Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice
Abstract
:1. Introduction
2. Pharmacokinetic and Pharmacodynamic Properties of DOACs
P-gp Inhibitor | Non-P-gp Inhibitor | P-gp Inducer | |
---|---|---|---|
Strong CYP3A inhibitor | itraconazole, ketoconazole, clarithromycin, lopinavir, indinavir, ritonavir, telaprevir | voriconazole | |
Moderate CYP3A inhibitor | erythromycin, verapamil, diltiazem, dronedarone | not identified | doxorubicin |
Weak CYP3A inhibitor | lapatinib, quinidine, cyclosporine, felodipine, azithromycin, ranazoline, ticagrelor, chloroquine, hydroxychloroquine | cimetidine | vinblastine |
CYP3A Inducers | carbamazepine, phenytoin, phenobarbital, rifampin, dexamethasone, tocilizumab, St. John’s Wort |
3. Potential Drug–Drug Interaction with Antiarrhythmic Drugs
Summary
4. Potential Drug–Drug Interaction with Antiplatelet and Antithrombotic Drugs
Summary
5. Potential Drug–Drug Interaction with Nonsteroidal Anti-Inflammatory Drugs
Summary
6. Potential Drug–Drug Interaction with Antidepressant Drugs
Summary
7. Potential Drug–Drug Interaction with Statins and Lipid-Modified Agents
Summary
8. Potential Drug–Drug Interaction with Antibiotics and Antifungal Drugs
Summary
9. Potential Drug–Drug Interaction with Antiacid Drugs
Summary
10. Potential Drug–Drug Interaction with Antineoplastic and Immune-Modulating Agents
Summary
11. Potential Drug–Drug Interaction with Antiepileptic Agents
Summary
12. Potential Drug–Drug Interaction with Antiviral Agents for Human Immunodeficiency and Hepatitis C Viruses
Summary
13. Potential Drug–Drug Interaction with Anti-COVID-19 Agents
Summary
14. Potential Drug–Drug Interaction with Monoclonal Antibodies Anti Interleukin 6
Summary
15. Expert Opinion
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krijthe, B.P.; Kunst, A.; Benjamin, E.; Lip, G.Y.; Franco, O.; Hofman, A.; Witteman, J.C.; Stricker, B.H.; Heeringa, J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 2013, 34, 2746–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Eur. Soc. Cardiol. 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Hylek, E.M.; Phillips, K.A.; Chang, Y.; Henault, L.E.; Selby, J.V.; Singer, D.E. Prevalence of Diagnosed Atrial Fibrillation in Adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 2001, 285, 2370–2375. [Google Scholar] [CrossRef] [PubMed]
- Nobili, A.; Marengoni, A.; Tettamanti, M.; Salerno, F.; Pasina, L.; Franchi, C.; Iorio, A.; Marcucci, M.; Corrao, S.; Licata, G.; et al. Association between clusters of diseases and polypharmacy in hospitalized elderly patients: Results from the REPOSI study. Eur. J. Intern. Med. 2011, 22, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Proietti, M.; Raparelli, V.; Olshansky, B.; Lip, G.Y.H. Polypharmacy and major adverse events in atrial fibrillation: Observations from the AFFIRM trial. Clin. Res. Cardiol. 2015, 105, 412–420. [Google Scholar] [CrossRef]
- Leiss, W.; Méan, M.; Limacher, A.; Righini, M.; Jaeger, K.; Beer, J.H.; Osterwalder, J.; Frauchiger, B.; Matter, C.M.; Kucher, N.; et al. Polypharmacy is Associated with an Increased Risk of Bleeding in Elderly Patients with Venous Thromboembolism. J. Gen. Intern. Med. 2015, 30, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Dumbreck, S.; Flynn, A.; Nairn, M.; Wilson, M.; Treweek, S.; Mercer, S.; Alderson, P.; Thompson, A.; Payne, K.; Guthrie, B. Drug-disease and drug-drug interactions: Systematic examination of recommendations in 12 UK national clinical guidelines. BMJ 2015, 350, h949. [Google Scholar] [CrossRef] [Green Version]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T., Jr.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation 2019, 140, e125–e151, Correction in Circulation 2019, 140, e285. [Google Scholar] [CrossRef]
- Kakkos, S.K.; Gohel, M.; Baekgaard, N.; Bauersachs, R.; Bellmunt-Montoya, S.; Black, S.A.; Cate-Hoek, A.J.T.; Elalamy, I.; Enzmann, F.K.; Geroulakos, G.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2021 Clinical Practice Guidelines on the Management of Venous Thrombosis. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 9–82. [Google Scholar] [CrossRef]
- Stangier, J.; Rathgen, K.; Stähle, H.; Gansser, D.; Roth, W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br. J. Clin. Pharmacol. 2007, 64, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Stangier, J.; Stähle, H.; Rathgen, K.; Fuhr, R. Pharmacokinetics and Pharmacodynamics of the Direct Oral Thrombin Inhibitor Dabigatran in Healthy Elderly Subjects. Clin. Pharmacokinet. 2008, 47, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.J.P.; Orwat, M.J.; Koch, S.; Rossi, K.A.; Alexander, R.S.; Smallwood, A.; Wong, P.C.; Rendina, A.R.; Luettgen, J.M.; Knabb, R.M.; et al. Discovery of 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro- 1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a Highly Potent, Selective, Efficacious, and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa. J. Med. Chem. 2007, 50, 5339–5356. [Google Scholar] [CrossRef] [PubMed]
- Perzborn, E.; Strassburger, J.; Wilmen, A.; Pohlmann, J.; Roehrig, S.; Schlemmer, K.-H.; Straub, A. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939-an oral, direct Factor Xa inhibitor. J. Thromb. Haemost. 2005, 3, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Furugohri, T.; Isobe, K.; Honda, Y.; Kamisato-Matsumoto, C.; Sugiyama, N.; Nagahara, T.; Morishima, Y.; Shibano, T. DU-176b, a potent and orally active factor Xa inhibitor:in vitroandin vivopharmacological profiles. J. Thromb. Haemost. 2008, 6, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Kubitza, D.; Becka, M.; Voith, B.; Zuehlsdorf, M.; Wensing, G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin. Pharmacol. Ther. 2005, 78, 412–421. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Wensing, G.; Voith, B.; Zuehlsdorf, M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—An oral, direct Factor Xa inhibitor—After multiple dosing in healthy male subjects. Eur. J. Clin. Pharmacol. 2005, 61, 873–880. [Google Scholar] [CrossRef]
- Frost, C.; Nepal, S.; Wang, J.; Schuster, A.; Byon, W.; Boyd, R.A.; Yu, Z.; Shenker, A.; Barrett, Y.C.; Mosqueda-Garcia, R.; et al. Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor X a inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 2013, 76, 776–786. [Google Scholar] [CrossRef]
- Frost, C.; Wang, J.; Nepal, S.; Schuster, A.; Barrett, Y.C.; Mosqueda-Garcia, R.; Reeves, R.A.; LaCreta, F. Apixaban, an oral, direct factor X a inhibitor: Single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br. J. Clin. Pharmacol. 2013, 75, 476–487. [Google Scholar] [CrossRef]
- Ogata, K.; Mendell-Harary, J.; Tachibana, M.; Masumoto, H.; Oguma, T.; Kojima, M.; Kunitada, S. Clinical Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Novel Factor Xa Inhibitor Edoxaban in Healthy Volunteers. J. Clin. Pharmacol. 2010, 50, 743–753. [Google Scholar] [CrossRef]
- Wang, Z.; Frost, C.; Shenker, A.; Barrett, Y.C. Clinical laboratory measurement of direct factor Xa inhibitors: Anti-Xa assay is preferable to prothrombin time assay. Thromb. Haemost. 2010, 104, 1263–1271. [Google Scholar] [CrossRef]
- Frost, C.E.; Song, Y.; Shenker, A.; Wang, J.; Barrett, Y.C.; Schuster, A.; Harris, S.I.; LaCreta, F. Effects of Age and Sex on the Single-Dose Pharmacokinetics and Pharmacodynamics of Apixaban. Clin. Pharmacokinet. 2015, 54, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubitza, D.; Berkowitz, S.D.; Misselwitz, F. Evidence-Based Development and Rationale for Once-Daily Rivaroxaban Dosing Regimens Across Multiple Indications. Clin. Appl. Thromb. 2016, 22, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, J.; Granger, C.B.; Weitz, J.I.; Aisenberg, J. Novel oral anticoagulants in gastroenterology practice. Gastrointest. Endosc. 2013, 78, 227–239. [Google Scholar] [CrossRef]
- Müller, W.E.; Wollert, U. Circular dichroism studies on the interaction of sulfonylureas with bovine and human serum albumin. Res. Commun. Chem. Pathol. Pharmacol. 1976, 13, 551–554. [Google Scholar] [PubMed]
- Gong, I.Y.; Kim, R.B. Importance of Pharmacokinetic Profile and Variability as Determinants of Dose and Response to Dabigatran, Rivaroxaban, and Apixaban. Can. J. Cardiol. 2013, 29, S24–S33. [Google Scholar] [CrossRef]
- Wolking, S.; Schaeffeler, E.; Lerche, H.; Schwab, M.; Nies, A.T. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin. Pharmacokinet. 2015, 54, 709–735. [Google Scholar] [CrossRef]
- Stampfuss, J.; Kubitza, D.; Becka, M.; Mueck, W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int. J. Clin. Pharmacol. Ther. 2013, 51, 549–561. [Google Scholar] [CrossRef]
- Mendell, J.; Noveck, R.J.; Shi, M. Pharmacokinetics of the direct factor Xa inhibitor edoxaban and digoxin administered alone and in combination. J. Cardiovasc. Pharmacol. 2012, 60, 335–341. [Google Scholar] [CrossRef]
- Frost, C.; Garonzik, S.; Shenker, A.; Barrett, Y.C.; LaCreta, F. Apixaban Single-Dose Pharmacokinetics, Bioavailability, Renal Clearance, and Pharmacodynamics Following Intravenous and Oral Administration. Clin. Pharmacol. Drug Dev. 2021, 10, 974–984. [Google Scholar] [CrossRef]
- Corsini, A.; Ferri, N.; Proietti, M.; Boriani, G. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs 2020, 80, 1065–1083. [Google Scholar] [CrossRef]
- Frost, C.; Song, Y.; Yu, Z.; Wang, J.; Lee, L.S.; Schuster, A.; Pollack, A.; LaCreta, F. The effect of apixaban on the pharmacokinetics of digoxin and atenolol in healthy subjects. Clin. Pharmacol. Adv. Appl. 2017, 9, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stangier, J.; Stähle, H.; Rathgen, K.; Roth, W.; Reseski, K.; Körnicke, T. Pharmacokinetics and Pharmacodynamics of Dabigatran Etexilate, an Oral Direct Thrombin Inhibitor, With Coadministration of Digoxin. J. Clin. Pharmacol. 2012, 52, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kubitza, D.; Becka, M.; Roth, A.; Mueck, W. Absence of Clinically Relevant Interactions between Rivaroxaban—an Oral, Direct Factor Xa Inhibitor—and Digoxin or Atorvastatin in Healthy Subjects. J. Int. Med. Res. 2012, 40, 1688–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendell, J.; Zahir, H.; Matsushima, N.; Noveck, R.; Lee, F.; Chen, S.; Zhang, G.; Shi, M. Drug-Drug Interaction Studies of Cardiovascular Drugs Involving P-Glycoprotein, an Efflux Transporter, on the Pharmacokinetics of Edoxaban, an Oral Factor Xa Inhibitor. Am. J. Cardiovasc. Drugs 2013, 13, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, S.K.; Reiffel, J.A.; Boiron, R.; Wieloch, M. Risk of Major Bleeding in Patients With Atrial Fibrillation Taking Dronedarone in Combination With a Direct Acting Oral Anticoagulant (From a U.S. Claims Database). Am. J. Cardiol. 2021, 159, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Gelosa, P.; Castiglioni, L.; Tenconi, M.; Baldessin, L.; Racagni, G.; Corsini, A.; Bellosta, S. Pharmacokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs). Pharmacol. Res. 2018, 135, 60–79. [Google Scholar] [CrossRef]
- Pradaxa, INN-Dabigatran Etexilate. Available online: https://www.ema.europa.eu/en/documents/overview/pradaxa-epar-medicine-overview_en.pdf (accessed on 31 March 2022).
- Latini, R.; Tognoni, G.; Kates, R.E. Clinical Pharmacokinetics of Amiodarone. Clin. Pharmacokinet. 1984, 9, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, K.-H.; Lehr, T.; Dansirikul, C.; Reilly, P.A.; Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Wallentin, L.; Haertter, S.; Staab, A. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J. Thromb. Haemost. 2011, 9, 2168–2175. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chou, I.-J.; Yeh, Y.-H.; Chiou, M.-J.; Wen, M.-S.; Kuo, C.-T.; See, L.-C.; Kuo, C.-F. Association Between Use of Non–Vitamin K Oral Anticoagulants With and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation. JAMA 2017, 318, 1250–1259. [Google Scholar] [CrossRef]
- Härtter, S.; Sennewald, R.; Nehmiz, G.; Reilly, P. Oral bioavailability of dabigatran etexilate (Pradaxa®) after co-medication with verapamil in healthy subjects. Br. J. Clin. Pharmacol. 2013, 75, 1053–1062. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Guidance for Industry. Drug Interaction Studies—Design, Data Analysis, Implications for Dosing, and Labeling Instructions. 2018. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf (accessed on 6 June 2018).
- Matsushima, N.; Lee, F.; Sato, T.; Weiss, D.; Mendell, J. Bioavailability and Safety of the Factor Xa Inhibitor Edoxaban and the Effects of Quinidine in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2013, 2, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Giugliano, R.P.; Braunwald, E.; Murphy, S.A.; Atar, D.; Heidbuchel, H.; Camm, A.J.; Antman, E.M.; Ruff, C.T. Edoxaban vs. warfarin in patients with atrial fibrillation on amiodarone: A subgroup analysis of the ENGAGE AF-TIMI 48 trial. Eur. Heart J. 2015, 36, 2239–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabauer, M.; Gerth, A.; Limbourg, T.; Schneider, S.; Oeff, M.; Kirchhof, P.; Goette, A.; Lewalter, T.; Ravens, U.; Meinertz, T.; et al. The Registry of the German Competence NETwork on Atrial Fibrillation: Patient characteristics and initial management. Europace 2009, 11, 423–434. [Google Scholar] [CrossRef]
- Fox, K.A.A.; Velentgas, P.; Camm, A.J.; Bassand, J.-P.; Fitzmaurice, D.A.; Gersh, B.J.; Goldhaber, S.Z.; Goto, S.; Haas, S.; Misselwitz, F.; et al. Outcomes Associated With Oral Anticoagulants Plus Antiplatelets in Patients With Newly Diagnosed Atrial Fibrillation. JAMA Netw. Open 2020, 3, e200107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depta, J.P.; Cannon, C.P.; Fonarow, G.C.; Zhao, X.; Peacock, W.F.; Bhatt, D.L. Patient Characteristics Associated With the Choice of Triple Antithrombotic Therapy in Acute Coronary Syndromes. Am. J. Cardiol. 2009, 104, 1171–1178. [Google Scholar] [CrossRef]
- Mega, J.L.; Braunwald, E.; Wiviott, S.D.; Bassand, J.-P.; Bhatt, D.L.; Bode, C.; Burton, P.; Cohen, M.; Cook-Bruns, N.; Fox, K.A.A.; et al. Rivaroxaban in Patients with a Recent Acute Coronary Syndrome. N. Engl. J. Med. 2012, 366, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Steffel, J.; Verhamme, P.; Potpara, T.S.; Albaladejo, P.; Antz, M.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Heart J. 2018, 39, 1330–1393. [Google Scholar] [CrossRef] [Green Version]
- Lopes, R.D.; Heizer, G.; Aronson, R.; Vora, A.N.; Massaro, T.; Mehran, R.; Goodman, S.G.; Windecker, S.; Darius, H.; Li, J.; et al. Antithrombotic Therapy after Acute Coronary Syndrome or PCI in Atrial Fibrillation. N. Engl. J. Med. 2019, 380, 1509–1524. [Google Scholar] [CrossRef] [Green Version]
- Perera, K.S.; Ng, K.K.H.; Nayar, S.; Catanese, L.; Dyal, L.; Sharma, M.; Connolly, S.J.; Yusuf, S.; Bosch, J.; Eikelboom, J.W.; et al. Association between Low-Dose Rivaroxaban with or without Aspirin and Ischemic Stroke Subtypes: A Secondary Analysis of the COMPASS Trial. JAMA Neurol. 2019, 77, 43–48. [Google Scholar] [CrossRef]
- Vranckx, P.; Valgimigli, M.; Eckardt, L.; Tijssen, J.; Lewalter, T.; Gargiulo, G.; Batushkin, V.; Campo, G.; Lysak, Z.; Vakaliuk, I.; et al. Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): A randomised, open-label, phase 3b trial. Lancet 2019, 394, 1335–1343. [Google Scholar] [CrossRef]
- Gibson, C.M.; Mehran, R.; Bode, C.; Halperin, J.; Verheugt, F.W.; Wildgoose, P.; Birmingham, M.; Ianus, J.; Burton, P.; van Eickels, M.; et al. Prevention of Bleeding in Patients with Atrial Fibrillation Undergoing PCI. N. Engl. J. Med. 2016, 375, 2423–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, C.P.; Bhatt, D.L.; Oldgren, J.; Lip, G.Y.; Ellis, S.G.; Kimura, T.; Maeng, M.; Merkely, B.; Zeymer, U.; Gropper, S.; et al. Dual Antithrombotic Therapy with Dabigatran after PCI in Atrial Fibrillation. N. Engl. J. Med. 2017, 377, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.; Lee, F.; Chen, S.; Worland, V.; Shi, M.; Samama, M.M. The Effects of the Antiplatelet Agents, Aspirin and Naproxen, on Pharmacokinetics and Pharmacodynamics of the Anticoagulant Edoxaban, a Direct Factor Xa Inhibitor. J. Cardiovasc. Pharmacol. 2013, 62, 212–221. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Mueck, W.; Zuehlsdorf, M. Safety, Tolerability, Pharmacodynamics, and Pharmacokinetics of Rivaroxaban-an Oral, Direct Factor Xa Inhibitor-Are Not Affected by Aspirin. J. Clin. Pharmacol. 2006, 46, 981–990. [Google Scholar] [CrossRef]
- Davidson, B.L.; Verheijen, S.; Lensing, A.W.A.; Gebel, M.; Brighton, T.A.; Lyons, R.M.; Rehm, J.; Prins, M.H. Bleeding Risk of Patients With Acute Venous Thromboembolism Taking Nonsteroidal Anti-Inflammatory Drugs or Aspirin. JAMA Intern. Med. 2014, 174, 947–953. [Google Scholar] [CrossRef]
- Wessler, J.D.; Grip, L.T.; Mendell, J.; Giugliano, R.P. The P-Glycoprotein Transport System and Cardiovascular Drugs. J. Am. Coll. Cardiol. 2013, 61, 2495–2502. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Shin, D.; Lim, K.S.; Lee, S.; Jung, K.-H.; Chu, K.; Hong, K.S.; Shin, K.-H.; Cho, J.-Y.; Yoon, S.H.; et al. Aspirin Decreases Systemic Exposure to Clopidogrel Through Modulation of P-Glycoprotein But Does Not Alter Its Antithrombotic Activity. Clin. Pharmacol. Ther. 2014, 95, 608–616. [Google Scholar] [CrossRef]
- Marsousi, N.; Doffey-Lazeyras, F.; Rudaz, S.; Desmeules, J.A.; Daali, Y. Intestinal permeability and P-glycoprotein-mediated efflux transport of ticagrelor in Caco-2 monolayer cells. Fundam. Clin. Pharmacol. 2016, 30, 577–584. [Google Scholar] [CrossRef]
- Xu, H.; Ruff, C.T.; Giugliano, R.P.; Murphy, S.A.; Nordio, F.; Patel, I.; Shi, M.; Mercuri, M.; Antman, E.M.; Braunwald, E. Concomitant Use of Single Antiplatelet Therapy With Edoxaban or Warfarin in Patients with Atrial Fibrillation: Analysis From the ENGAGE AF-TIMI48 Trial. J. Am. Heart Assoc. 2016, 5, e002587. [Google Scholar] [CrossRef] [Green Version]
- Härtter, S.; Sennewald, R.; Schepers, C.; Baumann, S.; Fritsch, H.; Friedman, J. Pharmacokinetic and pharmacodynamic effects of comedication of clopidogrel and dabigatran etexilate in healthy male volunteers. Eur. J. Clin. Pharmacol. 2013, 69, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Pradaxa 150 mg Hard Capsules. Summary of Product Characteristics (SPC)d(eMC). Last Updated on eMC 30 January 2015. Available online: http://www.medicines.org.uk/emc/medicine/24839 (accessed on 18 May 2015).
- Dalgaard, F.; Mulder, H.; Wojdyla, D.M.; Lopes, R.D.; Held, C.; Alexander, J.H.; De Caterina, R.; Washam, J.B.; Hylek, E.M.; Garcia, D.A.; et al. Patients with Atrial Fibrillation Taking Nonsteroidal Anti-Inflammatory Drugs and Oral Anticoagulants in the ARISTOTLE Trial. Circulation 2020, 141, 10–20. [Google Scholar] [CrossRef]
- Kent, A.P.; Brueckmann, M.; Fraessdorf, M.; Connolly, S.J.; Yusuf, S.; Eikelboom, J.W.; Oldgren, J.; Reilly, P.A.; Wallentin, L.; Ezekowitz, M.D. Concomitant Oral Anticoagulant and Nonsteroidal Anti-Inflammatory Drug Therapy in Patients With Atrial Fibrillation. J. Am. Coll. Cardiol. 2018, 72, 255–267. [Google Scholar] [CrossRef]
- Frost, C.; Shenker, A.; Gandhi, M.D.; Pursley, J.; Barrett, Y.C.; Wang, J.; Zhang, D.; Byon, W.; Boyd, R.A.; LaCreta, F. Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban. Br. J. Clin. Pharmacol. 2014, 78, 877–885. [Google Scholar] [CrossRef] [Green Version]
- El Husseini, N.; Goldstein, L.B.; Peterson, E.D.; Zhao, X.; Pan, W.; Olson, D.M.; Zimmer, L.O.; Williams, J.W.; Bushnell, C.; Laskowitz, D.T. Depression and Antidepressant Use After Stroke and Transient Ischemic Attack. Stroke 2012, 43, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-H.; Chen, C.-M.; Wang, C.-L.; Tu, H.-T.; Huang, Y.-T.; Wu, H.-C.; Chang, C.-H.; Chang, S.-H. Major Bleeding Risk in Patients with Non-valvular Atrial Fibrillation Concurrently Taking Direct Oral Anticoagulants and Antidepressants. Front. Aging Neurosci. 2022, 14, 791285. [Google Scholar] [CrossRef]
- Di, Y.M.; Li, C.G.; Xue, C.C.; Zhou, S.F. Clinical drugs that interact with St. John’s wort and implication in drug development. Curr. Pharm. Des. 2008, 14, 1723–1742. [Google Scholar] [CrossRef]
- Ruschitzka, F.; Meier, P.J.; Turina, M.; Lüscher, T.F.; Noll, G. Acute heart transplant rejection due to Saint John’s wort. Lancet 2000, 355, 548–549. [Google Scholar] [CrossRef]
- Di Minno, A.; Frigerio, B.; Spadarella, G.; Ravani, A.; Sansaro, D.; Amato, M.; Kitzmiller, J.P.; Pepi, M.; Tremoli, E.; Baldassarre, D. Old and new oral anticoagulants: Food, herbal medicines and drug interactions. Blood Rev. 2017, 31, 193–203. [Google Scholar] [CrossRef]
- Oswald, S.; Haenisch, S.; Fricke, C.; Sudhop, T.; Remmler, C.; Giessmann, T.; Jedlitschky, G.; Adam, U.; Dazert, E.; Warzok, R. Intestinal expression of P-glycoprotein (ABCB1), multidrug resistance associated protein 2 (ABCC2), and uridine diphosphate–glucuronosyltransferase 1A1 predicts the disposition and modulates the effects of the cholesterol absorption inhibitor ezetimibe in humans. Clin. Pharmacol. Ther. 2006, 79, 206–217. [Google Scholar] [CrossRef]
- Scholz, I.; Liakoni, E.; Hammann, F.; Grafinger, K.E.; Duthaler, U.; Nagler, M.; Krähenbühl, S.; Haschke, M. Effects of Hypericum perforatum (St John’s wort) on the pharmacokinetics and pharmacodynamics of rivaroxaban in humans. Br. J. Clin. Pharmacol. 2020, 87, 1466–1474. [Google Scholar] [CrossRef]
- Bellosta, S.; Paoletti, R.; Corsini, A. Safety of Statins: Focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109, III50–III57. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, T.; Macdonald, E.M.; Yao, Z.; Hollands, S.; Gomes, T.; Tadrous, M.; Mamdani, M.M.; Juurlink, D.N. Association between statin use and ischemic stroke or major hemorrhage in patients taking dabigatran for atrial fibrillation. Can. Med. Assoc. J. 2017, 189, E4–E10. [Google Scholar] [CrossRef] [Green Version]
- Stangier, J.; Rathgen, K.; Stahle, H.; Reseski, K.; Kornicke, T.; Roth, W. Coadministration of dabigatran etexilate and atorvastatin: Assessment of potential impact on pharmacokinetics and pharmacodynamics. Am. J. Cardiovasc. Drugs Drugs Devices Other Interv. 2009, 9, 59–68. [Google Scholar] [CrossRef]
- Bolek, T.; Samoš, M.; Stančiaková, L.; Škorňová, I.; Grilusová, K.; Galajda, P.; Staško, J.; Kubisz, P.; Mokáň, M. The impact of atorvastatin on dabigatran plasma levels in patients with atrial fibrillation. Blood Coagul. Fibrinolysis 2020, 32, 69–71. [Google Scholar] [CrossRef]
- Yamazaki, M.; Li, B.; Louie, S.W.; Pudvah, N.T.; Stocco, R.; Wong, W.; Abramovitz, M.; Demartis, A.; Laufer, R.; Hochman, J.H.; et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica 2005, 35, 737–753. [Google Scholar] [CrossRef]
- Ferri, N.; Bellosta, S.; Baldessin, L.; Boccia, D.; Racagni, G.; Corsini, A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol. Res. 2016, 111, 592–599. [Google Scholar] [CrossRef]
- Steffel, J.; Verhamme, P.; Potpara, T.S.; Albaladejo, P.; Antz, M.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Rol-dan-Schilling, V.; et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: Executive summary. EP Eur. 2018, 20, 1231–1242. [Google Scholar] [CrossRef]
- Mueck, W.; Kubitza, D.; Becka, M. Co-administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects. Br. J. Clin. Pharmacol. 2013, 76, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Parasrampuria, D.A.; Mendell, J.; Shi, M.; Matsushima, N.; Zahir, H.; Truitt, K. Edoxaban drug–drug interactions with ketoconazole, erythromycin, and cyclosporine. Br. J. Clin. Pharmacol. 2016, 82, 1591–1600. [Google Scholar] [CrossRef]
- Brings, A.; Lehmann, M.; Foerster, K.I.; Burhenne, J.; Weiss, J.; Haefeli, W.E.; Czock, D. Perpetrator effects of ciclosporin (P-glycoprotein inhibitor) and its combination with fluconazole (CYP3A inhibitor) on the pharmacokinetics of rivaroxaban in healthy volunteers. Br. J. Clin. Pharmacol. 2019, 85, 1528–1537. [Google Scholar] [CrossRef]
- Holt, A.; Strange, J.E.; Rasmussen, P.V.; Blanche, P.; Nouhravesh, N.; Jensen, M.H.; Schjerning, A.-M.; Schou, M.; Torp-Pedersen, C.; Gislason, G.H.; et al. Bleeding Risk Following Systemic Fluconazole or Topical Azoles in Patients with Atrial Fibrillation on Apixaban, Rivaroxaban, or Dabigatran. Am. J. Med. 2021, 135, 595–602.e5. [Google Scholar] [CrossRef]
- Frost, C.E.; Byon, W.; Song, Y.; Wang, J.; Schuster, A.E.; Boyd, R.A.; Zhang, D.; Yu, Z.; Dias, C.; Shenker, A.; et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Br. J. Clin. Pharmacol. 2015, 79, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Mendell, J.; Chen, S.; He, L.; Desai, M.; Parasramupria, D.A. The Effect of Rifampin on the Pharmacokinetics of Edoxaban in Healthy Adults. Clin. Drug Investig. 2015, 35, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Vavricka, S.R.; Van Montfoort, J.; Ha, H.R.; Meier, P.J.; Fattinger, K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002, 36, 164–172. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Sweet, S.; Winchester, C.; Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: A systematic review. Gut 2014, 63, 871–880. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Prescribing Information for Savaysa (Edoxaban). 2015. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/206316lbl.pdf (accessed on 4 July 2018).
- Parasrampuria, D.A.; Kanamaru, T.; Connor, A.; Wilding, I.; Ogata, K.; Shimoto, Y.; Kunitada, S. Evaluation of regional gastrointestinal absorption of edoxaban using the enterion capsule. J. Clin. Pharmacol. 2015, 55, 1286–1292. [Google Scholar] [CrossRef]
- Bolek, T.; Samoš, M.; Stančiaková, L.; Ivanková, J.; Škorňová, I.; Staško, J.; Galajda, P.; Kubisz, P.; Mokáň, M. The Impact of Proton Pump Inhibition on Dabigatran Levels in Patients with Atrial Fibrillation. Am. J. Ther. 2019, 26, e308–e313. [Google Scholar] [CrossRef]
- Kuwayama, T.; Osanai, H.; Ajioka, M.; Tokuda, K.; Ohashi, H.; Tobe, A.; Yoshida, T.; Masutomi, T.; Kambara, T.; Inoue, Y.; et al. Influence of proton pump inhibitors on blood dabigatran concentrations in Japanese patients with non-valvular atrial fibrillation. J. Arrhythmia 2017, 33, 619–623. [Google Scholar] [CrossRef]
- Bolek, T.; Samoš, M.; Škorňová, I.; Schnierer, M.; Lipták, P.; Bánovčin, P.; Urban, L.; Staško, J.; Kubisz, P.; Galajda, P.; et al. Dabigatran levels in omeprazole versus pantoprazole-treated patients with atrial fibrillation: Is there a difference? Eur. J. Clin. Pharmacol. 2019, 75, 875–877. [Google Scholar] [CrossRef]
- Stangier, J.; Eriksson, B.I.; Dahl, O.E.; Ahnfelt, L.; Nehmiz, G.; Stähle, H.; Rathgen, K.; Svärd, R. Pharmacokinetic Profile of the Oral Direct Thrombin Inhibitor Dabigatran Etexilate in Healthy Volunteers and Patients Undergoing Total Hip Replacement. J. Clin. Pharmacol. 2005, 45, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Schnierer, M.; Samoš, M.; Bolek, T.; Škorňová, I.; Nosáková, L.; Bánovčin, P.; Galajda, P.; Stasko, J.; Kubisz, P.; Hyrdel, R.; et al. The Effect of Proton Pump Inhibitor Withdrawal on Dabigatran Etexilate Plasma Levels in Patients With Atrial Fibrillation. J. Cardiovasc. Pharmacol. 2020, 75, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.A.; Chung, C.P.; Murray, K.T.; Smalley, W.E.; Daugherty, J.R.; Dupont, W.D.; Stein, C.M. Association of Oral Anticoagulants and Proton Pump Inhibitor Cotherapy with Hospitalization for Upper Gastrointestinal Tract Bleeding: A Washout Study. JAMA 2018, 320, 2221–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrignani, M.G.; Gatta, L.; Gabrielli, D.; Milazzo, G.; De Francesco, V.; De Luca, L.; Francese, M.; Imazio, M.; Riccio, E.; Rossini, R.; et al. Gastroprotection in patients on antiplatelet and/or anticoagulant therapy: A position paper of National Association of Hospital Cardiologists (ANMCO) and the Italian Association of Hospital Gastroenterologists and Endoscopists (AIGO). Eur. J. Intern. Med. 2021, 85, 1–13. [Google Scholar] [CrossRef]
- Parasrampuria, D.A.; Truitt, K.E. Pharmacokinetics and Pharmacodynamics of Edoxaban, a Non-Vitamin K Antagonist Oral Anticoagulant that Inhibits Clotting Factor Xa. Clin. Pharmacokinet. 2016, 55, 641–655. [Google Scholar] [CrossRef] [Green Version]
- Pauli-Magnus, C.; Rekersbrink, S.; Klotz, U.; Fromm, M.F. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 2001, 364, 551–557. [Google Scholar] [CrossRef]
- Moore, K.T.; Plotnikov, A.N.; Thyssen, A.; Vaccaro, N.; Ariyawansa, J.; Burton, P.B. Effect of Multiple Doses of Omeprazole on the Pharmacokinetics, Pharmacodynamics, and Safety of a Single Dose of Rivaroxaban. J. Cardiovasc. Pharmacol. 2011, 58, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Raskob, G.E.; Van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Bauersachs, R.; Brenner, B.; Campanini, M.; Cohen, A.; Connors, J.M.; Fontanella, A.; Gussoni, G.; Huisman, M.V.; et al. Apixaban versus Dalteparin for the Treatment of Acute Venous Thromboembolism in Patients with Cancer: The Caravaggio Study. Thromb. Haemost. 2018, 118, 1668–1678. [Google Scholar] [CrossRef] [Green Version]
- Khalid, S.; Yasar, S.; Khalid, A.; Spiro, T.; Haddad, A.; Daw, H. Management of Atrial Fibrillation in Patients on Ibrutinib: A Cleveland Clinic Experience. Cureus 2018, 10, e2701. [Google Scholar] [CrossRef] [Green Version]
- Verso, M.; Munoz, A.; Bauersachs, R.; Huisman, M.V.; Mandalà, M.; Vescovo, G.; Becattini, C.; Agnelli, G. Effects of concomitant administration of anticancer agents and apixaban or dalteparin on recurrence and bleeding in patients with cancer-associated venous thromboembolism. Eur. J. Cancer 2021, 148, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, J.A.; de Vries, M.; Krauwinkel, W.; Ohtsu, Y.; Noukens, J.; van der Walt, J.-S.; Mol, R.; Mordenti, J.; Ouatas, T. Pharmacokinetic Drug Interaction Studies with Enzalutamide. Clin. Pharmacokinet. 2015, 54, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, J.A.; Ouatas, T.; Krauwinkel, W.; Otsu, Y.; Van Der Walt, J.-S.; Beddo, V.; De Vries, M.; Mordenti, J. Clinical Pharmacokinetic Studies of Enzalutamide. Clin. Pharmacokinet. 2015, 54, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorana, A. The wacky hypercoagulable state of malignancy. Blood 2015, 126, 430–431. [Google Scholar] [CrossRef] [Green Version]
- Pacholczak-Madej, R.; Bazan-Socha, S.; Zaręba, L.; Undas, A.; Dropiński, J. Direct oral anticoagulants in the prevention of stroke in breast cancer patients with atrial fibrillation during adjuvant endocrine therapy: A cohort study. Int. J. Cardiol. 2021, 324, 78–83. [Google Scholar] [CrossRef]
- Lemahieu, W.P.D.; Maes, B.D.; Verbeke, K.; Vanrenterghem, Y. CYP3A4 and P-Glycoprotein Activity in Healthy Controls and Transplant Patients on Cyclosporin vs. Tacrolimus vs. Sirolimus. Am. J. Transplant. 2004, 4, 1514–1522. [Google Scholar] [CrossRef]
- Bashir, B.; Stickle, D.F.; Chervoneva, I.; Kraft, W.K. Drug-Drug Interaction Study of Apixaban with Cyclosporine and Tacrolimus in Healthy Volunteers. Clin. Transl. Sci. 2018, 11, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Bixby, A.L.; Shaikh, S.A.; Naik, A.S.; Cotiguala, L.; McMurry, K.; Samaniego-Picota, M.D.; Marshall, V.D.; Park, J.M. Safety and efficacy of direct-acting oral anticoagulants versus warfarin in kidney transplant recipients: A retrospective single-center cohort study. Transpl. Int. 2020, 33, 740–751. [Google Scholar] [CrossRef]
- Smythe, M.A.; Burns, C.; Liu, Q.; Garwood, C.L. Potential Dexamethasone–Direct Oral Anticoagulant Drug Interaction: Is This a Concern in COVID? Ann. Pharmacother. 2022, 56, 319–329. [Google Scholar] [CrossRef]
- Holt, A.; Blanche, P.; Zareini, B.; Rasmussen, P.V.; Strange, J.E.; Rajan, D.; Jensen, M.H.; El-Sheikh, M.; Schjerning, A.-M.; Schou, M.; et al. Gastrointestinal bleeding risk following concomitant treatment with oral glucocorticoids in patients on non-vitamin K oral anticoagulants. Heart 2021, 108, 626–632. [Google Scholar] [CrossRef]
- Gilad, R. Management of Seizures following a Stroke: What are the options? Drugs Aging 2012, 29, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Stöllberger, C.; Finsterer, J. Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs. Epilepsy Res. 2016, 126, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.D.; Kirby, B.J.; Wang, L.; Song, Q.; Ling, J.; Massetto, B.; Worth, A.; Kearney, B.P.; Mathias, A. Cytochrome P450 3A Induction Predicts P-glycoprotein Induction; Part 2: Prediction of Decreased Substrate Exposure After Rifabutin or Carbamazepine. Clin. Pharmacol. Ther. 2018, 104, 1191–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, R.C.; Adcock, D.M.; Bates, S.M.; Douxfils, J.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Kawai, Y.; Lindhoff-Last, E.; Kitchen, S. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2018, 118, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Mathy, F.-X.; Dohin, E.; Bonfitto, F.; Pelgrims, B. Drug-drug interaction between levetiracetam and non-vitamin K antagonist anticoagulants. Eur. Heart J. 2019, 40, 1571. [Google Scholar] [CrossRef]
- Levy, R.; Ragueneau-Majlessi, I.; Baltes, E. Repeated administration of the novel antiepileptic agent levetiracetam does not alter digoxin pharmacokinetics and pharmacodynamics in healthy volunteers. Epilepsy Res. 2001, 46, 93–99. [Google Scholar] [CrossRef]
- Koudriakova, T.; Iatsimirskaia, E.; Utkin, I.; Gangl, E.; Vouros, P.; Storozhuk, E.; Orza, D.; Marinina, J.; Gerber, N. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: Mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab. Dispos. 1998, 26, 552–561. [Google Scholar]
- Mathias, A.A.; German, P.; Murray, B.P.; Wei, L.; Jain, A.; West, S.; Warren, D.; Hui, J.; Kearney, B.P. Pharmacokinetics and Pharmacodynamics of GS-9350: A Novel Pharmacokinetic Enhancer Without Anti-HIV Activity. Clin. Pharmacol. Ther. 2010, 87, 322–329. [Google Scholar] [CrossRef]
- Yang, Y.; Chiang, H.; Yip, H.; Chen, K.; Chiang, J.Y.; Lee, M.S.; Sung, P. Risk of New-Onset Atrial Fibrillation Among Asian Chronic Hepatitis C Virus Carriers: A Nationwide Population-Based Cohort Study. J. Am. Heart Assoc. 2019, 8, e012914. [Google Scholar] [CrossRef]
- Raschi, E.; Poluzzi, E.; Koci, A.; Salvo, F.; Pariente, A.; Biselli, M.; Moretti, U.; Moore, N.; De Ponti, F. Liver injury with novel oral anticoagulants: Assessing post-marketing reports in the US Food and Drug Administration adverse event reporting system. Br. J. Clin. Pharmacol. 2015, 80, 285–293. [Google Scholar] [CrossRef]
- Kosloski, M.P.; Bow, D.A.; Kikuchi, R.; Wang, H.; Kim, E.J.; Marsh, K.; Mensa, F.; Kort, J.; Liu, W. Translation of In Vitro Transport Inhibition Studies to Clinical Drug-Drug Interactions for Glecaprevir and Pibrentasvir. J. Pharmacol. Exp. Ther. 2019, 370, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Garrison, K.; Kirby, B.; Stamm, L.; Ma, G.; Vu, A.; Ling, J.; Mathias, A. Drug-drug interaction profile of sofosbuvir/velpatasvir/ voxilaprevir fixed-dose combination. J. Hepatol. 2017, 66, S492–S493. [Google Scholar] [CrossRef]
- Kiang, T.K.L. Clinical Pharmacokinetics and Drug–Drug Interactions of Elbasvir/Grazoprevir. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 509–531. [Google Scholar] [CrossRef] [PubMed]
- Kirby, B.J.; Symonds, W.T.; Kearney, B.P.; Mathias, A.A. Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of the Hepatitis C Virus NS5B Polymerase Inhibitor Sofosbuvir. Clin. Pharmacokinet. 2015, 54, 677–690. [Google Scholar] [CrossRef]
- German, P.; Mathias, A.; Brainard, D.M.; Kearney, B.P. Drug–Drug Interaction Profile of the Fixed-Dose Combination Tablet Regimen Ledipasvir/Sofosbuvir. Clin. Pharmacokinet. 2018, 57, 1369–1383. [Google Scholar] [CrossRef]
- Clarivet, B.; Robin, P.; Pers, Y.M.; Ferreira, R.; Lebrun, J.; Jorgensen, C.; Hillaire-Buys, D.; Brés, V.; Faillie, J.L. Tocilizumab and mesenteric arterial thrombosis: Drug-drug interaction with anticoagulants metabolized by CYP 450 and/or by P-glycoprotein. Eur. J. Clin. Pharmacol. 2016, 72, 1413–1414. [Google Scholar] [CrossRef]
- Davis, J.D.; Bansal, A.; Hassman, D.; Akinlade, B.; Li, M.; Li, Z.; Swanson, B.; Hamilton, J.D.; DiCioccio, A.T. Evaluation of Potential Disease-Mediated Drug-Drug Interaction in Patients With Moderate-to-Severe Atopic Dermatitis Receiving Dupilumab. Clin. Pharmacol. Ther. 2018, 104, 1146–1154. [Google Scholar] [CrossRef]
- Zoni-Berisso, M.; Lercari, F.; Carazza, T.; Domenicucci, S. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 2014, 6, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Raymond, J.; Imbert, L.; Cousin, T.; Duflot, T.; Varin, R.; Wils, J.; Lamoureux, F. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J. Pers. Med. 2021, 11, 37. [Google Scholar] [CrossRef]
Dabigatran | Rivaroxaban | Apixaban | Edoxaban | |
---|---|---|---|---|
Target | Thrombin | fXa | fXa | fXa |
Ki (nmol/L) | 4.5 | 0.4 | 0.08 | 0.56 |
Bioavailability | 6.5% (absolute) | 80% (absolute) | 66% (absolute) | 60% (absolute) |
Effect of food | Delayed and not reduced absorption | Increased absorption (20 mg) | None | None |
Administered with food | No | Yes * | No | No |
Vd (L) | 60–70 | 50 | 21 | >300 |
Protein bound | 35% | >90% | 87% | 40–59% |
prodrug | Yes | No | No | No |
Tmax (h) | 1–3 | 2–4 | 3–4 | 2 |
Peak levels (ng/mL) ** | 175 (117–275) | 249 (184–343) | 171 (91–321) | 170 (125–245) |
Trough levels (ng/mL) ** | 91 (61–143) | 44 (12–137) | 103 (41–230) | 36 (16–62) |
Half-life (h) | 12–17 | 5–9 (healthy) | 8–15 | 8–11 |
Metabolism (CYP) | Conjugation | 3A4 (18%), 2J2, and CYP independent | 3A4 (25%), 1A2, 2J2, 2C8, 2C9, 2C19 | 3A4 (<4%) |
P-gp substrate | Yes (only prodrug) | Yes | Yes | Yes |
Substrate of other transporters | Not known | BCRP/ABCG2 | BCRP/ABCG2 | Not known |
Renal elimination | 80% | 35% | 27% | 50% |
Hemodialysis elimination | 60–70% | Unlikely | Unlikely | Unlikely |
Administration frequency | Double daily dose | Once daily dose | Double daily dose | Once daily dose |
Concomitant Drug | Effect on DOACs Concentration | ||||
---|---|---|---|---|---|
Cardiovascular Drugs | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Amiodarone | Moderate P-gp competition | ●+12 to 60% | ●Minor effect | ●Modest increase of concentrations | ●+40% AUC |
Digoxin | P-gp competition | No effect | No effect | No effect | No effect |
Diltiazem | P-gp competition and weak CYP3A4 inhibition | Possible increase of concentrations | ●Possible increase of concentrations | ●Increase in AUC (1.4-fold) and Cmax (1.3-fold) | ●No significant effect on AUC predicted |
Dronedarone | Moderate P-gp inhibition and CYP3A4 inhibition | ●+70 to 100% | ●Increase in bleeding risk (+30–40%) | ●Possible increase of concentrations | ●+85% AUC |
Quinidine | P-gp competition | ●+53% AUC | ●Extent in increase unknown | ●Extent in increase unknown | ●+77% AUC (no dose reduction required by label) |
Verapamil | Moderate P-gp inhibition and weak CYP3A4 inhibition | ●+12 to 180% AUC (reduce to 10 mg bid) | ●+40% AUC Increase in bleeding risk | ●Extent in increase unknown | ●+53% AUC (no dose reduction required by label) |
Atenolol | P-gp substrate | No PK data | No PK data | AUC and Cmax unchanged | No PK data |
Concomitant Drug | Effect on DOACs Concentration and Pharmacodynamic | ||||
---|---|---|---|---|---|
Antiplatelet Drugs | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Clopidogrel | No relevant PK interactions known/assumed | ●●+30–40% AUC and Cmax; Pharmacodynamically increased bleeding time | ●●No significant effect on AUC predicted; Pharmacodynamically increased bleeding time | ●●No significant effect on AUC predicted; Pharmacodynamically increased bleeding time | ●●No significant effect on AUC predicted; Pharmacodynamically increased bleeding time |
Ticagrelor | P-gp inhibition | ●●+25–70% AUC; Pharmacodynamically increased bleeding time | ●No data Pharmacodynamically increased bleeding time | ●No data Pharmacodynamically increased bleeding time | ●Predicted increase of AUC; Pharmacodynamically increased bleeding time |
Aspirin | No relevant effect known/assumed | ●Pharmacodynamically increased bleeding time | ●●Increased AUC for high doses of aspirin; Pharmacodynamically increased bleeding time | ||
Prasugrel | P-gp substrate | ●Pharmacodynamically increased bleeding time | ●No significant effect on AUC; Pharmacodynamically increased bleeding time | ||
Cilostazol, Dipyridamole | No relevant effect known/assumed | ●Pharmacodynamically increased bleeding time | |||
Prostacyclin Analogues | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Epoprostenol, Iloprost, Treprostinil | No relevant effect known/assumed | ●Pharmacodynamically increased bleeding time |
Concomitant Drug | Effect on DOACs Concentration and Pharmacodynamic | ||||
---|---|---|---|---|---|
NSAIDs | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Naproxene | P-gp competition; CYP1A2 and CYP2C9 inhibition | ●No data; Pharmacodynamically increased bleeding time | ●●+55% AUC; Pharmacodynamically increased bleeding time | ●No PK effect; Pharmacodynamically increased bleeding time | |
Other NSAIDs | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding time |
Concomitant Drug | Effect on DOACs Concentration and Pharmacodynamic | ||||
---|---|---|---|---|---|
Antidepressant | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
St. John’s wort (Hypericum perforatum L.) | Strong CYP3A4 and P-gp induction | ●Relevant decrease in AUC predicted | ●−24% AUC and −14% Cmax | ●Relevant decrease in AUC predicted | ●Relevant decrease in AUC predicted |
SSRI | No relevant PK interactions known/assumed; Fluvoxamine is a mild inhibitor of CYP3A4 | ●Pharmacodynamically increased bleeding risk | |||
Clomipramine | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding risk | |||
Vortioxetine | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding risk |
Concomitant Drug | Effect on DOACs Concentration | ||||
---|---|---|---|---|---|
Lipid-Lowering Drug | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Atorvastatin | P-gp and CYP3A4 competition | No PK interaction | No effect | No data | +1.7% AUC |
−14.2% Cmax | |||||
Simvastatin; Lovastatin | P-gp moderate inhibition; CYP3A4 substrate | ●Possible increased exposure | No data | No data | No data |
Minor effect on AUC predicted | Minor effect on AUC predicted | Minor effect on AUC predicted | |||
Fluvastatin | CYP2C9 substrate | No significant effect on AUC predicted | |||
Fenofibrate | P-gp inhibitor | Minor effect on AUC predicted | |||
Gemfibrozil | CYP2C8 inhibitor | No significant effect on AUC predicted | |||
Ezetimibe | No relevant PK interactions known/assumed | No data, no significant effect on AUC predicted; | |||
PCSK9 inhibitors | No relevant PK interactions known/assumed | No data, no significant effect on AUC predicted; |
Concomitant Drug | Effect on DOACs Concentration and Pharmacodynamic | ||||
---|---|---|---|---|---|
Antibiotics | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Erythromycin | P-gp substrate; CYP3A4 inhibition | ●Predicted +15 to 20% AUC | ●+34% AUC | ●Predicted +60% AUC +30% Cmax | ●+85% AUC |
Clarithromycin | P-gp and CYP3A4 inhibition | ●+15 to 100% AUC | ●+54% AUC +40% Cmax | ●+60% AUC +30% Cmax | ●Predicted increase of AUC |
Rifampin | P-gp/ BCRP and CYP3A4/CYP2J2 induction | ●−66% AUC | ●−50% AUC | ●−54% AUC | ●AUC: −35%, compensatory increase of active metabolites |
Metronidazole | CYP3A4 inhibition | No significant effect on AUC predicted | |||
Levofloxacin Ciprofloxacin | CYP1A2 inhibition | No significant effect on AUC predicted | |||
Cephazolin | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding time | |||
Antifungals | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Fluconazole | Moderate CYP3A4 inhibition | ●Predicted AUC increase | ●+42% AUC | ●Predicted AUC increase | No data |
Ketoconazole, itraconazole | Potent P-gp and BCRP competition; CYP3A4 inhibition | ●+140 to 150% AUC | ●Up to 160% AUC | ●+100% AUC | ●+87 to 95% AUC |
Posaconazole | Potent P-gp competition; CYP3A4 inhibition | ●Predicted increase of AUC | ●Predicted up to +100% AUC | ●Predicted up to +100% AUC | ●Predicted increase of AUC |
Voriconazole | Potent CYP3A4 inhibition | No data | ●Predicted up to +100% AUC | ●Predicted up to +100% AUC | No data |
Concomitant Drug | Effect on DOACs Concentration | ||||
---|---|---|---|---|---|
PPI | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Pantoprazole | GI absorption P-gp and CYP2C9 inhibition | ●−20–30% AUC −45% Cmax | No data | No data | No data |
Esomeprazole | GI absorption | No data | No data | No data | No significant effect |
Omeprazole | GI absorption P-gp and CYP2C9 inhibition | No data | No significant effect | No data | No data |
Ranitidine | GI absorption | No effect | No data | No data | No data |
Aluminum-Magnesium Hydroxide | GI absorption | No data | No data | No data | No data |
Concomitant Drug | Effect on DOACs Concentration and Pharmacodynamic Effect | ||||
---|---|---|---|---|---|
Antimitotic Agents | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Paclitaxel | Moderate CYP3A4 induction; CYP3A4/P-gp competition | No significant effect on AUC predicted | |||
Vinblastine, Vincristine, Vinca alkaloids | CYP3A4/P-gp competition | ●Mild decrease in AUC predicted | |||
Docetaxel | Mild CYP3A4 induction; CYP3A4/P-gp competition | No significant effect on AUC predicted | |||
Antimetabolites | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Metotrexate | P-gp competition; no relevant interaction anticipated | No significant effect on AUC predicted | |||
Pemetrexed, Purine analogs, Pyrimidine analogs | No relevant interaction anticipated | No significant effect on AUC predicted | |||
Topoisomerase inhibitors | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Topotecan | No relevant interaction anticipated | No significant effect on AUC predicted | |||
Irinotecan | CYP3A4/P-gp competition; no relevant interaction anticipated | No significant effect on AUC predicted | |||
Etoposide | Mild CYP3A4 induction; CYP3A4/P-gp competition | No significant effect on AUC predicted | |||
Anthracyclines/ Anthracenediones | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Doxorubicin | CYP3A4/P-gp competition | ●Decrease in AUC predicted | |||
Idarubicin | Mild CYP3A4 inhibition; P-gp competition | No significant effect on AUC predicted | |||
Daunorubicin | P-gp competition; no relevant interaction anticipated | No significant effect on AUC predicted | |||
Mitoxantrone | No relevant interaction anticipated | No significant effect on AUC predicted | |||
Alkylating agents | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Ifosfamide | Mild CYP3A4 inhibition; CYP3A4 competition | No significant effect on AUC predicted | |||
Ciclophosphamide | Mild CYP3A4 inhibition; CYP3A4 competition | No significant effect on AUC predicted | |||
Lomustine | Mild CYP3A4 inhibition | No significant effect on AUC predicted | |||
Busulfan | CYP3A4 competition; no relevant interaction anticipated | No significant effect on AUC predicted | |||
Bendamustine | P-gp competition; no relevant interaction anticipated | No significant effect on AUC predicted | |||
Chlorambucil, Melphalan, Carmustine, Procarbazine, Dacarbazine, Temozolomide | No relevant effect anticipated | No significant effect on AUC predicted | |||
Platinum-based agents | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Cisplatin, Carboplatin, Oxaliplatin | No relevant effect anticipated | No significant effect on AUC predicted | |||
Intercalating agents | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Bleomycin, Dactinomycin | No relevant effect anticipated | No significant effect on AUC predicted | |||
Mitomycin C | No relevant interaction anticipated | No significant effect on AUC predicted | |||
Enzymes | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Asparaginase, Pegaspargase | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding time | |||
Tyrosine kinase inhibitors | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Imatinib, Crizotinib | Strong P-gp inhibition; Moderate CYP3A4 inhibition; CYP3A4/P-gp competition | ●Significant increase in AUC predicted | |||
Tucatinib | Moderate to strong CYP3A4 and P-gp inhibition | ●Moderate increase in AUC predicted | |||
Nilotinib, Lapatinib | Moderate-to-strong P-gp inhibition; mild CYP3A4 inhibition; CYP3A4/P-gp competition | ●Possible increase in AUC predicted | |||
Ribociclib | Moderate to strong CYP3A4 inhibition; CYP3A4/P-gp competition | No significant effect on AUC predicted | ●Possible increase in AUC predicted | ●Possible increase in AUC predicted | No significant effect on AUC predicted |
Vemurafenib | Moderate CYP3A4 induction; P-gp inhibition | ●Moderate increase in AUC predicted | ●Possible variation in AUC predicted | ●Possible variation in AUC predicted | ●Possible variation in AUC predicted |
Lorlatinib | Moderate CYP3A4 and P-gp induction | ●Possible reduction in AUC predicted | |||
Ceritinib | Strong CYP3A4 inhibition; CYP3A4 and P-gp competition | ●Possible increase in AUC predicted | |||
Selpercatinib | Mild CYP3A4 inhibition; CYP3A4/P-gp competition | ●Possible increase in AUC predicted | |||
Dasatinib | Mild CYP3A4 inhibition; CYP3A4/P-gp competition | ●Possible increase in AUC predicted ●Pharmacodynamically increased bleeding risk | |||
Encorafenib | CYP3A4 competition | ●Pharmacodynamically increased bleeding risk | |||
Vandetanib, Cabozantinib, Neratinib, Osimertinib, Ruxolitinib | P-gp inhibition; CYP3A4 competition | ●Possible increase in AUC predicted | |||
Alectinib, Alpelisib, Brigatinib, Gilteritinib, Pemigatinib | P-gp inhibition | ●Possible increase in AUC predicted | |||
Sunitinib, Avapritinib, Carfilzomib, Glasdegib, Ponatinib | P-gp inhibition; CYP3A4 competition | ●Possible increase in AUC predicted ●Pharmacodynamically increased bleeding risk | |||
Nintedanib | P-gp competition | ●Pharmacodynamically increased bleeding risk | |||
Erlotinib, Gefitinib, Afatinib | CYP3A4 competition, no relevant interaction anticipated | No significant effect on AUC predicted | No PK interaction | ||
Binimetinib | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding risk | |||
Ibrutinib | P-gp inhibition; CYP3A4 competition | ●Possible increase in AUC predicted ●Pharmacodynamically increased bleeding risk | |||
Acalabrutinib, zanubrutinib | CYP3A4 and P-gp competition | ●Pharmacodynamically increased bleeding risk | |||
BCL-2 inhibitors | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Venetoclax | P-gp inhibition; CYP3A4 and P-gp competition | ●Possible increase in AUC predicted | |||
Monoclonal antibodies | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Brentuximab | No relevant interactions anticipated | No significant effect on AUC predicted | |||
Rituximab, Cetuximab, Trastuzumab | No relevant effect assumed | No significant effect on AUC predicted | |||
Alemtuzumab | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding risk | |||
Bevacizumab, Caplacizumab, Ipilimumab, Ramucirumab | No relevant PK interactions known/assumed | ●Pharmacodynamically increased bleeding risk | |||
Hormonal agents | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Abiraterone | Moderate CYP3A4 inhibition; Strong P-gp inhibition; CYP3A4/P-gp competition | ●Possible increase in AUC predicted | |||
Enzalutamide | Strong CYP3A4 induction; P-gp inhibition; CYP3A4/P-gp competition | ●Possible variation in AUC predicted | ●Significant decrease in AUC predicted | ●Significant decrease in AUC predicted | ●Possible variation in AUC predicted |
Bicalutamide | Moderate CYP3A4 inhibition | No significant effect on AUC predicted | ●Possible increase in AUC predicted | ●Possible increase in AUC predicted | No significant effect on AUC predicted |
Tamoxifen | Strong P-gp inhibition; Mild CYP3A4 inhibition; CYP3A4 competition | ●Moderate increase in AUC predicted | |||
Anastrozole | Mild CYP3A4 inhibition | No significant effect on AUC predicted | |||
Flutamide | CYP3A4 competition; No relevant interactions anticipated | No significant effect on AUC predicted | |||
Letrozole, Fulvestrant | CYP3A4 competition; No relevant interactions anticipated | No significant effect on AUC predicted | |||
Raloxifene, Leuprolide, Mitotane | No relevant interactions anticipated | No significant effect on AUC predicted | |||
Immune-modulating-agents | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Cyclosporine | Strong to moderate P-gp inhibition, moderate CYP3A4 inhibition; CYP3A4/P-gp competition | ●Strong increase of AUC predicted | ●+46% AUC +2 fold Cmax | ●+ 20% AUC +40% Cmax | ●+73% AUC (reduce to 30 mg as indicated by label) |
Tacrolimus | Strong to moderate P-gp inhibition, mild CYP3A4 inhibition; CYP3A4/P-gp competition | ●Strong increase of AUC predicted | ●Possible increase in AUC predicted | ●Possible increase in AUC predicted | ●Moderate increase in AUC predicted, consider a dose reduction |
Dexamethasone | Strong CYP3A4/P-gp induction; CYP3A4/P-gp competition | ●Possible decrease in AUC predicted ●Pharmacodynamically increased bleeding risk | |||
Prednisone and other corticosteroids | Moderate CYP3A4 induction; CYP3A4 competition | ●No significant effect on AUC predicted ●Pharmacodynamically increased bleeding risk | |||
Temsirolimus, Sirolimus | Mild CYP3A4 inhibition; CYP3A4/P-gp competition | No significant effect on AUC predicted | |||
Everolimus | CYP3A4 competition; No relevant interactions anticipated | No significant effect on AUC predicted |
Concomitant Drug | Effect on DOACs Concentration | ||||
---|---|---|---|---|---|
Antiepileptic Drugs | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Carbamazepine | Strong CYP3A4/P-gp induction; CYP3A4 competition | ●Strong decrease in AUC | ●Strong decrease in AUC | ●Possible decrease in AUC predicted | ●Possible decrease in AUC predicted |
Ethosuximide | CYP3A4 competition; No relevant interaction known/assumed | No significant effect on AUC predicted | |||
Gabapentin | No relevant interactions known/assumed | No significant effect on AUC predicted | |||
Lamotrigine | P-gp competition; No relevant interaction known/assumed | No significant effect on AUC predicted | |||
Levetiracetam | P-gp induction; P-gp competition | ●Possible decrease in AUC predicted | |||
Oxcarbazepine | CYP3A4 induction; P-gp competition | No significant effect on AUC predicted | |||
Phenobarbital | Strong CYP3A4/P-gp induction; P-gp competition | ●Decrease in AUC | ●Decrease in AUC | ●Possible decrease in AUC | ●Possible decrease in AUC |
Phenytoin | Strong CYP3A4/P-gp induction; P-gp competition | ●Decrease in AUC | ●Decrease in AUC | ●Possible decrease in AUC | ●Possible decrease in AUC |
Valproic acid | CYP3A4/P-gp induction | ●Possible decrease in AUC predicted | |||
Pregabalin | No relevant interactions known/assumed | No significant effect on AUC predicted | |||
Topiramate | CYP3A4 induction; CYP3A4 competition | No significant effect on AUC predicted | |||
Zonisamide | CYP3A4 competition; No relevant interactions known/assumed | No significant effect on AUC predicted |
Concomitant Drug | Effect on DOACs Concentration | ||||
---|---|---|---|---|---|
Anti-HIV | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
HIV protease inhibitors | Strong CYP3A4 inhibition and P-gp inhibition or induction | ● Variable increase and decrease in AUC | ●+153% AUC +55% Cmax | ●Strong increase in AUC predicted | ●Strong increase in AUC predicted |
DTG + ABC/TDF + 3TC | No relevant interactions known/assumed | No significant effect predicted | |||
DTG + TDF/TAF + FTC | No relevant interactions known/assumed | No significant effect predicted | |||
RAL + TDF/TAF + FTC | No relevant interactions known/assumed | No significant effect predicted | |||
EVGc + TAF/TDF + FTC | Cobicistat is a potent CYP3A4 and P-gp inhibitor | ●Strong increase in AUC predicted | |||
DRVc + ABC + 3TC | Cobicistat is a potent CYP3A4 and P-gp inhibitor and darunavir is a CYP3A4 inhibitor | ●Strong increase in AUC predicted | |||
DRVc + TDF/TAF + FTC | Cobicistat is a potent CYP3A4 and P-gp inhibitor and darunavir is a CYP3A4 inhibitor | ●Strong increase in AUC predicted | |||
ATVc +TDF/TAF + FTC | Cobicistat is a potent CYP3A4 and P-gp inhibitor | ●Strong increase in AUC predicted | |||
DRVr + TDF/TAF + FTC | Ritonavir is a potent CYP3A4 and P-gp inhibitor | ●Strong increase in AUC predicted | |||
DRVr + ABC + 3TC | Ritonavir is a potent CYP3A4 and P-gp inhibitor | ●Strong increase in AUC predicted | |||
EFV + TDF/TAF + FTC | Induction of CYP3A4 and P-gp | ●Possible decreased exposure | |||
RPV + TDF/TAF + FTC | Induction of CYP3A4 and P-gp | ●Possible decreased exposure | |||
AZT + 3TC + EFV | Induction of CYP3A4 and P-gp | ●Possible decreased exposure | |||
TDF + 3TC/FTC + EFV | Induction of CYP3A4 and P-gp | ●Possible decreased exposure | |||
TDF + 3TC/FTC + NVP | Induction of CYP3A4 and P-gp | ●Possible decreased exposure |
Concomitant Drug | Effect on DOACs Concentration | ||||
---|---|---|---|---|---|
NS5A/B Polymerase Inhibitors | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Sofosbuvir | P-gp substrate | No significant effect on AUC predicted | |||
Ledipasvir | P-gp substrate and inhibitor | ●Possible increase in AUC predicted | |||
Sofosbuvir + ledipasvir | P-gp/CYP3A4 substrate and moderate P-gp inhibition | ●Possible increase in AUC predicted | |||
NS5A/B-NS3/4A replication complex inhibitor | Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban |
Sofosbuvir + velpatasvir | P-gp/CYP3A4 substrate and moderate P-gp inhibition | ●Possible increase in AUC predicted | |||
Sofosbuvir + velpatasvir + voxilaprevir | P-gp/CYP3A4 substrate and strong P-gp inhibition | ●+160–180% AUC and Cmax | ●Possible increase in AUC predicted | ●Possible increase in AUC predicted | ●Strong increase in AUC predicted |
Ombitasvir + paritaprevir/ritonavir + dasabuvir | Ritonavir is a potent CYP3A4 and P-gp inhibitor | ●Moderate increase in AUC predicted | |||
Elbasvir + grazoprevir | CYP3A4 and P-gp competition | ●Possible increase in AUC predicted | |||
Glecaprevir + pibrentasvir | P-gp inhibition and competition | ●+138% AUC +105% Cmax | ●Possible increase in AUC predicted | ●Possible increase in AUC predicted | ●Possible increase in AUC predicted |
Concomitant Drug | Effect on DOACs Concentration and Pharmacodynamic Effect | ||||
---|---|---|---|---|---|
Effect on P-gp and CYP | Dabigatran | Rivaroxaban | Apixaban | Edoxaban | |
Lopinavir + ritonavir | Strong CYP3A4 and P-gp inhibition | ●Strong increase in AUC | |||
Darunavir + ritonavir or cobicistat | Strong CYP3A4 and P-gp inhibition | ●Strong increase in AUC | |||
Atazanavir + ritonavir or cobicistat | Strong CYP3A4 and P-gp inhibition | ●Strong increase in AUC | |||
Nirmatrelvir + ritonavir | Strong CYP3A4 and P-gp inhibition | ●Strong increase in AUC | |||
Azithromycin | Mild P-gp inhibition | No PK data No dose reduction required | |||
Methylprednisolone and other corticosteroids | Moderate CYP3A4 induction; CYP3A4 competition | ●No significant effect on AUC predicted Pharmacodynamically increased bleeding risk | |||
Tocilizumab | CYP3A4 and P-gp induction | ●Possible decrease in AUC predicted | |||
Sotrovimab | No relevant interactions known/assumed | No significant effect on AUC predicted | |||
Regdanvimab | No relevant interactions known/assumed | No significant effect on AUC predicted | |||
Casirivimab + imdevimab | No relevant interactions known/assumed | No significant effect on AUC predicted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, N.; Colombo, E.; Tenconi, M.; Baldessin, L.; Corsini, A. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceutics 2022, 14, 1120. https://doi.org/10.3390/pharmaceutics14061120
Ferri N, Colombo E, Tenconi M, Baldessin L, Corsini A. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceutics. 2022; 14(6):1120. https://doi.org/10.3390/pharmaceutics14061120
Chicago/Turabian StyleFerri, Nicola, Elisa Colombo, Marco Tenconi, Ludovico Baldessin, and Alberto Corsini. 2022. "Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice" Pharmaceutics 14, no. 6: 1120. https://doi.org/10.3390/pharmaceutics14061120