA 2008, 105, 9065–9069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pene, F.; Merlat, A.; Vabret, A.; Rozenberg, F.; Buzyn, A.; Dreyfus, F.; Cariou, A.; Freymuth, F.; Lebon, P. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis. 2003, 37, 929–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brian, D.A.; Baric, R.S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 2005, 287, 1–30. [Google Scholar] [PubMed] [Green Version]
- Cavanagh, D. Coronavirus avian infectious bronchitis virus. BMC Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackwood, M.W.; Rosenbloom, R.; Petteruti, M.; Hilt, D.A.; McCall, A.W.; Williams, S.M. Avian coronavirus infectious bronchitis virus susceptibility to botanical oleoresins and essential oils in vitro and in vivo. Virus. Res. 2010, 149, 86–94. [Google Scholar] [CrossRef]
- Sarvesh, S.; Himesh, S.; Jitender, K.M.; Sanjay, K.; Vimal, K. Corona: A review on current clinical sympathetic. Sch. J. Appl. Med. Sci. 2020, 8, 1054–1061. [Google Scholar]
- Wickramasinghe, I.N.A.; de Vries, R.P.; Gröne, A.; de Haan, C.A.M.; Verheije, M.H. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J. Virol. 2011, 85, 8903–8912. [Google Scholar] [CrossRef] [Green Version]
- Lelešius, R.; Karpovaitė, A.; Mickienė, R.; Drevinskas, T.; Tiso, N.; Ragažinskienė, O.; Kubilienė, L.; Maruška, A.; Šalomskas, A. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet. Res. 2019, 15, 178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.-Y.; Zhang, B.-S.; Ren, L.-N.; Lu, Y.-P.; Tang, J.-W.; Lv, D.; Yong, L.; Lin, L.-T.; Lin, Z.-X.; et al. In vivo antiviral effect of plant essential oils against avian infectious bronchitis virus. BMC Vet. Res. 2022, 18, 90. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.M.; Tarpey, I.; Rothwell, L.; Kaiser, P.; Hiscox, J.A. Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture. Avian Pathol. 2007, 36, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patani, G.A.; LaVoie, E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996, 96, 3147–3176. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, S.A.; Orgel, L.E. Mechanism of enzyme inhibition by phosphate esters. Science 1959, 130, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, R. An overview of recent advances on the synthesis and biological activity of α-aminophosphonic acid derivatives. Heteroat. Chem. 2000, 11, 480–492. [Google Scholar] [CrossRef]
- Rádai, Z. α-Hydroxyphosphonates as versatile starting materials. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 425–437. [Google Scholar] [CrossRef]
- Allen, M.C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J.M. Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J. Med. Chem. 1989, 32, 1652–1661. [Google Scholar] [CrossRef]
- Sikorski, J.A.; Miller, M.J.; Braccolino, D.S.; Cleary, D.G.; Corey, S.D.; Font, J.L.; Gruys, K.J.; Han, C.Y.; Lin, K.-C.; Pansegrau, P.D.; et al. EPSP Synthase: The design and synthesis of bisubstrate inhibitors incorporating novel 3-phosphate mimics. Phosphorus Sulfur Silicon Relat. Elem. 1993, 76, 115–118. [Google Scholar] [CrossRef]
- Meyer, J.H.; Bartlett, P.A. Macrocyclic inhibitors of penicillopepsin. 1. Design, synthesis, and evaluation of an inhibitor bridged between P1 and P3. J. Am. Chem. Soc. 1998, 120, 4600–4609. [Google Scholar] [CrossRef]
- Emgenbroich, M.; Wulff, G. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers. Chem. Eur. J. 2003, 9, 4106–4117. [Google Scholar] [CrossRef]
- Peyman, A.; Stahl, W.; Wagner, K.; Ruppert, D.; Budt, K.-H. Non-peptide-based inhibitors of human immunodeficiency virus-1 protease. Bioorg. Med. Chem. Lett. 1994, 4, 2601–2604. [Google Scholar] [CrossRef]
- Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215. [Google Scholar] [CrossRef]
- Abdou, W.M.; Barghash, R.F.; Bekheit, M.S. Carbodiimides in the synthesis of enamino-and α-aminophosphonates as peptidomimetics of analgesic/antiinflammatory and anticancer agents. Arch. Pharm. Chem. Life Sci. 2012, 345, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.K.; Raut, D.S.; Rana, K.C.; Polanki, I.K.; Khan, M.S.; Iram, S. Diversity-oriented synthesis of α-aminophosphonates: A new class of potential anticancer agents. Eur. J. Med. Chem. 2013, 66, 146–152. [Google Scholar] [CrossRef]
- Yao, G.-Y.; Ye, M.-Y.; Huang, R.-Z.; Li, Y.-J.; Pan, Y.-M.; Xu, Q.; Liao, Z.-X.; Wang, H.-S. Synthesis and antitumor activities of novel rhein α-aminophosphonates conjugates. Bioorg. Med. Chem. Lett. 2014, 24, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Atherton, F.R.; Hassall, C.H.; Lambert, R.W. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl) phosphonic acid and (aminomethyl) phosphonic acid. J. Med. Chem. 1986, 29, 29–40. [Google Scholar] [CrossRef]
- Damiche, R.; Chafaa, S. Synthesis of new bioactive aminophosphonates and study of their antioxidant, anti-inflammatory and antibacterial activities as well the assessment of their toxicological activity. J. Mol. Struct. 2017, 1130, 1009–1017. [Google Scholar] [CrossRef]
- Mao, M.K.; Franz, J.E. A facile general synthesis of thiocarboxylate S-esters of glyphosate and its derivatives. Synthesis 1991, 11, 920–922. [Google Scholar] [CrossRef]
- Chen, T.; Shen, P.; Li, Y.; He, H. Synthesis and herbicidal activity of O,O-dialkyl phenoxyacetoxyalkylphosphonates containing fluorine. J. Fluor. Chem. 2006, 127, 291–295. [Google Scholar] [CrossRef]
- Zeng, Z.-G.; Liu, N.; Lin, F.; Jiang, X.-Y.; Xu, H.-H. Synthesis and antiphytoviral activity of α-aminophosphonates containing 3,5-diphenyl-2-isoxazoline as potential papaya rings pot virus inhibitors. Mol. Divers. 2019, 23, 393–401. [Google Scholar] [CrossRef]
- Jaiyeola, A.O.; Anand, K.; Kasumbwe, K.; Ramesh, M.; Gengan, R.M. Catalytic synthesis of α-amino chromone phosphonates and their antimicrobial, toxicity and potential HIV-1 RT inhibitors based on silico screening. J. Photochem. Photobiol. B Biol. 2017, 166, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhan, P.; Liu, X. 1,3,4-Oxadiazole: A privileged structure in antiviral agents. Mini. Rev. Med. Chem. 2011, 11, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, R.; Li, Y.; Li, S.; Yu, J.; Zhao, B.; Liao, A.; Wang, Y.; Wang, Z.; Lu, A.; et al. Discovery of pimprinine alkaloids as novel agents against a plant virus. J. Agric. Food Chem. 2019, 67, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Jebli, N.; Hamimed, S.; van Hecke, K.; Cavalier, J.-F.; Touil, S. Synthesis, antimicrobial activity and molecular docking study of novel α-(diphenylphosphoryl)- and α-(diphenylphosphorothioyl)cycloalkanone oximes. Chem. Biodivers. 2020, 17, e2000217. [Google Scholar] [CrossRef]
- Aouani, I.; Sellami, B.; Lahbib, K.; Cavalier, J.-F.; Touil, S. Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg. Chem. 2017, 72, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Niu, P.; Kang, J.; Tian, X.; Song, L.; Liu, H.; Wu, J.; Yu, W.; Chang, J. Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4-thiadiazoles via sequential condensation and I2-mediated oxidative C-O/C-S bond formation. J. Org. Chem. 2015, 80, 1018–1024. [Google Scholar] [CrossRef]
- Hkiri, S.; Gourlaouen, C.; Touil, S.; Samarat, A.; Sémeril, D. 1,3,4-Oxadiazole-functionalized α-amino-phosphonates as ligands for the ruthenium-catalyzed reduction of ketones. New J. Chem. 2021, 45, 11327–11335. [Google Scholar] [CrossRef]
- Hkiri, S.; Touil, S.; Samarat, A.; Sémeril, D. Palladium-catalyzed Suzuki-Miyaura cross-coupling with α-aminophosphonates based on 1,3,4-oxadiazole as ligands. Comptes Rendus Chim. 2022, 25, 53–65. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Strcut. Chem. 2015, 71, 3–8. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Callison, S.A.; Hilt, D.A.; Boynton, T.O.; Sample, B.F.; Robison, R.; Swayne, D.E.; Jackwood, M.W. Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens. J. Virol. Methods 2006, 138, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Nat. Biotechnol. 1993, 11, 1026–1030. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA 2003, 100, 13190–13195. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Shaw, N.; Yan, L.; Lou, Z.; Rao, Z. Structural view and substrate specificity of papain-like protease from avian infectious bronchitis virus. J. Biol. Chem. 2015, 290, 7160–7168. [Google Scholar] [CrossRef] [Green Version]
- Jayaram, H.; Fan, H.; Bowman, B.R.; Ooi, A.; Jayaram, J.; Collisson, E.W.; Lescar, J.; Prasad, B.V.V. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: Implications for nucleocapsid formation. J. Virol. 2006, 80, 6612–6620. [Google Scholar] [CrossRef] [Green Version]
- Uludag, N.; Üstün, E.; Serdaroğlu, G. Strychnos alkaloids: Total synthesis, characterization, DFT investigations, and molecular docking with AChE, BuChE, and HSA. Heliyon 2022, 8, e11990. [Google Scholar] [CrossRef] [PubMed]
- Hkiri, S.; Coşkun, K.A.; Üstün, E.; Samarat, A.; Tutar, Y.; Şahin, N.; Sémeril, D. Silver(I) complexes based on oxadiazole-functionalized α-aminophosphonate: Synthesis, structural study, and biological activities. Molecules 2022, 27, 8131. [Google Scholar] [CrossRef] [PubMed]
- Kabachnik, M.I.; Medved, T.Y. A new method for the synthesis of cis-aminophosphinic acids. Dokl. Akad. Nauk SSSR 1952, 83, 689–692. [Google Scholar]
- Fields, E.K. The synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. [Google Scholar] [CrossRef]
- Koszelewski, D.; Kowalczyk, P.; Smigielski, P.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Ostaszewski, R. Relationship between structure and antibacterial activity of α-aminophosphonate derivatives obtained via lipase-catalyzed Kabachnik-Fields reaction. Materials 2022, 15, 3846. [Google Scholar] [CrossRef]
- Essid, I.; Touil, S. Efficient and green one-pot multi-component synthesis of α-aminophosphonates catalyzed by zinc triflate. Curr. Org. Synth. 2017, 14, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Varga, P.R.; Keglevich, G. Synthesis of α-aminophosphonates and related derivatives; The last decade of the Kabachnik-Fields reaction. Molecules 2021, 26, 2511. [Google Scholar] [CrossRef]
- Pudovik, A.N. Addition of dialkyl phosphites to imines, new method of synthesis of esters of amino phosphonic acids. Dokl. Akad. Nauk SSSR 1952, 83, 865–868. [Google Scholar]
- Maiuolo, L.; Algieri, V.; Russo, B.; Tallarida, M.T.; Nardi, M.; Di Gioia, M.L.; Merchant, Z.; Merino, P.; Delso, I.; De Nino, A. Synthesis, biological and in silico evaluation of pure nucleobase-containing spiro (indane-isoxazolidine) derivatives as potential inhibitors of MDM2-p53 interaction. Molecules 2019, 24, 2909. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.N.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett. 2021, 19, 3315–3358. [Google Scholar]
- Adhikari, A.; Bhakta, S.; Ghosh, T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron 2022, 126, 133085. [Google Scholar] [CrossRef]
- Sobanov, A.A.; Zolotukhin, A.V.; Galkin, V.I.; Galkina, I.V.; Cherkasov, R.A. Kinetics and mechanism of the Pudovik reaction in the series of Shiff bases. Addition of dialkylphosphites to substituted N-alkyl(aryl)benzylideneamines. Phosphorus Sulfur Silicon Relat. Elem. 1999, 147, 71. [Google Scholar] [CrossRef]
- Ouahrouch, A.; Taourirte, M.; Schols, D.; Snoeck, T.; Andrei, G.; Engels, J.W.; Lazrek, H.B. Design, synthesis, and antiviral activity of novel ribonucleosides of 1,2,3-triazolylbenzyl-aminophosphonates. Arch. Pharm. Chem. Life Sci. 2016, 349, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, Z.; Firouzabaldi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M.R.; Jafari, A.A.; Zare, H.R. Design and one-pot synthesis of α-aminophosphonates and bis(α-aminophosphonates) by iron(III) chloride and cytotoxic activity. Eur. J. Med. Chem. 2009, 44, 4266–4275. [Google Scholar] [CrossRef]
- Gundluru, M.; Badavath, V.N.; Shaik, H.Y.; Sudileti, M.; Nemallapudi, B.R.; Gundala, S.; Zyryanov, G.V.; Cirandur, S.R. Design, synthesis, cytotoxic evaluation and molecular docking studies of novel thiazolyl α-aminophosphonates. Res. Chem. Intermed. 2021, 47, 1139–1160. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, K.; Song, B.; Xu, G.; Yang, S.; Xue, W.; Hu, D.; Lu, P.; Ouyang, G.; Jin, L.; et al. Synthesis and antiviral bioactivities of α-aminophosphonates containing alkoxyethyl moieties. Molecules 2006, 11, 666–676. [Google Scholar] [CrossRef] [Green Version]
- González, L.; Lindh, R. (Eds.) Quantum Chemistry and Dynamics of Excited States: Methods and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [Green Version]
- Serdaroğlu, G.; Şahin, N.; Üstün, E.; Tahir, M.N.; Arıcı, C.; Gürbüz, N.; Özdemir, İ. PEPPSI type complexes: Synthesis, x-ray structures, spectral studies, molecular docking and theoretical investigations. Polyhedron 2021, 204, 115281. [Google Scholar] [CrossRef]
- Astuti, I.; Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 407–412. [Google Scholar] [CrossRef]
- Elmezayen, A.D.; Al-Obaidi, A.; Şahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn. 2021, 39, 2980–2992. [Google Scholar] [CrossRef] [Green Version]
- Packialakshmi, P.; Gobinath, P.; Ali, D.; Alarifi, S.; Alsaiari, N.S.; Idhayadhulla, A.; Surendrakumar, R. Synthesis and characterization of aminophosphonate containing chitosan polymer derivatives: Investigations of cytotoxic activity and in silico study of SARS-CoV-19. Polymers 2021, 13, 1046. [Google Scholar] [CrossRef] [PubMed]
- Lu, I.-L.; Mahindroo, N.; Liang, P.-H.; Peng, Y.-H.; Kuo, C.-J.; Tsai, K.-C.; Hsieh, H.-P.; Chao, Y.-S.; Wu, S.-Y. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J. Med. Chem. 2006, 49, 5154–5161. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.R.; Asfaha, J.B.; Ghent, C.M.; Howard, C.J.; Hartooni, N.; Safari, M.; Frankel, A.D.; Morgan, D.O. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol. Cell 2020, 80, 1092–1103. [Google Scholar] [CrossRef]
- Bai, Z.; Cao, Y.; Liu, W.; Li, J. The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses 2021, 13, 1115. [Google Scholar] [CrossRef] [PubMed]
- Trzepizur, D.; Brodzka, A.; Koszelewski, D.; Ostaszewski, R. Selective esterification of phosphonic acids. Molecules 2021, 26, 5637. [Google Scholar] [CrossRef]
- Lai, F.; Sinico, C.; De Logu, A.; Zaru, M.; Müller, R.H.; Fadda, A.M. SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study. Int. J. Nanomed. 2007, 2, 419–425. [Google Scholar]
- Almeida, K.B.; Araujo, J.L.; Cavalcanti, J.F.; Romanos, M.T.V.; Maurão, S.C.; Amaral, A.C.F.; Falcão, D.Q. In vitro release and anti-herpetic activity of Cymbopogon citratus volatile oil-loaded nanogel. Rev. Bras. Pharmacogn. 2018, 28, 495–502. [Google Scholar] [CrossRef]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharamcol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Owis, A.I.; El-Hawary, M.S.; El Amir, D.; Refaat, H.; Alaaeldin, E.; Aly, O.M.; Elrehany, M.A.; Kamel, M.S. Flavonoids of Salvadora persica L. (meswak) and its liposomal formation as a potential inhibitor of SARS-CoV-2. RSC Adv. 2021, 11, 13537–13544. [Google Scholar] [CrossRef]
Entry | HP(O)(OR)2 | Time (min) | T (°C) | Power (W) | Isolated Yield (%) |
---|---|---|---|---|---|
1 | HP(O)(OMe)2 | 10 | 80 | 60 | 20 (3) |
2 | HP(O)(OMe)2 | 40 | 80 | 60 | 20 (3) |
3 | HP(O)(OMe)2 | 10 | 115 | 300 | 54 (3) |
4 | HP(O)(OPh)2 | 10 | 115 | 300 | 90 (4) |
5 | HP(O)(OEt)2 | 10 | 115 | 300 | 92 (5a) |
Compounds | Concentration (µM) | Virucidal Activity 1 Inhibition (%) | Antiviral Activity 2 |
---|---|---|---|
5b | 33 | 35.01 ± 0.53 | Not active |
5c | 3.66 | 46.02 ± 1.49 | Not active |
5f | 33 | 86.11 ± 1.58 | Not active |
6a | 1.23 | 75.00 ± 0.75 | Not active |
6b | 3.66 | 31.38 ± 2.40 | Not active |
6c | 33 | 59.59 ± 1.34 | Not active |
6d | 3.66 | 25.03 ± 1.15 | Not active |
6e | 33 | 22.73 ± 3.25 | Not active |
Negative Control 3 | 0 | 0 | Not active |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hkiri, S.; Mekni-Toujani, M.; Üstün, E.; Hosni, K.; Ghram, A.; Touil, S.; Samarat, A.; Sémeril, D. Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus. Pharmaceutics 2023, 15, 114. https://doi.org/10.3390/pharmaceutics15010114
Hkiri S, Mekni-Toujani M, Üstün E, Hosni K, Ghram A, Touil S, Samarat A, Sémeril D. Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus. Pharmaceutics. 2023; 15(1):114. https://doi.org/10.3390/pharmaceutics15010114
Chicago/Turabian StyleHkiri, Shaima, Marwa Mekni-Toujani, Elvan Üstün, Karim Hosni, Abdeljelil Ghram, Soufiane Touil, Ali Samarat, and David Sémeril. 2023. "Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus" Pharmaceutics 15, no. 1: 114. https://doi.org/10.3390/pharmaceutics15010114
APA StyleHkiri, S., Mekni-Toujani, M., Üstün, E., Hosni, K., Ghram, A., Touil, S., Samarat, A., & Sémeril, D. (2023). Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus. Pharmaceutics, 15(1), 114. https://doi.org/10.3390/pharmaceutics15010114