Protective Abilities of an Inhaled DPI Formulation Based on Sodium Hyaluronate against Environmental Hazards Targeting the Upper Respiratory Tract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Cytotoxicity Assay
2.4. Analysis of Intracellular Reactive Oxygen Species (ROS)
2.5. Transepithelial Electrical Resistance (TEER)
2.6. Sodium Fluorescein Paracellular Permeability
2.7. Pro-Inflammatory Marker Expression on ALI Modelled Calu-3 Epithelial Layer
2.8. Wound Healing Study with ALI Culture
2.9. Impaction Studies Using the Andersen Cascade Impactor (ACI)
2.10. Sodium Hyaluronate Chemical Quantification by HPLC
2.11. Scanning Electron Microscopy (SEM)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Oxidative Stress on Calu-3 Cells Induced by Urban Dust Is Reduced by Co-Incubation with PolmonYDEFENCE/DYFESATM
3.2. Effects of UD and PolmonYDEFENCE/DYFESATM Blend on the Calu-3 Epithelial Layer Permeability and Integrity
3.3. PolmonYDEFENCE/DYFESATM Blend as a Protective Barrier against Exposure to UD-Induced Inflammation
3.4. PolmonYDEFENCE/DYFESATM Blend Has a Positive Effect on Epithelial Layer Wound Healing
3.5. PolmonYDEFENCE/DYFESA Deposition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleniewska, P.; Pawliczak, R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed. Pharmacother. 2017, 94, 100–108. [Google Scholar] [CrossRef] [PubMed]
- MacNee, W. Oxidative stress and lung inflammation in airways disease. Eur. J. Pharmacol. 2001, 429, 195–207. [Google Scholar] [CrossRef]
- Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, D.P.; Chmiel, J.F. Inflammation and its genesis in cystic fibrosis. Pediatr. Pulmonol. 2015, 50, S39–S56. [Google Scholar] [CrossRef]
- Garantziotis, S.; Brezina, M.; Castelnuovo, P.; Drago, L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am. J. Physiol. Cell. Mol. Physiol. 2016, 310, L785–L795. [Google Scholar] [CrossRef] [Green Version]
- Onodera, Y.; Teramura, T.; Takehara, T.; Fukuda, K. Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio 2015, 5, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78–88. [Google Scholar]
- Carro, L.M.; Martínez-García, M.A. Use of Hyaluronic Acid (HA) in Chronic Airway Diseases. Cells 2020, 9, 2210. [Google Scholar] [CrossRef]
- Toole, B.P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Cancer 2004, 4, 528–539. [Google Scholar] [CrossRef]
- Shteyngart, B.; Chaiwiriyakul, S.; Wong, J.; Cantor, J.O. Preferential binding of lysozyme to elastic fibres in pulmonary emphysema. Thorax 1998, 53, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Sittek, L.-M.; Schmidts, T.M.; Schlupp, P. Ingredients Acting as a Physical Barrier for the Prevention and Treatment of the Rhinovirus Infection. Appl. Sci. 2020, 10, 6511. [Google Scholar] [CrossRef]
- Kaialy, W.; Martin, G.P.; Ticehurst, M.D.; Momin, M.N.; Nokhodchi, A. The enhanced aerosol performance of salbutamol from dry powders containing engineered mannitol as excipient. Int. J. Pharm. 2010, 392, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Hertel, N.; Birk, G.; Scherließ, R. Performance tuning of particle engineered mannitol in dry powder inhalation formulations. Int. J. Pharm. 2020, 586, 119592. [Google Scholar] [CrossRef] [PubMed]
- Conrozier, T.; Mathieu, P.; Rinaudo, M. Mannitol Preserves the Viscoelastic Properties of Hyaluronic Acid in an In Vitro Model of Oxidative Stress. Rheumatol. Ther. 2014, 1, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Haghi, M.; Young, P.M.; Traini, D.; Jaiswal, R.; Gong, J.; Bebawy, M. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev. Ind. Pharm. 2010, 36, 1207–1214. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Markossian, S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C.P., Baell, J., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Wu, D.; Yotnda, P. Production and Detection of Reactive Oxygen Species (ROS) in Cancers. J. Vis. Exp. 2011, 57, e3357. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.X.; Jackson, C.L.; Cole, J.L.; Lackie, P.M.; Traini, D.; Young, P.M.; Lucas, J.; Conway, J. Primary Air–Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery. Mol. Pharm. 2016, 13, 2242–2252. [Google Scholar] [CrossRef]
- Haghi, M.; Young, P.M.; Traini, D. A Simple and Rapid Method for Deposition and Measurement of Drug Transport Across Air Interface Respiratory Epithelia. AAPS PharmSciTech 2018, 19, 3272–3276. [Google Scholar] [CrossRef] [Green Version]
- Rogueda, P.G.A. HPFP, a Model Propellant for pMDIs. Drug Dev. Ind. Pharm. 2003, 29, 39–49. [Google Scholar] [CrossRef]
- Sun, J.; Yu, J.; Shen, Z.; Niu, X.; Wang, D.; Wang, X.; Xu, H.; Chuang, H.-C.; Cao, J.; Ho, K.-F. Oxidative stress–inducing effects of various urban PM2.5 road dust on human lung epithelial cells among 10 Chinese megacities. Ecotoxicol. Environ. Saf. 2021, 224, 112680. [Google Scholar] [CrossRef]
- Loor, G.; Kondapalli, J.; Schriewer, J.M.; Chandel, N.S.; Vanden Hoek, T.L.; Schumacker, P.T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic. Biol. Med. 2010, 49, 1925–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, Z.; Bradbury, P.; Pozzoli, M.; Young, P.M.; Ong, H.X.; Traini, D. An in vitro model for assessing drug transport in cystic fibrosis treatment: Characterisation of the CuFi-1 cell line. Eur. J. Pharm. Biopharm. 2020, 156, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Traboulsi, H.; Guerrina, N.; Iu, M.; Maysinger, D.; Ariya, P.; Baglole, C.J. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int. J. Mol. Sci. 2017, 18, 243. [Google Scholar] [CrossRef] [PubMed]
- Dhooghe, B.; Noël, S.; Huaux, F.; Leal, T. Lung inflammation in cystic fibrosis: Pathogenesis and novel therapies. Clin. Biochem. 2014, 47, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Rincon, M.; Irvin, C.G. Role of IL-6 in Asthma and Other Inflammatory Pulmonary Diseases. Int. J. Biol. Sci. 2012, 8, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Lucchini, A.C.; Gachanja, N.N.; Rossi, A.G.; Dorward, D.A.; Lucas, C.D. Epithelial Cells and Inflammation in Pulmonary Wound Repair. Cells 2021, 10, 339. [Google Scholar] [CrossRef]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Cell. Mol. Physiol. 2010, 298, L715–L731. [Google Scholar] [CrossRef] [Green Version]
- Voinchet, V.; Vasseur, P.; Kern, J. Efficacy and Safety of Hyaluronic Acid in the Management of Acute Wounds. Am. J. Clin. Dermatol. 2006, 7, 353–357. [Google Scholar] [CrossRef]
- Nyman, E.; Henricson, J.; Ghafouri, B.; Anderson, C.D.; Kratz, G. Hyaluronic Acid Accelerates Re-epithelialization and Alters Protein Expression in a Human Wound Model. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almazi, J.G.; Silva, D.M.; Trotta, V.; Fiore, W.; Ong, H.X.; Traini, D. Protective Abilities of an Inhaled DPI Formulation Based on Sodium Hyaluronate against Environmental Hazards Targeting the Upper Respiratory Tract. Pharmaceutics 2022, 14, 1323. https://doi.org/10.3390/pharmaceutics14071323
Almazi JG, Silva DM, Trotta V, Fiore W, Ong HX, Traini D. Protective Abilities of an Inhaled DPI Formulation Based on Sodium Hyaluronate against Environmental Hazards Targeting the Upper Respiratory Tract. Pharmaceutics. 2022; 14(7):1323. https://doi.org/10.3390/pharmaceutics14071323
Chicago/Turabian StyleAlmazi, Juhura G., Dina M. Silva, Valentina Trotta, Walter Fiore, Hui X. Ong, and Daniela Traini. 2022. "Protective Abilities of an Inhaled DPI Formulation Based on Sodium Hyaluronate against Environmental Hazards Targeting the Upper Respiratory Tract" Pharmaceutics 14, no. 7: 1323. https://doi.org/10.3390/pharmaceutics14071323
APA StyleAlmazi, J. G., Silva, D. M., Trotta, V., Fiore, W., Ong, H. X., & Traini, D. (2022). Protective Abilities of an Inhaled DPI Formulation Based on Sodium Hyaluronate against Environmental Hazards Targeting the Upper Respiratory Tract. Pharmaceutics, 14(7), 1323. https://doi.org/10.3390/pharmaceutics14071323