Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.3. Solubility Measurements
3. Thermodynamic Models
3.1. Apelblat Equation
3.2. λh Equation
3.3. NRTL Model
3.4. Wilson Model
4. Results and Discussion
4.1. XRD Analysis
4.2. Melting Properties of α-LM
4.3. Solubility Data and Correlation
4.4. Solvent Effect
4.5. Thermodynamic Properties of Dissolution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kougoulos, E.; Marziano, I.; Miller, P.R. Lactose particle engineering: Influence of ultrasound and anti-solvent on crystal habit and particle size. J. Cryst. Growth 2010, 312, 3509–3520. [Google Scholar] [CrossRef]
- Singh, R.; Shah, B.; Nielsen, S.; Chambers, J. α-Lactose Monohydrate from Ultrafiltered Whey Permeate in One-step Crystallization Using Ethanol-Water Mixtures. J. Food Sci. 2006, 56, 777–781. [Google Scholar] [CrossRef]
- Lara-Mota, E.E.; Nicolás–Vázquez, M.I.; López-Martínez, L.A.; Espinosa-Solis, V.; Cruz-Alcantar, P.; Toxqui-Teran, A.; Saavedra-Leos, M.Z. Phenomenological study of the synthesis of pure anhydrous β-lactose in alcoholic solution. Food Chem. 2021, 340, 128054. [Google Scholar] [CrossRef]
- Pawar, N.; Agrawal, S.; Methekar, R. Continuous Antisolvent Crystallization of α-Lactose Monohydrate: Impact of Process Parameters, Kinetic Estimation, and Dynamic Analysis. Org. Process Res. Dev. 2019, 23, 2394–2404. [Google Scholar] [CrossRef]
- MacFhionnghaile, P.; Svoboda, V.; McGinty, J.; Nordon, A.; Sefcik, J. Crystallization Diagram for Antisolvent Crystallization of Lactose: Using Design of Experiments to Investigate Continuous Mixing-Induced Supersaturation. Cryst. Growth Des. 2017, 17, 2611–2621. [Google Scholar] [CrossRef]
- Pawar, N.; Methekar, R.; Agrawal, S. Modeling, Simulation, and Parameter Estimation of Antisolvent Crystallization of α-Lactose Monohydrate. In Global Challenges in Energy and Environment; Springer: Singapore, 2020; pp. 99–107. [Google Scholar]
- Raghavan, S.L.; Ristic, R.I.; Sheen, D.B.; Sherwood, J.N.; Trowbridge, L.; York, P. Morphology of Crystals of α-Lactose Hydrate Grown from Aqueous Solution. J. Phys. Chem. B 2000, 104, 12256–12262. [Google Scholar] [CrossRef]
- Altamimi, M.J.; Wolff, K.; Nokhodchi, A.; Martin, G.P.; Royall, P.G. Variability in the α and β anomer content of commercially available lactose. Int. J. Pharm. 2019, 555, 237–249. [Google Scholar] [CrossRef]
- Jiang, T.; Yan, S.; Zhang, S.; Yin, Q.; Chen, X.; Wu, W. Uniform lactose microspheres with high crystallinity fabricated by micro-fluidic spray drying technology combined with post-treatment process. Powder Technol. 2021, 392, 690–702. [Google Scholar] [CrossRef]
- Khaire, R.A.; Gogate, P.R. Understanding the role of different operating modes and ultrasonic reactor configurations for improved sonocrystallization of lactose. Chem. Eng. Process. 2021, 159, 108212. [Google Scholar] [CrossRef]
- Gajendragadkar, C.N.; Gogate, P.R. Ultrasound assisted intensified recovery of lactose from whey based on antisolvent crystallization. Ultrason. Sonochem. 2017, 38, 754–765. [Google Scholar] [CrossRef]
- Rachah, A.; Noll, D.; Espitalier, F.; Baillon, F. Control of solvated crystallisation of α-lactose monohydrate. Int. J. Math. Model. Numer. Optim. 2015, 6, 159. [Google Scholar] [CrossRef]
- López-Pablos, A.L.; Leyva-Porras, C.C.; Silva-Cázares, M.B.; Longoria-Rodríguez, F.E.; Pérez-García, S.A.; Vértiz-Hernández, Á.A.; Saavedra-Leos, M.Z. Preparation and Characterization of High Purity Anhydrous β-Lactose from α-Lactose Monohydrate at Mild Temperature. Int. J. Polym. Sci. 2018, 2018, 5069063. [Google Scholar] [CrossRef]
- Majd, F.; Nickerson, T.A. Effect of Alcohols on Lactose Solubility. J. Dairy Sci. 1976, 59, 1025–1032. [Google Scholar] [CrossRef]
- Choscz, C.; Held, C.; Eder, C.; Sadowski, G.; Briesen, H. Measurement and Modeling of Lactose Solubility in Aqueous Electrolyte Solutions. Ind. Eng. Chem. Res. 2019, 58, 20797–20805. [Google Scholar] [CrossRef]
- Machado, J.J.B.; Coutinho, J.A.; Macedo, E.A. Solid–liquid equilibrium of α-lactose in ethanol/water. Fluid Phase Equilib. 2000, 173, 121–134. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 87th ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Vogel’s Textbook of Practical Organic Chemistry, 5th ed.; Addison-Wesley Longman Ltd.: Boston, MA, USA, 2013.
- Wu, K.; Guan, Y.; Yang, Z.; Ji, H. Solid–Liquid Phase Equilibrium of Isophthalonitrile in 16 Solvents from T = 273.15 to 324.75 K and Mixing Properties of Solutions. J. Chem. Eng. Data 2021, 66, 4442–4452. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anistic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 1997, 29, 1527–1533. [Google Scholar] [CrossRef]
- Ahmad, A.; Raish, M.; Alkharfy, K.M.; Alsarra, I.A.; Khan, A.; Ahad, A.; Jan, B.L.; Shakeel, F. Solubility, solubility parameters and solution thermodynamics of thymoquinone in different mono solvents. J. Mol. Liq. 2018, 272, 912–918. [Google Scholar] [CrossRef]
- Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 1980, 84, 975–979. [Google Scholar] [CrossRef]
- Kodide, K.; Asadi, P.; Thati, J. Solubility and Thermodynamic Modeling of Sulfanilamide in 12 Mono Solvents and 4 Binary Solvent Mixtures from 278.15 to 318.15 K. J. Chem. Eng. Data 2019, 64, 5196–5209. [Google Scholar] [CrossRef]
- Renon, H.; Prausnitz, J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, G.; Dong, J.; Li, Z.; Ding, L.; Wang, B. Measurement and correlation of the solubility of antipyrine in ten pure and water + ethanol mixed solvents at temperature from (288.15 to 328.15) K. J. Mol. Liq. 2018, 268, 256–265. [Google Scholar] [CrossRef]
- Liu, B.; Asadzadeh, B.; Yan, W. Solubility Determination and Modeling of EGCG Peracetate in 12 Pure Solvents at Temperatures from 278.15 to 318.15 K. J. Chem. Eng. Data 2019, 64, 5218–5224. [Google Scholar] [CrossRef]
- Shao, D.; Yang, Z.; Zhou, G. Solubility Determination of 1,5-Naphthalenediamine and 1,8-Naphthalenediamine in Different Solvents and Mixing Properties of Solutions. J. Chem. Eng. Data 2019, 64, 1770–1779. [Google Scholar] [CrossRef]
- Wilson, G.M. Vapor-Liquid Equilibrium.XI. New expression for excess free energy of mixing. J. Am. Chem. Soc. 1964, 86, 127–130. [Google Scholar] [CrossRef]
- Kuang, W.; Ji, S.; Wang, X.; Liao, A.; Lan, P.; Zhang, J. Solid–Liquid Equilibrium of Lamotrigine in 12 Pure Solvents from T = 283.15 to 323.15 K: Experimental Determination and Thermodynamic Modeling. J. Chem. Eng. Data 2020, 65, 169–176. [Google Scholar] [CrossRef]
- Figura, L.O. The physical modification of lactose and its thermoanalytical identification. Thermochim. Acta 1993, 222, 187–194. [Google Scholar] [CrossRef]
- GombÁs, Á.; Szabó-Révész, P.; Kata, M.; Regdon, G.; Erős, I. Quantitative Determination of Crystallinity of α-Lactose Monohydrate by DSC. J. Therm. Anal. Calorim. 2002, 68, 503–510. [Google Scholar] [CrossRef]
- Alzoubi, T.; Martin, G.P.; Barlow, D.J.; Royall, P.G. Stability of α-lactose monohydrate: The discovery of dehydration triggered solid-state epimerization. Int. J. Pharm. 2021, 604, 120715. [Google Scholar] [CrossRef]
- Marcus, Y. The Properties of Organic Liquids That Are Relevant to Their Use as Solvating Solvents. Chem. Soc. Rev. 1993, 22, 409–416. [Google Scholar] [CrossRef]
- Cerón-Carrasco, J.P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent polarity scales: Determination of new ET(30) values for 84 organic solvents. J. Phys. Org. Chem. 2014, 27, 512–518. [Google Scholar] [CrossRef]
- Spange, S.; Lienert, C.; Friebe, N.; Schreiter, K. Complementary interpretation of ET(30) polarity parameters of ionic liquids. Phys. Chem. Chem. Phys. 2020, 22, 9954–9966. [Google Scholar] [CrossRef]
- Wu, K.; Li, Y.J. Solid–Liquid Equilibrium of Azacyclotridecan-2-one in 15 Pure Solvents from T = 273.15 to 323.15 K: Experimental Determination and Thermodynamic Modeling. J. Chem. Eng. Data 2019, 64, 1640–1649. [Google Scholar] [CrossRef]
- Gu, C.-H.; Li, H.; Gandhi, R.B.; Raghavan, K. Grouping solvents by statistical analysis of solvent property parameters: Implication to polymorph screening. Int. J. Pharm. 2004, 283, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. The Properties of Solvents; John Wiley & Sons Ltd.: Chichester, UK, 1998. [Google Scholar]
- Smallwood, I.M. Handbook of Organic Solvent Properties; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Kamlet, M.; Abboud, J.-L.; Abraham, M.; Taft, R. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters,.pi.*,.alpha., and. beta., and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Taft, R.W.; Abraham, M.H.; Famini, G.R.; Doherty, R.M.; Abboud, J.-L.M.; Kamlet, M.J. Solubility Properties in Polymers and Biological Media 5: An Analysis of the Physicochemical Properties Which Influence Octanol–Water Partition Coefficients of Aliphatic and Aromatic Solutes. J. Pharm. Sci. 1985, 74, 807–814. [Google Scholar] [CrossRef]
- Zheng, M.; Farajtabar, A.; Zhao, H. Solubility of 4-amino-2,6-dimethoxypyrimidine in aqueous co-solvent mixtures revisited: Solvent effect, transfer property and preferential solvation analysis. J. Mol. Liq. 2019, 288, 111033. [Google Scholar] [CrossRef]
- Delgado, D.R.; Romdhani, A.; Martínez, F. Solubility of sulfamethizole in some propylene glycol+water mixtures at several temperatures. Fluid Phase Equilib. 2012, 322-323, 113–119. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Xu, S.; Liu, Y.; Yang, P.; Du, S.; Yu, B.; Gong, J. Determination and modelling of troxerutin solubility in eleven mono-solvents and (1,4-dioxane+2-propanol) binary solvents at temperatures from 288.15Kto 323.15K. J. Chem. Thermodyn. 2017, 104, 138–149. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, X.; Jaubert, J.-N. 4-Chloro-2-nitroaniline Solubility in Several Pure Solvents: Determination, Modeling, and Solvent Effect Analysis. J. Chem. Eng. Data 2020, 65, 222–232. [Google Scholar] [CrossRef]
- Xu, R.; Xu, A.; Du, C.; Yang, C.; Jian, W. Solubility determination and thermodynamic modeling of 2,4-dinitroaniline in nine organic solvents from T = (278.15 to 318.15)K and mixing properties of solutions. J. Chem. Thermodyn. 2016, 102, 178–187. [Google Scholar] [CrossRef]
- Orye, R.V.; Prausnitz, J.M. Multicomponent Equilibria—The Wilson Equation. Ind. Eng. Chem. Res. 1965, 57, 18–26. [Google Scholar] [CrossRef]
- Jia, Z.; Yin, H.; Zhao, Y.; Zhao, H. Solubility of 3-Bromo-4-Hydroxybenzaldehyde in 16 Monosolvents at Temperatures from 278.15 to 323.15 K. J. Chem. Eng. Data 2020, 65, 287–295. [Google Scholar] [CrossRef]
Chemicals | CAS No. | Source | Mass Fraction Purity | Analysis Method | Molar Volume c (cm3·mol−1) |
---|---|---|---|---|---|
α-LM | 5989-81-1 | Sigma-Aldrich, St. Louis, MO, USA | ≥0.990 | GC a | 235.4967 |
Methanol | 67-56-1 | Saan Chemical Technology (Shanghai, China) Co., Ltd. | ≥0.995 | GC a | 40.5057 |
Ethanol | 64-17-5 | Tianjin Kemao Chemical Reagent Co., Ltd. (Tianjin, China) | ≥0.997 | GC a | 58.3904 |
1-Propanol | 71-23-8 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.995 | GC a | 75.1188 |
1-Butanol | 71-36-3 | Adamas-beta, Shanghai Titan Scientific Co., Ltd. (Shanghai, China) | ≥0.995 | GC a | 91.5062 |
Isobutanol | 78-83-1 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 92.3064 |
2-Butanol | 78-92-2 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 92.6525 |
1-Pentanol | 71-41-0 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 106.2048 |
Isoamylol | 123-51-3 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 108.8272 |
1-Hexanol | 111-27-3 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.980 | GC a | 125.0610 |
1-Heptanol | 111-70-6 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 141.3625 |
1-Octanol | 111-87-5 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.980 | GC a | 158.0461 |
Propanoic Acid | 79-09-4 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 74.8263 |
Acetonitrile | 75-05-8 | General-reagent, Shanghai Titan Scientific Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 52.2591 |
Cyclohexanone | 108-94-1 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.990 | GC a | 102.9832 |
Isopropanol | 67-63-0 | Saan Chemical Technology (Shanghai) Co., Ltd. (Shanghai, China) | ≥0.999 | HPLC b | 76.4609 |
Solvent | ET(30) a | αa | βa | π*a | μ b | ε c | δH d |
---|---|---|---|---|---|---|---|
Methanol | 55.40 | 0.98 | 0.66 | 0.60 | 1.70 | 32.60 | 22.30 |
Ethanol | 51.90 | 0.86 | 0.75 | 0.54 | 1.70 | 22.40 | 19.40 |
1-Propanol | 50.70 | 0.84 | 0.9 | 0.52 | 1.70 | 20.10 | 17.40 |
Isopropanol | 48.40 | 0.76 | 0.84 | 0.48 | 1.66 | 18.30 | 16.40 |
1-Butanol | 49.70 | 0.84 | 0.84 | 0.47 | 1.66 | 18.20 | 15.80 |
Isobutanol | 48.60 | 0.79 | 0.84 | 0.40 | 1.70 | 17.70 | 15.90 |
2-Butanol | 47.10 | 0.69 | 0.80 | 0.40 | 1.70 | 16.56 | 14.50 |
1-Pentanol | 49.10 | 0.84 | 0.86 | 0.40 | 1.70 | 13.90 | 13.90 |
Isoamylol | 49.00 | 0.84 | 0.86 | 0.40 | 1.80 | 15.20 | 13.30 |
Cyclohexanone | 39.80 | 0.00 | 0.53 | 0.68 | 3.10 | 18.20 | 12.70 |
1-Hexanol | 48.80 | 0.80 | 0.84 | 0.40 | - | - | 13.00 |
1-Heptanol | - | - | - | - | - | - | 11.90 |
1-Octanol | 48.10 | 0.77 | 0.81 | 0.40 | 1.90 | - | 6.10 |
Acetonitrile | 45.60 | 0.19 | 0.40 | 0.66 | 3.20 | 37.50 | 5.10 |
Propinoic acid | 55.00 | 1.12 | 0.45 | 0.58 | - | - | 12.40 |
Solvent | A | B | C | 103 RAD | 106 RMSD |
---|---|---|---|---|---|
Methanol | 3.0766 | −3158.8693 | −0.2847 | 5.3031 | 0.6003 |
Ethanol | 41.7699 | −4985.8779 | −6.1120 | 4.6061 | 0.2374 |
1-Propanol | 26.4854 | −4185.2840 | −3.9175 | 4.1847 | 0.2885 |
Isopropanol | −27.8252 | −2736.3574 | 4.8044 | 6.3433 | 0.6439 |
Acetonitrile | −27.5986 | −1497.9216 | 3.9436 | 3.4318 | 0.1189 |
1-Butanol | 4.5383 | −2459.6923 | −1.0101 | 2.9809 | 0.2425 |
Isobutanol | −6.8557 | −2120.3304 | 0.7088 | 2.4968 | 0.1839 |
2-Butanol | 4.0985 | −3337.5824 | −0.5650 | 4.9549 | 0.2350 |
1-Pentanol | 17.0290 | −3736.0487 | −2.5440 | 5.6961 | 0.3223 |
Isoamylol | 32.6382 | −4461.5797 | −4.8957 | 4.6822 | 0.1659 |
1-Hexanol | −47.5650 | −1692.9922 | 7.4855 | 6.8966 | 0.2083 |
1-Heptanol | −2.2769 | −2787.9947 | 0.2990 | 5.8348 | 0.3460 |
1-Octanol | 28.3460 | −4215.4499 | −4.2710 | 3.7780 | 0.1634 |
Cyclohexanone | −27.1953 | −2419.8664 | 4.3772 | 9.7513 | 0.3162 |
Propinoic acid | −43.2062 | −1265.0271 | 6.5779 | 8.4350 | 0.4790 |
Average | 5.2917 | 0.3034 |
Solvent | 103λ | h | 103 RAD | 106 RMSD |
---|---|---|---|---|
Methanol | 4.8545 | 615,583.7552 | 4.8535 | 0.7199 |
Ethanol | 3.1697 | 997,826.5251 | 15.6423 | 1.1342 |
1-Propanol | 2.3316 | 1,285,742.1272 | 13.0935 | 0.8522 |
Isopropanol | 16.0734 | 267,512.2672 | 26.7948 | 1.4094 |
Acetonitrile | 1.0672 | 2,444,208.9247 | 5.9051 | 0.2256 |
1-Butanol | 0.8784 | 2,233,532.0823 | 6.6374 | 0.5483 |
Isobutanol | 0.7550 | 2,895,562.0914 | 4.7101 | 0.2708 |
2-Butanol | 1.7099 | 1,806,144.9113 | 5.6122 | 0.2595 |
1-Pentanol | 1.8496 | 1,573,562.5892 | 7.2038 | 0.5004 |
Isoamylol | 1.4327 | 2,013,266.8911 | 8.6628 | 0.3579 |
1-Hexanol | 4.2654 | 940,265.8582 | 18.1818 | 0.3672 |
1-Heptanol | 1.6977 | 1,641,263.9352 | 6.9722 | 0.3709 |
1-Octanol | 1.4556 | 1,941,581.3104 | 9.2550 | 0.3589 |
Cyclohexanone | 3.9075 | 965,202.1135 | 14.0863 | 0.4350 |
Propinoic acid | 2.7888 | 1,145,606.1334 | 5.3089 | 0.5203 |
Average | 10.1946 | 0.5554 |
Solvent | a12 | b12 | a21 | b21 | 103 RAD | 106 RMSD |
---|---|---|---|---|---|---|
Methanol | 24.4427 | −8960.6721 | 0.4448 | 34.8474 | 5.4478 | 0.6006 |
Ethanol | 25.7710 | −8790.9862 | 0.0104 | −0.0075 | 7.8584 | 0.4502 |
1-Propanol | 26.3558 | −8924.0253 | −0.2396 | −0.0038 | 5.5948 | 0.3651 |
Isopropanol | 17.2970 | −7415.4742 | 7.5370 | −1468.9739 | 6.9079 | 0.6353 |
Acetonitrile | 28.5466 | −8231.7192 | −0.2444 | −119.7887 | 2.6844 | 0.1094 |
1-Butanol | 28.1475 | −9769.2383 | −0.2111 | 1.1678 | 3.2012 | 0.2580 |
isobutanol | 32.7860 | −9600.4299 | −1.1306 | −0.0058 | 2.9048 | 0.1557 |
2-Butanol | 26.4039 | −8729.5396 | −0.4449 | −6.1837 | 4.7570 | 0.2359 |
1-Pentanol | 26.8768 | −8963.5924 | −0.5753 | 1.8416 | 4.7443 | 0.3470 |
Isoamylol | 26.5113 | −8946.4676 | −0.4400 | 0.0851 | 5.5650 | 0.2588 |
1-Hexanol | 25.6327 | −6718.4932 | −1.1445 | −139.6036 | 5.7548 | 0.1595 |
1-Heptanol | 31.3149 | −9079.4249 | −1.5496 | 3.4011 | 5.7054 | 0.3349 |
1-Octanol | 27.4758 | −9001.5085 | −0.9517 | 0.0247 | 6.3363 | 0.2515 |
Cyclohexanone | 30.4941 | −8406.5104 | −1.4374 | 17.9929 | 9.1296 | 0.2281 |
Propinoic acid | 32.0520 | −9018.3050 | −1.1804 | 29.1649 | 6.0851 | 0.3158 |
Average | 5.5118 | 0.3137 |
Solvent | α | a12 | b12 | a21 | b21 | 103 RAD | 106 RMSD |
---|---|---|---|---|---|---|---|
Methanol | 7.6935 | −38.6535 | 12,490.0130 | 23.4391 | −8826.6631 | 0.2460 | 0.4874 |
Ethanol | −0.3667 | 2.8759 | −920.7980 | 21.4235 | −7978.7635 | 4.6061 | 0.2389 |
1-Propanol | 17.3089 | −4.9224 | 1601.6066 | 24.3282 | −8873.3037 | 4.0046 | 0.2632 |
Isopropanol | 1.3652 | 0.1969 | −418.1983 | −9.4994 | 5151.6911 | 3.2121 | 0.1504 |
Acetonitrile | 44.7979 | −0.2714 | 84.6165 | 25.9768 | −9283.6565 | 2.6844 | 0.1036 |
1-Butanol | 10.5622 | −27.8827 | 9009.6038 | 26.8760 | −9754.0188 | 2.6124 | 0.2014 |
Isobutanol | 21.3971 | −12.1041 | 3908.5777 | 26.7979 | −9593.3165 | 1.8288 | 0.0764 |
2-Butanol | −0.0345 | −2.9422 | 872.3605 | 27.3048 | −9624.3411 | 4.9549 | 0.2351 |
1-Pentanol | 4.3661 | −59.3899 | 19,189.7345 | 24.6120 | −8920.9197 | 3.9488 | 0.1798 |
Isoamylol | 23.2447 | −4.4141 | 1437.1100 | 24.8075 | −8912.0932 | 2.3763 | 0.1222 |
1-Hexanol | 35.1965 | −1.5530 | 499.1438 | 21.9911 | −7964.3999 | 4.7214 | 0.1074 |
1-Heptanol | 11.0309 | −2.0698 | 688.8884 | 24.7314 | −8983.8417 | 4.6317 | 0.3104 |
1-Octanol | −0.1241 | −4.5717 | 1289.6954 | 29.2548 | −10,195.5144 | 3.7780 | 0.1624 |
Cyclohexanone | 7.7270 | −3.9109 | 1279.8161 | 22.1958 | −8097.0602 | 4.2176 | 0.1130 |
Propinoic acid | 32.1107 | −13.0524 | 4210.3300 | 23.8667 | −8708.3199 | 2.9581 | 0.1232 |
Average | 3.3854 | 0.1917 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Yang, Z.; Wu, K.; Ji, H. Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents. Pharmaceutics 2022, 14, 1774. https://doi.org/10.3390/pharmaceutics14091774
Guan Y, Yang Z, Wu K, Ji H. Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents. Pharmaceutics. 2022; 14(9):1774. https://doi.org/10.3390/pharmaceutics14091774
Chicago/Turabian StyleGuan, Youliang, Zujin Yang, Kui Wu, and Hongbing Ji. 2022. "Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents" Pharmaceutics 14, no. 9: 1774. https://doi.org/10.3390/pharmaceutics14091774
APA StyleGuan, Y., Yang, Z., Wu, K., & Ji, H. (2022). Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents. Pharmaceutics, 14(9), 1774. https://doi.org/10.3390/pharmaceutics14091774