Magnitude of Drug–Drug Interactions in Special Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Inclusion Criteria
2.3. Data Extraction
3. Results
3.1. Elderly Population
3.1.1. Physiological Changes
3.1.2. Magnitude of DDIs Impacting Drug Absorption
3.1.3. Magnitude of DDIs Impacting Metabolism
Inhibition
Induction
3.1.4. Magnitude of DDIs Impacting Renal Elimination
3.1.5. Summary
3.2. Obese Population
3.2.1. Physiological Changes
3.2.2. Magnitude of DDIs Impacting Metabolism
Inhibition
Induction
3.2.3. Summary
3.3. Pregnant Women
3.3.1. Physiological Changes
3.3.2. Magnitude of DDIs Impacting Drug Absorption
3.3.3. Magnitude of DDIs Impacting Metabolism
Inhibition
Induction
3.3.4. Summary
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, K.C.; Kashuba, A.D.M. Mechanisms of Drug Interactions I: Absorption, Metabolism, and Excretion. In Drug Interactions in Infectious Diseases; Piscitelli, S.C., Rodvold, K.A., Pai, M.P., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 11–41. [Google Scholar]
- World Health Organization. Definition of an Older or Elderly Person. Available online: https://www.who.int/health-topics/ageing#tab=tab_1 (accessed on 21 February 2022).
- World Health Organization. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 14 February 2022).
- Hodel, E.M.; Marzolini, C.; Waitt, C.; Rakhmanina, N. Pharmacokinetics, Placental and Breast Milk Transfer of Antiretroviral Drugs in Pregnant and Lactating Women Living with HIV. Curr. Pharm. Des. 2019, 25, 556–576. [Google Scholar] [CrossRef]
- Stader, F.; Courlet, P.; Kinvig, H.; Penny, M.A.; Decosterd, L.A.; Battegay, M.; Siccardi, M.; Marzolini, C. Clinical Data Combined with Modeling and Simulation Indicate Unchanged Drug-Drug Interaction Magnitudes in the Elderly. Clin. Pharmacol. Ther. 2021, 109, 471–484. [Google Scholar] [CrossRef]
- Bukkems, V.E.; Colbers, A.; Marzolini, C.; Molto, J.; Burger, D.M. Drug-Drug Interactions with Antiretroviral Drugs in Pregnant Women Living with HIV: Are They Different from Non-Pregnant Individuals? Clin. Pharmacokinet. 2020, 59, 1217–1236. [Google Scholar] [CrossRef]
- Stader, F.; Kinvig, H.; Penny, M.A.; Battegay, M.; Siccardi, M.; Marzolini, C. Physiologically Based Pharmacokinetic Modelling to Identify Pharmacokinetic Parameters Driving Drug Exposure Changes in the Elderly. Clin. Pharmacokinet. 2020, 59, 383–401. [Google Scholar] [CrossRef]
- Stader, F.; Siccardi, M.; Battegay, M.; Kinvig, H.; Penny, M.A.; Marzolini, C. Repository Describing an Aging Population to Inform Physiologically Based Pharmacokinetic Models Considering Anatomical, Physiological, and Biological Age-Dependent Changes. Clin. Pharmacokinet. 2019, 58, 483–501. [Google Scholar] [CrossRef] [Green Version]
- Loi, C.M.; Parker, B.M.; Cusack, B.J.; Vestal, R.E. Aging and drug interactions. III. Individual and combined effects of cimetidine and cimetidine and ciprofloxacin on theophylline metabolism in healthy male and female nonsmokers. J. Pharmacol. Exp. Ther. 1997, 280, 627–637. [Google Scholar]
- Briant, R.H.; Dorrington, R.E.; Ferry, D.G.; Paxton, J.W. Bioavailability of metoprolol in young adults and the elderly, with additional studies on the effects of metoclopramide and probanthine. Eur. J. Clin. Pharmacol. 1983, 25, 353–356. [Google Scholar] [CrossRef]
- Nimmo, J.; Heading, R.C.; Tothill, P.; Prescott, L.F. Pharmacological modification of gastric emptying: Effects of propantheline and metoclopromide on paracetamol absorption. Br. Med. J. 1973, 1, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Zabirowicz, E.S.; Gan, T.J. 34—Pharmacology of Postoperative Nausea and Vomiting. In Pharmacology and Physiology for Anesthesia, 2nd ed.; Hemmings, H.C., Egan, T.D., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 671–692. [Google Scholar]
- Desta, Z.; Wu, G.M.; Morocho, A.M.; Flockhart, D.A. The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab. Dispos. 2002, 30, 336–343. [Google Scholar] [CrossRef]
- Berger, B.; Bachmann, F.; Duthaler, U.; Krähenbühl, S.; Haschke, M. Cytochrome P450 Enzymes Involved in Metoprolol Metabolism and Use of Metoprolol as a CYP2D6 Phenotyping Probe Drug. Front. Pharmacol. 2018, 9, 774. [Google Scholar] [CrossRef]
- Feely, J.; Pereira, L.; Guy, E.; Hockings, N. Factors affecting the response to inhibition of drug metabolism by cimetidine--dose response and sensitivity of elderly and induced subjects. Br. J. Clin. Pharmacol. 1984, 17, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Cohen, I.A.; Johnson, C.E.; Berardi, R.R.; Hyneck, M.L.; Achem, S.R. Cimetidine-theophylline interaction: Effects of age and cimetidine dose. Ther. Drug Monit. 1985, 7, 426–434. [Google Scholar]
- Vestal, R.E.; Cusack, B.J.; Mercer, G.D.; Dawson, G.W.; Park, B.K. Aging and drug interactions. I. Effect of cimetidine and smoking on the oxidation of theophylline and cortisol in healthy men. J. Pharmacol. Exp. Ther. 1987, 241, 488–500. [Google Scholar]
- Liukas, A.; Hagelberg, N.M.; Kuusniemi, K.; Neuvonen, P.J.; Olkkola, K.T. Inhibition of cytochrome P450 3A by clarithromycin uniformly affects the pharmacokinetics and pharmacodynamics of oxycodone in young and elderly volunteers. J. Clin. Psychopharmacol. 2011, 31, 302–308. [Google Scholar] [CrossRef]
- Engel, G.; Hofmann, U.; Heidemann, H.; Cosme, J.; Eichelbaum, M. Antipyrine as a probe for human oxidative drug metabolism: Identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin. Pharmacol. Ther. 1996, 59, 613–623. [Google Scholar] [CrossRef]
- FDA. Drug Development and Drug Interactions | Table of Substrates, Inhibitors and Inducers. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 22 February 2022).
- Simon, T.; Becquemont, L.; Hamon, B.; Nouyrigat, E.; Chodjania, Y.; Poirier, J.M.; Funck-Brentano, C.; Jaillon, P. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers. Br. J. Clin. Pharmacol. 2001, 52, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, J.B. Erythromycin breath test results in elderly, very elderly, and frail elderly persons. Clin. Pharmacol. Ther. 2006, 79, 440–448. [Google Scholar] [CrossRef]
- Hunt, C.M.; Westerkam, W.R.; Stave, G.M. Effect of age and gender on the activity of human hepatic CYP3A. Biochem. Pharmacol. 1992, 44, 275–283. [Google Scholar] [CrossRef]
- Schmucker, D.L.; Woodhouse, K.W.; Wang, R.K.; Wynne, H.; James, O.F.; McManus, M.; Kremers, P. Effects of age and gender on in vitro properties of human liver microsomal monooxygenases. Clin. Pharmacol. Ther. 1990, 48, 365–374. [Google Scholar] [CrossRef]
- Salem, S.A.; Rajjayabun, P.; Shepherd, A.M.; Stevenson, I.H. Reduced induction of drug metabolism in the elderly. Age Ageing 1978, 7, 68–73. [Google Scholar] [CrossRef]
- Crowley, J.J.; Cusack, B.J.; Jue, S.G.; Koup, J.R.; Park, B.K.; Vestal, R.E. Aging and drug interactions. II. Effect of phenytoin and smoking on the oxidation of theophylline and cortisol in healthy men. J. Pharmacol. Exp. Ther. 1988, 245, 513–523. [Google Scholar]
- Smith, D.A.; Chandler, M.H.; Shedlofsky, S.I.; Wedlund, P.J.; Blouin, R.A. Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampicin. Br. J. Clin. Pharmacol. 1991, 32, 735–739. [Google Scholar]
- Gorski, J.C.; Vannaprasaht, S.; Hamman, M.A.; Ambrosius, W.T.; Bruce, M.A.; Haehner-Daniels, B.; Hall, S.D. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin. Pharmacol. Ther. 2003, 74, 275–287. [Google Scholar] [CrossRef]
- Busch, A.E.; Karbach, U.; Miska, D.; Gorboulev, V.; Akhoundova, A.; Volk, C.; Arndt, P.; Ulzheimer, J.C.; Sonders, M.S.; Baumann, C.; et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharmacol. 1998, 54, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Gaudry, S.E.; Sitar, D.S.; Smyth, D.D.; McKenzie, J.K.; Aoki, F.Y. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin. Pharmacol. Ther. 1993, 54, 23–27. [Google Scholar] [CrossRef]
- van der Velden, M.; Bilos, A.; van den Heuvel, J.; Rijpma, S.R.; Hurkmans, E.G.E.; Sauerwein, R.W.; Russel, F.G.M.; Koenderink, J.B. Proguanil and cycloguanil are organic cation transporter and multidrug and toxin extrusion substrates. Malar. J. 2017, 16, 422. [Google Scholar] [CrossRef]
- Belzer, M.; Morales, M.; Jagadish, B.; Mash, E.A.; Wright, S.H. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J. Pharmacol. Exp. Ther. 2013, 346, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Gulsun, T.; Ucar, B.; Sahin, S.; Humpel, C. The Organic Cation Transporter 2 Inhibitor Quinidine Modulates the Neuroprotective Effect of Nerve Growth Factor and Memantine on Cholinergic Neurons of the Basal Nucleus of Meynert in Organotypic Brain Slices. Pharmacology 2021, 106, 390–399. [Google Scholar] [CrossRef]
- Miano, T.A.; Yang, W.; Shashaty, M.G.S.; Zuppa, A.; Brown, J.R.; Hennessy, S. The Magnitude of the Warfarin-Amiodarone Drug-Drug Interaction Varies with Renal Function: A Propensity-Matched Cohort Study. Clin. Pharmacol. Ther. 2020, 107, 1446–1456. [Google Scholar] [CrossRef]
- Bowman, S.L.; Hudson, S.A.; Simpson, G.; Munro, J.F.; Clements, J.A. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br. J. Clin. Pharmacol. 1986, 21, 529–532. [Google Scholar] [CrossRef] [Green Version]
- Greenblatt, D.J.; Abernethy, D.R.; Locniskar, A.; Harmatz, J.S.; Limjuco, R.A.; Shader, R.I. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984, 61, 27–35. [Google Scholar]
- Greenblatt, D.J.; Friedman, H.; Burstein, E.S.; Scavone, J.M.; Blyden, G.T.; Ochs, H.R.; Miller, L.G.; Harmatz, J.S.; Shader, R.I. Trazodone kinetics: Effect of age, gender, and obesity. Clin. Pharmacol. Ther. 1987, 42, 193–200. [Google Scholar] [CrossRef]
- Flechner, S.M.; Kolbeinsson, M.E.; Tam, J.; Lum, B. The impact of body weight on cyclosporine pharmacokinetics in renal transplant recipients. Transplantation 1989, 47, 806–810. [Google Scholar] [CrossRef]
- Cheymol, G.; Weissenburger, J.; Poirier, J.M.; Gellee, C. The pharmacokinetics of dexfenfluramine in obese and non-obese subjects. Br. J. Clin. Pharmacol. 1995, 39, 684–687. [Google Scholar]
- Kees, M.G.; Weber, S.; Kees, F.; Horbach, T. Pharmacokinetics of moxifloxacin in plasma and tissue of morbidly obese patients. J. Antimicrob. Chemother. 2011, 66, 2330–2335. [Google Scholar] [CrossRef] [Green Version]
- Brill, M.J.; van Rongen, A.; Houwink, A.P.; Burggraaf, J.; van Ramshorst, B.; Wiezer, R.J.; van Dongen, E.P.; Knibbe, C.A. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: A comparison with healthy volunteers. Clin. Pharmacokinet. 2014, 53, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Abernethy, D.R.; Greenblatt, D.J.; Divoll, M.; Smith, R.B.; Shader, R.I. The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Clin. Pharmacokinet. 1984, 9, 177–183. [Google Scholar] [CrossRef]
- Young, J.F.; Luecke, R.H.; Pearce, B.A.; Lee, T.; Ahn, H.; Baek, S.; Moon, H.; Dye, D.W.; Davis, T.M.; Taylor, S.J. Human organ/tissue growth algorithms that include obese individuals and black/white population organ weight similarities from autopsy data. J. Toxicol. Environ. Health A 2009, 72, 527–540. [Google Scholar] [CrossRef]
- Messerli, F.H. Cardiovascular effects of obesity and hypertension. Lancet 1982, 1, 1165–1168. [Google Scholar] [CrossRef]
- Ulvestad, M.; Skottheim, I.B.; Jakobsen, G.S.; Bremer, S.; Molden, E.; Asberg, A.; Hjelmesaeth, J.; Andersson, T.B.; Sandbu, R.; Christensen, H. Impact of OATP1B1, MDR1, and CYP3A4 expression in liver and intestine on interpatient pharmacokinetic variability of atorvastatin in obese subjects. Clin. Pharmacol. Ther. 2013, 93, 275–282. [Google Scholar] [CrossRef]
- Brill, M.J.; Diepstraten, J.; van Rongen, A.; van Kralingen, S.; van den Anker, J.N.; Knibbe, C.A. Impact of obesity on drug metabolism and elimination in adults and children. Clin. Pharmacokinet. 2012, 51, 277–304. [Google Scholar] [CrossRef]
- Kwakernaak, A.J.; Zelle, D.M.; Bakker, S.J.; Navis, G. Central body fat distribution associates with unfavorable renal hemodynamics independent of body mass index. J. Am. Soc. Nephrol. 2013, 24, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Chow, C.R.; Harmatz, J.S.; Ryan, M.J.; Greenblatt, D.J. Persistence of a Posaconazole-Mediated Drug-Drug Interaction with Ranolazine After Cessation of Posaconazole Administration: Impact of Obesity and Implications for Patient Safety. J. Clin. Pharmacol. 2018, 58, 1436–1442. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Harmatz, J.S.; Ryan, M.J.; Chow, C.R. Sustained Impairment of Lurasidone Clearance After Discontinuation of Posaconazole: Impact of Obesity, and Implications for Patient Safety. J. Clin. Psychopharmacol. 2018, 38, 289–295. [Google Scholar] [CrossRef]
- Ghosal, A.; Hapangama, N.; Yuan, Y.; Achanfuo-Yeboah, J.; Iannucci, R.; Chowdhury, S.; Alton, K.; Patrick, J.E.; Zbaida, S. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab. Dispos. 2004, 32, 267–271. [Google Scholar] [CrossRef]
- Jerling, M. Clinical pharmacokinetics of ranolazine. Clin. Pharmacokinet. 2006, 45, 469–491. [Google Scholar] [CrossRef]
- Food and Drug Administration. Drug Approval Package. Latuda (Lurasidone Hydrochloride) Tablets. Sunovion Pharmaceuticals. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/200603Orig1s000PharmR.pdf (accessed on 22 February 2022).
- Doose, D.R.; Wang, S.S.; Padmanabhan, M.; Schwabe, S.; Jacobs, D.; Bialer, M. Effect of topiramate or carbamazepine on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in healthy obese and nonobese female subjects. Epilepsia 2003, 44, 540–549. [Google Scholar] [CrossRef]
- Sachdeo, R.C.; Sachdeo, S.K.; Walker, S.A.; Kramer, L.D.; Nayak, R.K.; Doose, D.R. Steady-state pharmacokinetics of topiramate and carbamazepine in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia 1996, 37, 774–780. [Google Scholar] [CrossRef]
- Rosenfeld, W.E.; Doose, D.R.; Walker, S.A.; Nayak, R.K. Effect of topiramate on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in patients with epilepsy. Epilepsia 1997, 38, 317–323. [Google Scholar] [CrossRef]
- Rost, K.L.; Brosicke, H.; Heinemeyer, G.; Roots, I. Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 1994, 20, 1204–1212. [Google Scholar]
- Villikka, K.; Kivisto, K.T.; Neuvonen, P.J. The effect of dexamethasone on the pharmacokinetics of triazolam. Pharmacol. Toxicol. 1998, 83, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Zaccara, G.; Perucca, E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014, 16, 409–431. [Google Scholar] [CrossRef]
- Perucca, E.; Hedges, A.; Makki, K.A.; Ruprah, M.; Wilson, J.F.; Richens, A. A comparative study of the relative enzyme inducing properties of anticonvulsant drugs in epileptic patients. Br. J. Clin. Pharmacol. 1984, 18, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Dawes, M.; Chowienczyk, P.J. Drugs in pregnancy. Pharmacokinetics in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2001, 15, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Eke, A.C.; Brooks, K.M.; Gebreyohannes, R.D.; Sheffield, J.S.; Dooley, K.E.; Mirochnick, M. Tenofovir alafenamide use in pregnant and lactating women living with HIV. Expert Opin. Drug Metab. Toxicol. 2020, 16, 333–342. [Google Scholar] [CrossRef]
- Dallmann, A.; Ince, I.; Meyer, M.; Willmann, S.; Eissing, T.; Hempel, G. Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy. Clin. Pharmacokinet. 2017, 56, 1303–1330. [Google Scholar] [CrossRef]
- Bukkems, V.E.; Smolders, E.J.; Jourdain, G.; Burger, D.M.; Colbers, A.P.; Cressey, T.R. Effect of Pregnancy and Concomitant Antiretrovirals on the Pharmacokinetics of Tenofovir in Women with HIV Receiving Tenofovir Disoproxil Fumarate-Based Antiretroviral Therapy Versus Women with HBV Receiving Tenofovir Disoproxil Fumarate Monotherapy. J. Clin. Pharmacol. 2021, 61, 388–393. [Google Scholar] [CrossRef]
- Brooks, K.M.; Pinilla, M.; Shapiro, D.E.; Capparelli, E.V.; Stek, A.; Mirochnick, M.; Smith, E.; Chakhtoura, N.; Best, B.M. Pharmacokinetics of tenofovir alafenamide 25 mg with PK boosters during pregnancy and postpartum. In Proceedings of the 20th International Workshop on Clinical Pharmacology of HIV, Hepatitis, and Other Antiviral Drugs, Noordwijk, The Netherlands, 14–16 May 2019. [Google Scholar]
- Brooks, K.M.; Momper, J.D.; Pinilla, M.; Stek, A.M.; Barr, E.; Weinberg, A.; Deville, J.G.; Febo, I.L.; Cielo, M.; George, K.; et al. Pharmacokinetics of tenofovir alafenamide with and without cobicistat in pregnant and postpartum women living with HIV. AIDS 2021, 35, 407–417. [Google Scholar] [CrossRef]
- Marzolini, C.; Mueller, R.; Li-Blatter, X.; Battegay, M.; Seelig, A. The brain entry of HIV-1 protease inhibitors is facilitated when used in combination. Mol. Pharm. 2013, 10, 2340–2349. [Google Scholar] [CrossRef]
- Moltó, J.; Curran, A.; Miranda, C.; Challenger, E.; Santos, J.R.; Ribera, E.; Khoo, S.; Valle, M.; Clotet, B. Pharmacokinetics of darunavir/cobicistat and etravirine alone and co-administered in HIV-infected patients. J. Antimicrob. Chemother. 2018, 73, 732–737. [Google Scholar] [CrossRef]
- Focà, E.; Ripamonti, D.; Motta, D.; Torti, C. Unboosted atazanavir for treatment of HIV infection: Rationale and recommendations for use. Drugs 2012, 72, 1161–1173. [Google Scholar] [CrossRef]
- Colbers, A.; Hawkins, D.; Hidalgo-Tenorio, C.; van der Ende, M.; Gingelmaier, A.; Weizsacker, K.; Kabeya, K.; Taylor, G.; Rockstroh, J.; Lambert, J.; et al. Atazanavir exposure is effective during pregnancy regardless of tenofovir use. Antivir. Ther. 2015, 20, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Le, M.P.; Mandelbrot, L.; Descamps, D.; Soulie, C.; Ichou, H.; Bourgeois-Moine, A.; Damond, F.; Lariven, S.; Valantin, M.A.; Landman, R.; et al. Pharmacokinetics, safety and efficacy of ritonavir-boosted atazanavir (300/100 mg once daily) in HIV-1-infected pregnant women. Antivir. Ther. 2015, 20, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Conradie, F.; Zorrilla, C.; Josipovic, D.; Botes, M.; Osiyemi, O.; Vandeloise, E.; Eley, T.; Child, M.; Bertz, R.; Hu, W.; et al. Safety and exposure of once-daily ritonavir-boosted atazanavir in HIV-infected pregnant women. HIV Med. 2011, 12, 570–579. [Google Scholar] [CrossRef]
- Mirochnick, M.; Best, B.M.; Stek, A.M.; Capparelli, E.V.; Hu, C.; Burchett, S.K.; Rossi, S.S.; Hawkins, E.; Basar, M.; Smith, E.; et al. Atazanavir pharmacokinetics with and without tenofovir during pregnancy. J. Acquir. Immune Defic. Syndr. 2011, 56, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Ripamonti, D.; Cattaneo, D.; Maggiolo, F.; Airoldi, M.; Frigerio, L.; Bertuletti, P.; Ruggeri, M.; Suter, F. Atazanavir plus low-dose ritonavir in pregnancy: Pharmacokinetics and placental transfer. AIDS 2007, 21, 2409–2415. [Google Scholar] [CrossRef]
- Momper, J.D.; Wang, J.; Stek, A.; Shapiro, D.E.; Powis, K.M.; Paul, M.E.; Badell, M.L.; Browning, R.; Chakhtoura, N.; Denson, K.; et al. Pharmacokinetics of Atazanavir Boosted with Cobicistat in Pregnant and Postpartum Women with HIV. J. Acquir. Immune Defic. Syndr. 2022, 89, 303–309. [Google Scholar] [CrossRef]
- Colbers, A.; Molto, J.; Ivanovic, J.; Kabeya, K.; Hawkins, D.; Gingelmaier, A.; Taylor, G.; Weizsacker, K.; Sadiq, S.T.; Van der Ende, M.; et al. Pharmacokinetics of total and unbound darunavir in HIV-1-infected pregnant women. J. Antimicrob. Chemother. 2015, 70, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Curran, A.; Ocana, I.; Deig, E.; Guiu, J.; Lopez, R.M.; Perez, M.; Marti, R.M.; Burgos, J.; Melia, M.J.; Ribera, E. Darunavir/ritonavir once daily total and unbound plasmatic concentrations in HIV-infected pregnant women. In Proceedings of the 14th International Workshop on Clinical Pharmacology of HIV Therapy, Amsterdam, The Netherlands, 22–24 April 2013. [Google Scholar]
- Lambert, J.; Jackson, V.; Else, L.; Lawless, M.; McDonald, G.; Le Blanc, D.; Patel, A.; Stephens, K.; Khoo, S. Darunavir pharmacokinetics throughout pregnancy and postpartum. J. Int. AIDS Soc. 2014, 17, 19485. [Google Scholar] [CrossRef]
- Murtagh, R.; Else, L.J.; Kuan, K.B.; Khoo, S.H.; Jackson, V.; Patel, A.; Lawler, M.; McDonald, G.; Le Blanc, D.; Avramovic, G.; et al. Therapeutic drug monitoring of darunavir/ritonavir in pregnancy. Antivir. Ther. 2019, 24, 229–233. [Google Scholar] [CrossRef]
- Crauwels, H.M.; Osiyemi, O.; Zorrilla, C.; Bicer, C.; Brown, K. Reduced exposure to darunavir and cobicistat in HIV-1-infected pregnant women receiving a darunavir/cobicistat-based regimen. HIV Med. 2019, 20, 337–343. [Google Scholar] [CrossRef]
- Fayet-Mello, A.; Buclin, T.; Guignard, N.; Cruchon, S.; Cavassini, M.; Grawe, C.; Gremlich, E.; Popp, K.A.; Schmid, F.; Eap, C.B.; et al. Free and total plasma levels of lopinavir during pregnancy, at delivery and postpartum: Implications for dosage adjustments in pregnant women. Antivir. Ther. 2013, 18, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Patterson, K.B.; Dumond, J.B.; Prince, H.A.; Jenkins, A.J.; Scarsi, K.K.; Wang, R.; Malone, S.; Hudgens, M.G.; Kashuba, A.D. Protein binding of lopinavir and ritonavir during 4 phases of pregnancy: Implications for treatment guidelines. J. Acquir. Immune Defic. Syndr. 2013, 63, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Sha, B.E.; Tierney, C.; Sun, X.; Stek, A.; Cohn, S.E.; Coombs, R.W.; Bastow, B.; Aweeka, F.T. for the Aids Clinical Trials Group team. Pharmacokinetic Exposure and Virologic Response in Hiv-1 Infected Pregnant Women Treated with Lopinavir/Ritonavir: Aids Clinical Trials Group Protocol A5153s: A Substudy to A5150. Jacobs J. AIDS HIV 2015, 1. [Google Scholar] [PubMed]
- Stek, A.M.; Mirochnick, M.; Capparelli, E.; Best, B.M.; Hu, C.; Burchett, S.K.; Elgie, C.; Holland, D.T.; Smith, E.; Tuomala, R.; et al. Reduced lopinavir exposure during pregnancy. AIDS 2006, 20, 1931–1939. [Google Scholar] [CrossRef]
- Bukkems, V.; Necsoi, C.; Tenorio, C.H.; Garcia, C.; Rockstroh, J.; Schwarze-Zander, C.; Lambert, J.S.; Burger, D.; Konopnicki, D.; Colbers, A. Clinically Significant Lower Elvitegravir Exposure During the Third Trimester of Pregnant Patients Living with Human Immunodeficiency Virus: Data From the Pharmacokinetics of ANtiretroviral agents in HIV-infected pregNAnt women (PANNA) Network. Clin. Infect. Dis. 2020, 71, e714–e717. [Google Scholar] [CrossRef]
- Momper, J.D.; Best, B.M.; Wang, J.; Capparelli, E.V.; Stek, A.; Barr, E.; Badell, M.L.; Acosta, E.P.; Purswani, M.; Smith, E.; et al. Elvitegravir/cobicistat pharmacokinetics in pregnant and postpartum women with HIV. AIDS 2018, 32, 2507–2516. [Google Scholar] [CrossRef]
- Aweeka, F.T.; German, P.I. Clinical Pharmacology of Artemisinin-Based Combination Therapies. Clin. Pharmacokinet. 2008, 47, 91–102. [Google Scholar] [CrossRef]
- Lee, T.M.; Huang, L.; Johnson, M.K.; Lizak, P.; Kroetz, D.; Aweeka, F.; Parikh, S. In vitro metabolism of piperaquine is primarily mediated by CYP3A4. Xenobiotica 2012, 42, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Kloprogge, F.; Piola, P.; Dhorda, M.; Muwanga, S.; Turyakira, E.; Apinan, S.; Lindegardh, N.; Nosten, F.; Day, N.P.; White, N.J.; et al. Population Pharmacokinetics of Lumefantrine in Pregnant and Nonpregnant Women with Uncomplicated Plasmodium falciparum Malaria in Uganda. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e83. [Google Scholar] [CrossRef]
- Tarning, J.; Kloprogge, F.; Dhorda, M.; Jullien, V.; Nosten, F.; White, N.J.; Guerin, P.J.; Piola, P. Pharmacokinetic properties of artemether, dihydroartemisinin, lumefantrine, and quinine in pregnant women with uncomplicated plasmodium falciparum malaria in Uganda. Antimicrob. Agents Chemother. 2013, 57, 5096–5103. [Google Scholar] [CrossRef] [Green Version]
- Adegbola, A.; Abutaima, R.; Olagunju, A.; Ijarotimi, O.; Siccardi, M.; Owen, A.; Soyinka, J.; Bolaji, O. Effect of Pregnancy on the Pharmacokinetic Interaction between Efavirenz and Lumefantrine in HIV-Malaria Coinfection. Antimicrob. Agents Chemother. 2018, 62, e01252-18. [Google Scholar] [CrossRef] [Green Version]
- Byakika-Kibwika, P.; Lamorde, M.; Mayito, J.; Nabukeera, L.; Namakula, R.; Mayanja-Kizza, H.; Katabira, E.; Ntale, M.; Pakker, N.; Ryan, M.; et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J. Antimicrob. Chemother. 2012, 67, 2213–2221. [Google Scholar] [CrossRef]
- Banda, C.G.; Dzinjalamala, F.; Mukaka, M.; Mallewa, J.; Maiden, V.; Terlouw, D.J.; Lalloo, D.G.; Khoo, S.H.; Mwapasa, V. Pharmacokinetics of Piperaquine and Safety Profile of Dihydroartemisinin-Piperaquine Coadministered with Antiretroviral Therapy in Malaria-Uninfected HIV-Positive Malawian Adults. Antimicrob. Agents Chemother. 2018, 62, e00634-18. [Google Scholar] [CrossRef] [Green Version]
- Kajubi, R.; Huang, L.; Jagannathan, P.; Chamankhah, N.; Were, M.; Ruel, T.; Koss, C.A.; Kakuru, A.; Mwebaza, N.; Kamya, M.; et al. Antiretroviral Therapy with Efavirenz Accentuates Pregnancy-Associated Reduction of Dihydroartemisinin-Piperaquine Exposure During Malaria Chemoprevention. Clin. Pharmacol. Ther. 2017, 102, 520–528. [Google Scholar] [CrossRef]
- Hughes, E.; Mwebaza, N.; Huang, L.; Kajubi, R.; Nguyen, V.; Nyunt, M.M.; Orukan, F.; Mwima, M.W.; Parikh, S.; Aweeka, F. Efavirenz-Based Antiretroviral Therapy Reduces Artemether-Lumefantrine Exposure for Malaria Treatment in HIV-Infected Pregnant Women. J. Acquir. Immune Defic. Syndr. 2020, 83, 140–147. [Google Scholar] [CrossRef]
- Bernus, I.; Hooper, W.D.; Dickinson, R.G.; Eadie, M.J. Metabolism of carbamazepine and co-administered anticonvulsants during pregnancy. Epilepsy Res. 1995, 21, 65–75. [Google Scholar] [CrossRef]
- Tomson, T.; Lindbom, U.; Ekqvist, B.; Sundqvist, A. Disposition of carbamazepine and phenytoin in pregnancy. Epilepsia 1994, 35, 131–135. [Google Scholar] [CrossRef]
- Neary, M.; Lamorde, M.; Olagunju, A.; Darin, K.M.; Merry, C.; Byakika-Kibwika, P.; Back, D.J.; Siccardi, M.; Owen, A.; Scarsi, K.K. The Effect of Gene Variants on Levonorgestrel Pharmacokinetics When Combined with Antiretroviral Therapy Containing Efavirenz or Nevirapine. Clin. Pharmacol. Ther. 2017, 102, 529–536. [Google Scholar] [CrossRef]
- TYBOST (Cobicistat) Tablets, for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/203094s014lbl.pdf (accessed on 23 February 2022).
- Owen, A.; Rannard, S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv. Drug Deliv. Rev. 2016, 103, 144–156. [Google Scholar] [CrossRef] [Green Version]
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Age, Sex) | AUC | Half-Life | Reference |
Metoprolol | Metoclopramide | mean age 33 (3 ♂, 5 ♀) | 1.07 | 1.03 | [10] |
100 mg (PO), single dose | 10 mg (IV), single dose | mean age 81 (6 ♂, 1 ♀) | 1.06 | 0.91 |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Age, Sex) | AUC | Half-Life | Reference |
Antipyrine | Cimetidine | mean age 24 (6 ♂) | 1.40 | - | [15] |
8 mg/kg (PO), single dose | 200 mg (PO), QID, single dose | mean age 72 (6 ♂) | 1.38 | - | |
CYP1A2/CYP3A | |||||
Theophylline | Cimetidine | mean age 28 ± 5 (9 NS) | 1.29 | 1.37 | [16] |
5 mg/kg (PO), single dose | 200 mg (PO), QID, steady state | mean age 67 ± 4 (9 NS) | 1.40 | 1.45 | |
CYP1A2 | |||||
Theophylline | Cimetidine | mean age 28 ± 5 (9 NS) | 1.45 | 1.59 | [16] |
5 mg/kg (PO), single dose | 300 mg (PO), QID, steady state | mean age 67 ± 4 (9 NS) | 1.58 | 1.72 | |
CYP1A2 | |||||
Theophylline | Cimetidine | mean age 27 ± 1 (10 ♂) | 1.41 | 1.38 | [17] |
10 mg (IV), single dose | 400 mg (PO), TID, steady state | mean age 76 ± 2 (10 ♂) | 1.40 | 1.32 | |
CYP1A2 | |||||
Theophylline | Cimetidine | mean age 25 ± 2 (8 ♂) | 1.31 | 1.41 | [9] |
5 mg/kg (IV), single dose | 400 mg (PO), BID, steady state | mean age 28 ± 1 (8 ♀) | 1.42 | 1.43 | |
CYP1A2 | mean age 71 ± 1 (8 ♂) | 1.36 | 1.31 | ||
mean age 72 ± 2 (8 ♀) | 1.33 | 1.36 | |||
Theophylline | Ciprofloxacin | mean age 25 ± 2 (8 ♂) | 1.49 | 1.51 | [9] |
5 mg/kg (IV), single dose | 500 mg (PO), BID, steady state | mean age 28 ± 1 (8 ♀) | 1.50 | 1.48 | |
CYP1A2 | mean age 71 ± 1 (8 ♂) | 1.42 | 1.40 | ||
mean age 72 ± 2 (8 ♀) | 1.40 | 1.45 | |||
Theophylline | Cimetidine + ciprofloxacin | mean age 25 ± 2 (8 ♂) | 1.64 | 1.73 | [9] |
5 mg/kg (IV), single dose | CIM: 400 mg (PO), BID, steady state | mean age 28 ± 1 (8 ♀) | 1.79 | 1.75 | |
CYP1A2 | CIP: 500 mg (PO), BID, steady state | mean age 71 ± 1 (8 ♂) | 1.64 | 1.64 | |
mean age 72 ± 2 (8 ♀) | 1.60 | 1.68 | |||
Oxycodone | Clarithromycin | mean age 22 (6 ♂, 4 ♀) | 1.84 | 1.32 | [18] |
10 mg (PO), single dose | 500 mg (PO), BID, steady state | mean age 74 (7 ♂, 3 ♀) | 2.09 | 1.19 | |
CYP3A |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Age, Sex) | AUC | Half-Life | Reference |
Antipyrine | Dichloralphenazone | mean age 29 (5 ♂, 3 ♀) | 0.76 | 0.68 | [25] |
18 mg/kg (PO), QD, single dose | 20 mg/kg (PO), QD, steady state | mean age 77 (3 ♂, 3 ♀) | 0.97 | 0.87 | |
CYP1A2/CYP3A4 | |||||
Theophylline | Phenytoin | mean age 25 ± 1 (10 ♂) | 0.63 | 0.72 | [26] |
5.6 mg/kg (IV), single dose | 30 or 100 mg (PO), BID, steady state | mean age 73 ± 2 (10 ♂) | 0.69 | 0.70 | |
CYP1A2 | |||||
S-hexobarbitone | Rifampicin | mean age 29 (6 NS) | 0.16 | 0.41 | [27] |
500 mg (PO), single dose | 600 mg (PO), QD, steady state | mean age 71 (6 NS) | 0.17 | 0.43 | |
CYP unknown | |||||
R-hexobarbitone | Rifampicin | mean age 29 (6 NS) | 0.01 | 0.71 | [27] |
500 mg (PO), single dose | 600 mg (PO), QD, steady state | mean age 71 (6 NS) | 0.05 | 0.87 | |
CYP unknown | |||||
Midazolam | Rifampicin | mean age 27 ± 4 (14 ♂) | 0.08 | 0.48 | [28] |
3–8 mg (PO), single dose | 600 mg (PO), QD, steady state | mean age 26 ± 4 (14 ♀) | 0.11 | 0.41 | |
CYP3A4 | mean age 70 ± 4 (10 ♂) | 0.11 | 0.60 | ||
mean age 72 ± 5 (14 ♀) | 0.11 | 0.33 | |||
Midazolam | Rifampicin | mean age 27 ± 4 (14 ♂) | 0.51 | 0.50 | [28] |
0.05 mg/kg (IV), single dose | 600 mg (PO), QD, steady state | mean age 26 ± 4 (14 ♀) | 0.38 | 0.43 | |
CYP3A4 | mean age 70 ± 4 (10 ♂) | 0.48 | 0.58 | ||
mean age 72 ± 5 (14 ♀) | 0.44 | 0.48 |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Age, Sex) | AUC | Half-Life | Reference |
Amantadine | Quinine | mean age 33 (5 ♂, 4 ♀) | 1.45 | - | [30] |
3 mg/kg (PO), single dose | 200 mg (PO), single dose | mean age 66 (4 ♂, 5 ♀) | 1.13 | - | |
OCT2 | |||||
Amantadine | Quinidine | mean age 33 (5 ♂, 4 ♀) | 1.24 | - | [30] |
3 mg/kg (PO), single dose | 200 mg (PO), single dose | mean age 66 (4 ♂, 5 ♀) | 1.22 | - | |
OCT2 |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (BMI, Sex) | AUC | Cmax | Reference |
Ranolazine | Posaconazole | BMI 23.5 kg/m2 (7 ♂, 7 ♀) | 3.88 | 2.16 | [48] |
500 mg (PO), single dose | 300 mg (PO), QD, steady state | BMI 40.9 kg/m2 (5 ♂, 9 ♀) | 2.80 | 2.18 | |
CYP3A4 | |||||
Lurasidone | Posaconazole | BMI 23.1 kg/m2 (6 ♂, 5 ♀) | 5.75 | 4.00 | [49] |
20 mg (PO), single dose | 300 mg (PO), QD, steady state | BMI 49.3 kg/m2 (6 ♂, 7 ♀) | 4.34 | 2.91 | |
CYP3A4 |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (BMI, Sex) | AUC | Cmax | Reference |
Ethinylestradiol | Topiramate | BMI 22.8 kg/m2 (12 ♀) | 0.97 | 0.95 | [53] |
0.035 mg (PO), steady state | 200 mg (PO), steady state | BMI 32.5 kg/m2 (12 ♀) | 0.97 | 0.94 | |
Sulfation, glucuronidation, CYP3A4 |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Gestational Age, Sex) | AUC | Ctrough | References |
TDF | Ritonavir | PP (58 ♀) | 1.28 | 1.13 | [63] |
300 mg (PO), QD, steady state | 100 mg (PO), BID, steady state | 3T (53 ♀) | 1.30 | 1.26 | |
P-gp, BCRP | |||||
TAF | Ritonavir/cobicistat | PP (25 ♀) | 1.87 | - | [64,65] |
25 mg (PO), QD, steady state | 100 mg/150 mg (PO), QD, steady state | 3T (27 ♀) | 1.58 | - | |
P-gp, BCRP |
Ratio Third Trimester/Post-Partum | |||||||
---|---|---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Ethnicity) | AUC | Cmax | Ctrough | Half-Life | References |
Atazanavir 300 mg (PO), QD, steady state | Ritonavir 100 mg (PO), QD, steady state | 58% white, 42% black | 0.66 | 0.65 | 0.65 | 1.00 | [68,69] |
Atazanavir 300 mg (PO), QD, steady state | Ritonavir 100 mg (PO), QD, steady state | 78% black, 20% white, 2% others | 0.70 | 0.75 | 0.71 | 0.59 | [70,71,72,73] |
Atazanavir 300 mg (PO), QD, steady state | Cobicistat 150 mg (PO), QD, steady state | 55% black, 18% Hispanic, 9% white | 0.46 | 0.53 | 0.32 | 0.47 | [74] |
Darunavir 600 mg (PO), BID, steady state | Ritonavir 100 mg (PO), BID, steady state | 66% black, 33% white | 0.78 | 0.76 | 0.89 | 1.12 | [75] |
Darunavir 800 mg (PO), QD, steady state | Ritonavir 100 mg (PO), QD, steady state | 61% black, 39% white | 0.68 | 0.76 | 0.50 | 0.59 | [75,76,77,78] |
Darunavir 800 mg (PO), QD, steady state | Cobicistat 150 mg (PO), QD, steady state | 72% black, 14% white, 14% Hispanic | 0.50 | 0.63 | 0.11 | - | [79] |
Lopinavir 400 mg (PO), BID, steady state | Ritonavir 100 mg (PO), BID, steady state | 64% black, 23% Hispanic, 13% white | 0.71 | 0.74 | 0.61 | - | [80,81,82,83] |
Elvitegravir 150 mg (PO), QD, steady state | Cobicistat 150 mg (PO), QD, steady state | 68% black, 16% white, 16% Hispanic | 0.60 | 0.74 | 0.15 | 0.44 | [84,85] |
Ratio Presence/Absence Perpetrator | |||||
---|---|---|---|---|---|
Victim Drug | Perpetrator Drug | Study Subjects (Gestational Age, Sex) | AUC | Ctrough | References |
Lumefantrine | Efavirenz | NP ALONE: (12♂, 63 ♀) + EFV: (11 ♂, 53 ♀) | 0.42 | - | [88,89,90,91] |
480 mg (PO), BID, steady state | 600 mg (PO), QD, steady state | 2T/3T ALONE: 2T 60%, 3T 40%, (26 ♀) + EFV: 2T 20%, 3T 80%, (35 ♀) | 0.61 | - | [88,89,90] |
CYP3A4 | |||||
Piperaquine | Efavirenz | NP ALONE: (5 ♂, 5 ♀) + EFV: (3 ♂, 13 ♀) | 0.57 | 0.74 | [92] |
960 mg (PO), x for 3 days | 600 mg (PO), QD, steady state | 3T ALONE: (31 ♀) + EFV: (27 ♀) | 0.62 | 0.50 | [93] |
CYP3A4/CYP2C8 | |||||
Artemether | Efavirenz | NP ALONE: (12 ♂, 46 ♀) + EFV: (11 ♂, 19 ♀) | 0.20 | - | [91] |
80 mg (PO), BID, steady state | 600 mg (PO), QD, steady state | 3T ALONE: (30 ♀) + EFV: (9 ♀) | 0.55 | - | [94] |
CYP3A4/CYP2B6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettonte, S.; Berton, M.; Marzolini, C. Magnitude of Drug–Drug Interactions in Special Populations. Pharmaceutics 2022, 14, 789. https://doi.org/10.3390/pharmaceutics14040789
Bettonte S, Berton M, Marzolini C. Magnitude of Drug–Drug Interactions in Special Populations. Pharmaceutics. 2022; 14(4):789. https://doi.org/10.3390/pharmaceutics14040789
Chicago/Turabian StyleBettonte, Sara, Mattia Berton, and Catia Marzolini. 2022. "Magnitude of Drug–Drug Interactions in Special Populations" Pharmaceutics 14, no. 4: 789. https://doi.org/10.3390/pharmaceutics14040789