Drug-Disease Severity and Target-Disease Severity Interaction Networks in COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Cardiac conditions (chronic heart failure, atrial fibrillation, coronary heart disease, and/or coronary sclerosis) (n = 184)
- Arterial hypertension (n = 246)
- Diabetes (including pre-diabetes, type 1 and 2 diabetes) (n = 139)
- Dementia (n = 54)
2.2. Network Analysis
2.3. Software and Statistical Tests
3. Results
3.1. Network Metrics
3.2. DDSI Network
3.3. TDSI Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gnädinger, M.; Herzig, L.; Ceschi, A.; Conen, D.; Staehelin, A.; Zoller, M.; Puhan, M.A. Chronic conditions and multimorbidity in a primary care population: A study in the Swiss Sentinel Surveillance Network (Sentinella). Int. J. Public Health 2018, 63, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Déruaz-Luyet, A.; Goran, A.A.; Senn, N.; Bodenmann, P.; Pasquier, J.; Widmer, D.; Tandjung, R.; Rosemann, T.; Frey, P.; Streit, S.; et al. Multimorbidity and patterns of chronic conditions in a primary care population in Switzerland: A cross-sectional study. BMJ Open 2017, 7, e013664. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.S. Drug Interactions. Available online: https://www.msdmanuals.com/home/drugs/factors-affecting-response-to-drugs/drug-interactions (accessed on 14 September 2021).
- Galan-Vasquez, E.; Perez-Rueda, E. A landscape for drug-target interactions based on network analysis. PLoS ONE 2021, 16, e0247018. [Google Scholar] [CrossRef] [PubMed]
- Bencivenga, L.; Rengo, G.; Varricchi, G. Elderly at time of COronaVIrus disease 2019 (COVID-19): Possible role of immunosenescence and malnutrition. GeroScience 2020, 42, 1089–1092. [Google Scholar] [CrossRef]
- Cunha, L.L.; Perazzio, S.F.; Azzi, J.; Cravedi, P.; Riella, L.V. Remodeling of the Immune Response with Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Front. Immunol. 2020, 11, 1748. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Klein, S.L.; Dhakal, S.; Ursin, R.L.; Deshpande, S.; Sandberg, K.; Mauvais-Jarvis, F. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 2020, 16, e1008570. [Google Scholar] [CrossRef]
- Kang, Z.; Luo, S.; Gui, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Zhou, Q.; Wang, Q.; Hu, Y.; Fan, H.; et al. Obesity is a potential risk factor contributing to clinical manifestations of COVID-19. Int. J. Obes. 2020, 44, 2479–2485. [Google Scholar] [CrossRef]
- Kwok, S.; Adam, S.; Ho, J.H.; Iqbal, Z.; Turkington, P.; Razvi, S.; Le Roux, C.W.; Soran, H.; Syed, A.A. Obesity: A critical risk factor in the COVID-19 pandemic. Clin. Obes. 2020, 10, e12403. [Google Scholar] [CrossRef] [PubMed]
- Foldi, M.; Farkas, N.; Kiss, S.; Zadori, N.; Vancsa, S.; Szako, L.; Dembrovszky, F.; Solymar, M.; Bartalis, E.; Szakacs, Z.; et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13095. [Google Scholar] [CrossRef]
- Sattar, N.; McInnes, I.B.; McMurray, J.J.V. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation 2020, 142, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C. The influence of diabetes and hypertension on outcome in COVID-19 patients: Do we mix apples and oranges? J. Clin. Hypertens. 2020, 23, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Bae, J.H.; Kwon, H.-S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Ssentongo, P.; Ssentongo, A.E.; Heilbrunn, E.S.; Ba, D.M.; Chinchilli, V.M. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0238215. [Google Scholar] [CrossRef]
- Inciardi, R.M.; Adamo, M.; Lupi, L.; Cani, D.S.; Di Pasquale, M.; Tomasoni, D.; Italia, L.; Zaccone, G.; Tedino, C.; Fabbricatore, D.; et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur. Heart J. 2020, 41, 1821–1829. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Olloquequi, J. COVID-19 Susceptibility in chronic obstructive pulmonary disease. Eur. J. Clin. Investig. 2020, 50, e13382. [Google Scholar] [CrossRef]
- Wang, Q.; Davis, P.B.; Gurney, M.E.; Xu, R. COVID-19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimer’s Dement. 2021, 17, 1297–1306. [Google Scholar] [CrossRef]
- Chudasama, Y.V.; Zaccardi, F.; Gillies, C.L.; Razieh, C.; Yates, T.; Kloecker, D.E.; Rowlands, A.V.; Davies, M.J.; Islam, N.; Seidu, S.; et al. Patterns of multimorbidity and risk of severe SARS-CoV-2 infection: An observational study in the U.K. BMC Infect. Dis. 2021, 21, 908. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Zhang, X.; Zhao, H.; Lian, J.; Hao, S.; Jia, H.; Yang, M.; Lu, Y.; Xiang, D.; et al. COVID-19 is more severe in patients with hypertension; ACEI/ARB treatment does not influence clinical severity and outcome. J. Infect. 2020, 81, 979–997. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; White, N.; Fanning, J.P.; Obonyo, N.; Yamashita, M.H.; Appadurai, V.; Ciullo, A.; May, M.; Worku, E.T.; Helms, L.; et al. Impact of renin–angiotensin–aldosterone system inhibition on mortality in critically ill COVID-19 patients with pre-existing hypertension: A prospective cohort study. BMC Cardiovasc. Disord. 2022, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, S.-H.; You, S.C.; Kim, J.; Yang, K. Effect of renin-angiotensin-aldosterone system inhibitors on COVID-19 patients in Korea. PLoS ONE 2021, 16, e0248058. [Google Scholar] [CrossRef]
- Braude, P.; Carter, B.; Short, R.; Vilches-Moraga, A.; Verduri, A.; Pearce, L.; Price, A.; Quinn, T.J.; Stechman, M.; Collins, J.; et al. The influence of ACE inhibitors and ARBs on hospital length of stay and survival in people with COVID-19. IJC Heart Vasc. 2020, 31, 100660. [Google Scholar] [CrossRef]
- Vila-Córcoles, A.; Ochoa-Gondar, O.; Satué-Gracia, E.M.; Torrente-Fraga, C.; Gomez-Bertomeu, F.; Vila-Rovira, A.; Hospital-Guardiola, I.; de Diego-Cabanes, C.; Bejarano-Romero, F.; Basora-Gallisà, J. Influence of prior comorbidities and chronic medications use on the risk of COVID-19 in adults: A population-based cohort study in Tarragona, Spain. BMJ Open 2020, 10, e041577. [Google Scholar] [CrossRef]
- Holt, A.; Mizrak, I.; Lamberts, M.; Lav Madsen, P. Influence of inhibitors of the renin-angiotensin system on risk of acute respiratory distress syndrome in Danish hospitalized COVID-19 patients. J. Hypertens. 2020, 38, 1612–1613. [Google Scholar] [CrossRef]
- Jia, N.; Zhang, G.; Sun, X.; Wang, Y.; Zhao, S.; Chi, W.; Dong, S.; Xia, J.; Zeng, P.; Liu, D. Influence of angiotensin converting enzyme inhibitors/angiotensin receptor blockers on the risk of all-cause mortality and other clinical outcomes in patients with confirmed COVID-19: A systemic review and meta-analysis. J. Clin. Hypertens. 2021, 23, 1651–1663. [Google Scholar] [CrossRef]
- Iloanusi, S.; Mgbere, O.; Essien, E.J. Polypharmacy among COVID-19 patients: A systematic review. J. Am. Pharm. Assoc. 2021, 61, e14–e25. [Google Scholar] [CrossRef]
- McKeigue, P.M.; Kennedy, S.; Weir, A.; Bishop, J.; McGurnaghan, S.J.; McAllister, D.; Robertson, C.; Wood, R.; Lone, N.; Murray, J.; et al. Relation of severe COVID-19 to polypharmacy and prescribing of psychotropic drugs: The REACT-SCOT case-control study. BMC Med. 2021, 19, 51. [Google Scholar] [CrossRef]
- Newman, M.E.J. Networks: An Introduction; Oxford University Press: Oxford, UK; New York, NY, USA, 2010. [Google Scholar]
- Casas, A.I.; Hassan, A.A.; Larsen, S.J.; Gomez-Rangel, V.; Elbatreek, M.; Kleikers, P.W.M.; Guney, E.; Egea, J.; López, M.G.; Baumbach, J.; et al. From single drug targets to synergistic network pharmacology in ischemic stroke. Proc. Natl. Acad. Sci. USA 2019, 116, 7129–7136. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.M.; Fatima, S.; Capraro, A.; Waters, S.A.; Vafaee, F. Integrative resource for network-based investigation of COVID-19 combinatorial drug repositioning and mechanism of action. Patterns 2021, 2, 100325. [Google Scholar] [CrossRef] [PubMed]
- Morselli Gysi, D.; do Valle, Í.; Zitnik, M.; Ameli, A.; Gan, X.; Varol, O.; Ghiassian, S.D.; Patten, J.J.; Davey, R.A.; Loscalzo, J.; et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2025581118. [Google Scholar] [CrossRef] [PubMed]
- Sibilio, P.; Bini, S.; Fiscon, G.; Sponziello, M.; Conte, F.; Pecce, V.; Durante, C.; Paci, P.; Falcone, R.; Norata, G.D.; et al. In silico drug repurposing in COVID-19: A network-based analysis. Biomed. Pharmacother. 2021, 142, 111954. [Google Scholar] [CrossRef]
- Schöning, V.; Liakoni, E.; Drewe, J.; Hammann, F. Automatic identification of risk factors for SARS-CoV-2 positivity and severe clinical outcomes of COVID-19 using Data Mining and Natural Language Processing. medRxiv 2021. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology. ATC Classification Index with DDDs; WHO Collaborating Centre for Drug Statistics Methodology: Oslo, Norway, 2021. [Google Scholar]
- Gu, S.X.; Tyagi, T.; Jain, K.; Gu, V.W.; Lee, S.H.; Hwa, J.M.; Kwan, J.M.; Krause, D.S.; Lee, A.I.; Halene, S.; et al. Thrombocytopathy and endotheliopathy: Crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 2021, 18, 194–209. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef] [PubMed]
- Csárdi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJournal Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for COVID-19 severity and fatality: A structured literature review. Infection 2020, 49, 15–28. [Google Scholar] [CrossRef]
- Singh, A.K.; Gupta, R.; Misra, A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab. Syndr. 2020, 14, 283–287. [Google Scholar] [CrossRef]
- Tomovic, K.; Lazarevic, J.; Kocic, G.; Deljanin-Ilic, M.; Anderluh, M.; Smelcerovic, A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med. Res. Rev. 2019, 39, 404–422. [Google Scholar] [CrossRef]
- Solerte, S.B.; Di Sabatino, A.; Galli, M.; Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020, 57, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Bassendine, M.F.; Bridge, S.H.; McCaughan, G.W.; Gorrell, M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J. Diabetes 2020, 12, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Hajjo, R.; Sabbah, D.A. Sitagliptin: A potential drug for the treatment of COVID-19? Acta Pharm. 2021, 71, 175–184. [Google Scholar] [CrossRef]
- Varin, E.M.; Mulvihill, E.E.; Beaudry, J.L.; Pujadas, G.; Fuchs, S.; Tanti, J.-F.; Fazio, S.; Kaur, K.; Cao, X.; Baggio, L.L.; et al. Circulating Levels of Soluble Dipeptidyl Peptidase-4 Are Dissociated from Inflammation and Induced by Enzymatic DPP4 Inhibition. Cell Metab. 2019, 29, 320–334.e5. [Google Scholar] [CrossRef]
- Baggio, L.L.; Varin, E.M.; Koehler, J.A.; Cao, X.; Lokhnygina, Y.; Stevens, S.R.; Holman, R.R.; Drucker, D.J. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat. Commun. 2020, 11, 3766. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, E.M.; Ong, S.C.; Sheikh Ghadzi, S.M. Efficacy and Safety of Sitagliptin in the Treatment of COVID-19. J. Pharm. Pract. 2022, 8971900221102119. [Google Scholar] [CrossRef] [PubMed]
- Alkharsah, K.R.; Aljaroodi, S.A.; Rahman, J.U.; Alnafie, A.N.; Al Dossary, R.; Aljindan, R.Y.; Alnimr, A.M.; Hussen, J. Low levels of soluble DPP4 among Saudis may have constituted a risk factor for MERS endemicity. PLoS ONE 2022, 17, e0266603. [Google Scholar] [CrossRef]
- Narayanan, A.; Narwal, M.; Majowicz, S.A.; Varricchio, C.; Toner, S.A.; Ballatore, C.; Brancale, A.; Murakami, K.S.; Jose, J. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun. Biol. 2022, 5, 169. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Lee, J.; Nam, H.; Kyoung, D.-S.; Shin, D.W.; Kim, D.J. Effects of a DPP-4 Inhibitor and RAS Blockade on Clinical Outcomes of Patients with Diabetes and COVID-19. Diabetes Metab. J. 2021, 45, 251–259. [Google Scholar] [CrossRef]
- Rakhmat, I.I.; Kusmala, Y.Y.; Handayani, D.R.; Juliastuti, H.; Nawangsih, E.N.; Wibowo, A.; Lim, M.A.; Pranata, R. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)—A systematic review, meta-analysis, and meta-regression. Diabetes Metab. Syndr. 2021, 15, 777–782. [Google Scholar] [CrossRef]
- Mirani, M.; Favacchio, G.; Carrone, F.; Betella, N.; Biamonte, E.; Morenghi, E.; Mazziotti, G.; Lania, A.G. Impact of Comorbidities and Glycemia at Admission and Dipeptidyl Peptidase 4 Inhibitors in Patients with Type 2 Diabetes With COVID-19: A Case Series From an Academic Hospital in Lombardy, Italy. Diabetes Care 2020, 43, 3042–3049. [Google Scholar] [CrossRef]
- Pal, R.; Banerjee, M.; Mukherjee, S.; Bhogal, R.S.; Kaur, A.; Bhadada, S.K. Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: An updated systematic review and meta-analysis. Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018821996482. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Morieri, M.L.; Longato, E.; Bonora, B.M.; Pinelli, S.; Selmin, E.; Voltan, G.; Falaguasta, D.; Tresso, S.; Costantini, G.; et al. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 among people with type 2 diabetes: A case-control study. Diabetes Obes. Metab. 2020, 22, 1946–1950. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-H.; Wu, B.; Wang, W.-X.; Lei, F.; Cheng, X.; Qin, J.-J.; Cai, J.-J.; Zhang, X.-J.; Zhou, F.; Liu, Y.-M.; et al. No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J. Clin. Cases 2020, 8, 5576–5588. [Google Scholar] [CrossRef]
- Morieri, M.L.; Bonora, B.M.; Longato, E.; Di Camilo, B.; Sparacino, G.; Tramontan, L.; Avogaro, A.; Fadini, G.P. Exposure to dipeptidyl-peptidase 4 inhibitors and the risk of pneumonia among people with type 2 diabetes: Retrospective cohort study and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, D.W.; Chen, C. The potential effects of DPP-4 inhibitors on cardiovascular system in COVID-19 patients. J. Cell. Mol. Med. 2020, 24, 10274–10278. [Google Scholar] [CrossRef]
- Dastan, F.; Abedini, A.; Shahabi, S.; Kiani, A.; Saffaei, A.; Zare, A. Sitagliptin Repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and Inflammatory Cytokine Storms in the Lung. Iran. J. Allergy Asthma Immunol. 2020, 19, 10–12. [Google Scholar] [CrossRef]
- Mozafari, N.; Azadi, S.; Mehdi-Alamdarlou, S.; Ashrafi, H.; Azadi, A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med. Hypotheses 2020, 143, 110111. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, T.; Pavlidis, A.N.; Metallidis, S.; Kotsa, K. Sodium-glucose co-transporter 2 inhibitors in COVID-19: Meeting at the crossroads between heart, diabetes and infectious diseases. Int. J. Clin. Pharm. 2021, 43, 764–767. [Google Scholar] [CrossRef]
- Li, X.-T.; Zhang, M.-W.; Zhang, Z.-Z.; Cao, Y.-D.; Liu, X.-Y.; Miao, R.; Xu, Y.; Song, X.-F.; Song, J.-W.; Liu, Y.; et al. Abnormal apelin-ACE2 and SGLT2 signaling contribute to adverse cardiorenal injury in patients with COVID-19. Int. J. Cardiol. 2021, 336, 123–129. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Esterline, R.; Furtado, R.H.M.; Oscarsson, J.; Gasparyan, S.B.; Koch, G.G.; Martinez, F.; Mukhtar, O.; Verma, S.; Chopra, V.; et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021, 9, 586–594. [Google Scholar] [CrossRef]
- European Medicines Agency. EMA/136850/2020: EMA Gives Advice on the Use of Non-Steroidal Anti Inflammatories for COVID-19. Available online: https://www.ema.europa.eu/en/documents/press-release/ema-gives-advice-use-non-steroidal-anti-inflammatories-COVID-19_en.pdf (accessed on 6 December 2021).
- Moore, N.; Bosco-Levy, P.; Thurin, N.; Blin, P.; Droz-Perroteau, C. NSAIDs and COVID-19: A Systematic Review and Meta-analysis. Drug Saf. 2021, 44, 929–938. [Google Scholar] [CrossRef]
- Chen Jennifer, S.; Alfajaro Mia, M.; Chow Ryan, D.; Wei, J.; Filler Renata, B.; Eisenbarth Stephanie, C.; Wilen Craig, B.; Gallagher, T. Nonsteroidal Anti-inflammatory Drugs Dampen the Cytokine and Antibody Response to SARS-CoV-2 Infection. J. Virol. 2021, 95, e00014-21. [Google Scholar] [CrossRef]
- Kelleni, M.T. Early use of non-steroidal anti-inflammatory drugs in COVID-19 might reverse pathogenesis, prevent complications and improve clinical outcomes. Biomed. Pharmacother. 2021, 133, 110982. [Google Scholar] [CrossRef]
- Oh, S.W.; Han, S.Y. Loop Diuretics in Clinical Practice. Electrolytes Blood Press. 2015, 13, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Podestà, M.A.; Valli, F.; Galassi, A.; Cassia, M.A.; Ciceri, P.; Barbieri, L.; Carugo, S.; Cozzolino, M. COVID-19 in Chronic Kidney Disease: The Impact of Old and Novel Cardiovascular Risk Factors. Blood Purif. 2021, 50, 740–749. [Google Scholar] [CrossRef]
- Schöning, V.; Liakoni, E.; Baumgartner, C.; Exadaktylos, A.K.; Hautz, W.E.; Atkinson, A.; Hammann, F. Development and validation of a prognostic COVID-19 severity assessment (COSA) score and machine learning models for patient triage at a tertiary hospital. J. Trans. Med. 2021, 19, 56. [Google Scholar] [CrossRef]
- Canal-Rivero, M.; Catalán-Barragán, R.; Rubio-García, A.; Garrido-Torres, N.; Crespo-Facorro, B.; Ruiz-Veguilla, M.; Group, I.T.P. Lower risk of SARS-CoV2 infection in individuals with severe mental disorders on antipsychotic treatment: A retrospective epidemiological study in a representative Spanish population. Schizophr. Res. 2021, 229, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Nemani, K.; Conderino, S.; Marx, J.; Thorpe, L.E.; Goff, D.C. Association Between Antipsychotic Use and COVID-19 Mortality Among People with Serious Mental Illness. JAMA Psychiatry 2021, 78, 1391–1393. [Google Scholar] [CrossRef] [PubMed]
- Vai, B.; Mazza, M.G.; Delli Colli, C.; Foiselle, M.; Allen, B.; Benedetti, F.; Borsini, A.; Casanova Dias, M.; Tamouza, R.; Leboyer, M.; et al. Mental disorders and risk of COVID-19-related mortality, hospitalisation, and intensive care unit admission: A systematic review and meta-analysis. Lancet Psychiatry 2021, 8, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Boland, X.; Dratcu, L. Antipsychotics and COVID-19: The debate goes on. Lancet Psychiatry 2021, 8, 1030. [Google Scholar] [CrossRef]
- Zippi, M.; Fiorino, S.; Budriesi, R.; Micucci, M.; Corazza, I.; Pica, R.; de Biase, D.; Gallo, C.G.; Hong, W. Paradoxical relationship between proton pump inhibitors and COVID-19: A systematic review and meta-analysis. World J. Clin. Cases 2021, 9, 2763–2777. [Google Scholar] [CrossRef]
- Fatima, K.; Almas, T.; Lakhani, S.; Jahangir, A.; Ahmed, A.; Siddiqui, A.; Rahim, A.; Qureshi, S.A.; Arshad, Z.; Golani, S.; et al. The Use of Proton Pump Inhibitors and COVID-19: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 37. [Google Scholar] [CrossRef]
- Toubasi, A.A.; AbuAnzeh, R.B.; Khraisat, B.R.; Al-Sayegh, T.N.; AlRyalat, S.A. Proton Pump Inhibitors: Current Use and the Risk of Coronavirus Infectious Disease 2019 Development and its Related Mortality. Meta-analysis. Arch. Med. Res. 2021, 52, 656–659. [Google Scholar] [CrossRef]
- Pranata, R.; Huang, I.; Lawrensia, S.; Henrina, J.; Lim, M.A.; Lukito, A.A.; Kuswardhani, R.A.T.; Wibawa, I.D.N. Proton pump inhibitor on susceptibility to COVID-19 and its severity: A systematic review and meta-analysis. Pharmacol. Rep. 2021, 73, 1642–1649. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2021, 23, 3–20. [Google Scholar] [CrossRef]
- Peng, R.; Wu, L.-A.; Wang, Q.; Qi, J.; Gao, G.F. Cell entry by SARS-CoV-2. Trends Biochem. Sci. 2021, 46, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Trbojević-Akmačić, I.; Petrović, T.; Lauc, G. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconj. J. 2021, 38, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Pruimboom, L. SARS-CoV 2; Possible alternative virus receptors and pathophysiological determinants. Med. Hypotheses 2021, 146, 110368. [Google Scholar] [CrossRef] [PubMed]
- Daly James, L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Williamson Maia, K.; Antón-Plágaro, C.; Shoemark Deborah, K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro Liliana, D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef]
- Terracciano, R.; Preianò, M.; Fregola, A.; Pelaia, C.; Montalcini, T.; Savino, R. Mapping the SARS-CoV-2–Host Protein–Protein Interactome by Affinity Purification Mass Spectrometry and Proximity-Dependent Biotin Labeling: A Rational and Straightforward Route to Discover Host-Directed Anti-SARS-CoV-2 Therapeutics. Int. J. Mol. Sci. 2021, 22, 532. [Google Scholar] [CrossRef]
- Kruse, T.; Benz, C.; Garvanska, D.H.; Lindqvist, R.; Mihalic, F.; Coscia, F.; Inturi, R.; Sayadi, A.; Simonetti, L.; Nilsson, E.; et al. Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nat. Commun. 2021, 12, 6761. [Google Scholar] [CrossRef] [PubMed]
- Khorsand, B.; Savadi, A.; Naghibzadeh, M. SARS-CoV-2-human protein-protein interaction network. Inform. Med. Unlocked 2020, 20, 100413. [Google Scholar] [CrossRef] [PubMed]
- Helenius, A. Virus Entry: Looking Back and Moving Forward. J. Mol. Biol. 2018, 430, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Choi Keum, S.; Aizaki, H.; Lai Michael, M.C. Murine Coronavirus Requires Lipid Rafts for Virus Entry and Cell-Cell Fusion but Not for Virus Release. J. Virol. 2005, 79, 9862–9871. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Fan, M.; Zhang, J.; Peng, Y.; Huang, F.; Wang, N.; He, L.; Zhang, L.; Holmdahl, R.; et al. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput. Struct. Biotechnol. J. 2021, 19, 1933–1943. [Google Scholar] [CrossRef]
- Sorice, M.; Misasi, R.; Riitano, G.; Manganelli, V.; Martellucci, S.; Longo, A.; Garofalo, T.; Mattei, V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front. Cell Dev. Biol. 2021, 8, 618296. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Mizogami, M. Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2020, 14, 34–47. [Google Scholar] [CrossRef]
- Packer, M. Do DPP-4 Inhibitors Cause Heart Failure Events by Promoting Adrenergically Mediated Cardiotoxicity? Circ. Res. 2018, 122, 928–932. [Google Scholar] [CrossRef] [PubMed]
General Characteristics | Non-Severe (n = 390) | Severe (n = 115) | p Value |
---|---|---|---|
Age (years) | |||
Median (Q1, Q3) | 67.00 (52.00, 77.00) | 70.00 (60.50, 81.00) | <0.001 |
Sex | |||
Female (%) | 155 (39.74%) | 31 (26.96%) | 0.017 |
BMI | |||
Median (Q1, Q3) | 26.05 (23.51, 29.43) | 27.73 (24.74, 31.70) | <0.006 |
Drugs on admission | |||
Median (Q1, Q3) | 7.00 (4.00, 12.00) | 8.00 (4.00, 13.00) | 0.403 |
Diseases | |||
Arterial hypertension (%) | 182 (48.40%) | 64 (63.37%) | 0.011 |
Chronic heart failure (%) | 92 (24.47%) | 37 (36.63%) | 0.021 |
Atrial fibrillation (%) | 57 (15.16%) | 23 (22.77%) | 0.095 |
Coronary heart disease (%) | 52 (13.83%) | 32 (31.68%) | <0.002 |
Coronary sclerosis (%) | 9 (2.39%) | 6 (5.94%) | 0.136 |
Diabetes (%) | 105 (27.93%) | 34 (33.66%) | 0.316 |
Dementia (%) | 39 (10.37%) | 15 (14.85%) | 0.278 |
Anatomical/Pharmacological Group | Non-Severe COVID-19 [%] | Severe COVID-19 [%] | p Value |
---|---|---|---|
Blood and blood forming organs | 85.64 | 94.78 | 0.014 |
Various | 4.1 | 10.43 | 0.018 |
Musculo-skeletal system | 21.79 | 13.91 | 0.085 |
Drug Groups | |||
Anti-hemorrhagics | 0.51 | 3.48 | 0.037 |
Diuretics | 23.08 | 32.17 | 0.064 |
Cardiovascular drugs | 36.67 | 46.09 | 0.087 |
Antiplatelet agents | 23.08 | 31.3 | 0.095 |
Drug Subgroups | |||
NSAID | 12.56 | 4.35 | 0.020 |
Loop diuretics 1 | 14.87 | 24.35 | 0.025 |
Beta blockers 1 | 26.41 | 37.39 | 0.030 |
Vitamin K and other hemostatics | 0.51 | 3.48 | 0.037 |
Opioids 1 | 10.51 | 17.39 | 0.068 |
Acetylsalicylic acid | 21.28 | 29.57 | 0.085 |
Anatomical/Pharmacological Group Combinations | Non-Severe COVID-19 [%] | Severe COVID-19 [%] | p Value | |
---|---|---|---|---|
Various | Alimentary tract and metabolism | 3.85 | 10.43 | 0.012 |
Nervous system | 3.33 | 9.57 | 0.012 | |
Blood and blood forming organs | 3.85 | 9.57 | 0.028 | |
Drug Group Combinations | Non-Severe COVID-19 [%] | Severe COVID-19 [%] | p Value | |
Psycholeptics | Anti-hemorrhagics | 0.26 | 3.48 | 0.011 |
Antiplatelet agents | Anti-infectives | 7.44 | 15.65 | 0.013 |
Cardiovascular drugs | Diuretics | 16.92 | 26.09 | 0.004 |
Obstructive airway drugs | 5.9 | 12.17 | 0.039 | |
Drug Subgroup Combinations | Non-Severe COVID-19 [%] | Severe COVID-19 [%] | p Value | |
Antipsychotics 1 | Loop diuretics 1 | 1.28 | 7.83 | <0.001 |
Opioids 1 | 1.03 | 6.09 | 0.004 | |
Adrenergic inhalants | 0.51 | 4.35 | 0.008 | |
Beta blockers 1 | 2.82 | 8.7 | 0.012 | |
Proton pump inhibitors 1 | 3.59 | 8.7 | 0.044 | |
Other analgesics | 5.38 | 11.30 | 0.044 | |
Heparin 1 | Direct Xa inhibitors 1 | 0.51 | 4.35 | 0.008 |
Loop diuretics 1 | 4.62 | 10.43 | 0.036 | |
Platelet inhibitors 1 | Antibiotics | 7.44 | 14.78 | 0.026 |
Loop diuretics 1 | 5.13 | 11.3 | 0.032 | |
Beta blockers 1 | 11.03 | 19.13 | 0.034 | |
Proton pump inhibitors 1 | 10.00 | 17.39 | 0.045 | |
Potassium spare diuretics 1 | 1.03 | 4.35 | 0.049 | |
Potassium spare diuretics 1 | Acetylsalicylic acid | 0.77 | 4.35 | 0.023 |
Adrenergic inhalatives | 0.51 | 3.48 | 0.037 | |
Loop diuretics 1 | Opioids 1 | 2.82 | 7.83 | 0.032 |
Vitamin K antagonists 1 | Thyroid | 0.51 | 3.48 | 0.037 |
NSAID | Other analgesics | 10.26 | 3.48 | 0.038 |
Beta blockers 1 | Acetylsalicylic acid | 10.77 | 18.26 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schöning, V.; Hammann, F. Drug-Disease Severity and Target-Disease Severity Interaction Networks in COVID-19 Patients. Pharmaceutics 2022, 14, 1828. https://doi.org/10.3390/pharmaceutics14091828
Schöning V, Hammann F. Drug-Disease Severity and Target-Disease Severity Interaction Networks in COVID-19 Patients. Pharmaceutics. 2022; 14(9):1828. https://doi.org/10.3390/pharmaceutics14091828
Chicago/Turabian StyleSchöning, Verena, and Felix Hammann. 2022. "Drug-Disease Severity and Target-Disease Severity Interaction Networks in COVID-19 Patients" Pharmaceutics 14, no. 9: 1828. https://doi.org/10.3390/pharmaceutics14091828