Modulation of Paracellular-like Drug Transport across an Artificial Biomimetic Barrier by Osmotic Stress-Induced Liposome Shrinking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Media Preparation
2.3. Permeation Experiments
2.4. Quantification
2.5. Data Analysis
2.6. Statistics
3. Results and Discussion
3.1. Permeation after Pretreatment with NaCl Solutions
3.2. The Time Necessary for Lipid Vesicles to Form
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandl, M.; Eide Flaten, G.; Bauer-Brandl, A. Passive Diffusion Across Membranes. In Wiley Encyclopedia of Chemical Biology; John Wiley and Sons: Hoboken, NJ, USA, 2008; pp. 1–10. [Google Scholar]
- He, Y.-L.; Murby, S.; Warhurst, G.; Gifford, L.; Walker, D.; Ayrton, J.; Eastmond, R.; Rowland, M. Species Differences in Size Discrimination in the Paracellular Pathway Reflected by Oral Bioavailability of Poly(ethylene glycol) and d-Peptides. J. Pharm. Sci. 1998, 87, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Artursson, P.; Magnusson, C. Epithelial Transport of Drugs in Cell Culture. II: Effect of Extracellular Calcium Concentration on the Paracellular Transport of Drugs of Different Lipophilicities across Monolayers of Intestinal Epithelial (Caco-2) Cells. J. Pharm. Sci. 1990, 79, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- Linnankoski, J.; Mäkelä, J.; Palmgren, J.; Mauriala, T.; Vedin, C.; Ungell, A.L.; Lazorova, L.; Artursson, P.; Urtti, A.; Yliperttula, M. Paracellular Porosity and Pore Size of the Human Intestinal Epithelium in Tissue and Cell Culture Models. J. Pharm. Sci. 2010, 99, 2166–2175. [Google Scholar] [CrossRef] [PubMed]
- Adson, A.; Raub, T.J.; Burton, P.S.; Barsuhn, C.L.; Hilgers, A.R.; Audus, K.L.; Ho, N.F.H. Quantitative Approaches To Delineate Paracellular Diffusion in Cultured Epithelial Cell Monolayers. J. Pharm. Sci. 1994, 83, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K.; Takata, N.; Machida, M.; Saitoh, K.; Terada, K. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int. J. Pharm. 2002, 241, 241–251. [Google Scholar] [CrossRef]
- di Cagno, M.; Bibi, H.A.; Bauer-Brandl, A. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. Eur. J. Pharm. Sci. 2015, 73, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.-C.; Nielsen, S.; Brandl, M.; Bauer-Brandl, A. Drug Permeability Profiling Using the Novel Permeapad® 96-Well Plate. Pharm. Res. 2020, 37, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M. Vesicular Phospholipid Gels: A Technology Platform. J. Liposome Res. 2007, 17, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.; Drechsler, M.; Bachmann, D.; Bauer, K.-H. Morphology of semisolid aqueous phosphatidylcholine dispersions, a freeze fracture electron microscopy study. Chem. Phys. Lipids 1997, 87, 65–72. [Google Scholar] [CrossRef]
- Tardi, C.; Brandl, M.; Schubert, R. Erosion and controlled release properties of semisolid vesicular phospholipid dispersions. J. Control. Release 1998, 55, 261–270. [Google Scholar] [CrossRef]
- Tian, W.; Schulze, S.; Brandl, M.; Winter, G. Vesicular phospholipid gel-based depot formulations for pharmaceutical proteins: Development and in vitro evaluation. J. Control. Release 2010, 142, 319–325. [Google Scholar] [CrossRef]
- Alonso, J.M.; Llácer, C.; Vila, A.O.; Figueruelo, J.E.; Molina, F.J. Effect of the osmotic conditions on the value of ζ potential of DMPC multilamellar liposomes. Colloids Surf. A Physicochem. Eng. Asp. 1995, 95, 11–14. [Google Scholar] [CrossRef]
- Hupfeld, S.; Moen, H.H.; Ausbacher, D.; Haas, H.; Brandl, M. Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: Influence of ionic strength and osmotic pressure of the carrier liquid. Chem. Phys. Lipids 2010, 163, 141–147. [Google Scholar] [CrossRef]
- Abuin, E.B.; Campos, A.M.; Lissi, E.A.; Disalvo, E.A. Osmotic Response of Large Unilamellar Vesicles of Phosphatidylcholine: Factors Determining the Rate of the Process and the Properties of the Shrunken Vesicles. J. Colloid Interface Sci. 1995, 171, 406–412. [Google Scholar] [CrossRef]
- Borbás, E.; Kádár, S.; Tsinman, K.; Tsinman, O.; Csicsák, D.; Takács-Novák, K.; Völgyi, G.; Sinkó, B.; Pataki, H. Prediction of Bioequivalence and Food Effect Using Flux- and Solubility-Based Methods. Mol. Pharm. 2019, 16, 4121–4130. [Google Scholar] [CrossRef] [Green Version]
- Berben, P.; Bauer-Brandl, A.; Brandl, M.; Faller, B.; Flaten, G.E.; Jacobsen, A.-C.; Brouwers, J.; Augustijns, P. Drug permeability profiling using cell-free permeation tools: Overview and applications. Eur. J. Pharm. Sci. 2018, 119, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Hayeshi, R.; Hilgendorf, C.; Artursson, P.; Augustijns, P.; Brodin, B.; Dehertogh, P.; Fisher, K.; Fossati, L.; Hovenkamp, E.; Korjamo, T.; et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur. J. Pharm. Sci. 2008, 35, 383–396. [Google Scholar] [CrossRef] [PubMed]
Compound | Molar Mass (g/mol) | Log D at pH 6.5 | pKa (Strongest Acidic, Basic) | TPSA (Å2) | Solubility at pH 6.5 (mg/mL) |
---|---|---|---|---|---|
Calcein | 622.55 | −10.67 | 1.51 (8.15) | 231.67 | 622.54 |
Acyclovir | 225.21 | −1.03 | 11.98 (3.02) | 114.76 | 9.09 |
Hydrocortisone | 362.47 | 1.28 | 12.59 (none) | 94.83 | 0.41 |
Celecoxib | 381.37 | 4.01 | 10.6 (0.41) | 77.98 | 1.2·10-3 |
Calcein | Acyclovir | Hydrocortisone | Celecoxib | |||||
---|---|---|---|---|---|---|---|---|
Osmolality of NaCl solution used for pretreatment | 50 | 300 | 50 | 300 | 50 | 300 | 50 | 300 |
Permeability across PermeaPad® (10−6 cm/s) | 0.61 ± 0.04 | 0.35 ± 0.01 | 4.07 ± 0.60 | 2.52 ± 0.33 | 23.68 ± 2.61 | 21.58 ± 2.27 | 17.95 ± 7.48 | 15.92 ± 4.99 |
Permeability across support layer (10−6 cm/s) | 2.51 ± 0.30 | 2.84 ± 0.54 | 32.67 ± 1.87 | 33.19 ± 1.79 | 25.33 ± 2.77 | 23.69 ± 2.20 | 46.33 ± 2.23 | 46.16 ± 2.74 |
Permeability across lipid layer (10−6 cm/s) | 0.80 ± 0.07 | 0.40 ± 0.02 | 4.71 ± 0.78 | 2.74 ± 0.38 | N/A | N/A | 34.16 ± 18.08 | 26.24 ± 11.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eriksen, J.B.; Barakat, H.; Luppi, B.; Brandl, M.; Bauer-Brandl, A. Modulation of Paracellular-like Drug Transport across an Artificial Biomimetic Barrier by Osmotic Stress-Induced Liposome Shrinking. Pharmaceutics 2022, 14, 721. https://doi.org/10.3390/pharmaceutics14040721
Eriksen JB, Barakat H, Luppi B, Brandl M, Bauer-Brandl A. Modulation of Paracellular-like Drug Transport across an Artificial Biomimetic Barrier by Osmotic Stress-Induced Liposome Shrinking. Pharmaceutics. 2022; 14(4):721. https://doi.org/10.3390/pharmaceutics14040721
Chicago/Turabian StyleEriksen, Jonas Borregaard, Hesham Barakat, Barbara Luppi, Martin Brandl, and Annette Bauer-Brandl. 2022. "Modulation of Paracellular-like Drug Transport across an Artificial Biomimetic Barrier by Osmotic Stress-Induced Liposome Shrinking" Pharmaceutics 14, no. 4: 721. https://doi.org/10.3390/pharmaceutics14040721