PAMAM-Calix-Dendrimers: Second Generation Synthesis, Fluorescent Properties and Catecholamines Binding
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Information
2.2. General Procedure for the Synthesis of the Compounds G1.5
2.2.1. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[N-(6-(N,N-di(N-(2-(N,N-di(methoxycarbonylethyl)amino)ethyl)carbamoylethyl)amino)hexyl)carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene, [G1.5-cone]. Viscous Yellowish Oil, Yield: 1.52 g (95%)
2.2.2. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[N-(6-(N,N-di(N-(2-(N,N-di(methoxycarbonylethyl)amino)ethyl)carbamoylethyl)amino)hexyl)carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene, [G1.5-paco]. Viscous Yellowish Oil, Yield: 1.57 g (98%)
2.2.3. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[N-(6-(N,N-di(N-(2-(N,N-di(methoxycarbonylethyl)amino)ethyl)carbamoylethyl)amino)hexyl)carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene, [G1.5-alt]. Viscous Yellowish Oil, Yield: 1.58 g (99%)
2.3. General Procedure for the Synthesis of the Compounds G2
2.3.1. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[N-(6-(N,N-di(N-(2-(N,N-di(N-(2-aminoethyl)carbamoylethyl)amino)ethyl)carbamoylethyl)amino)hexyl)carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene, [G2-cone]. White Solid Foam, m.p. 68 °C, Yield: 1.01 g (90%)
2.3.2. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[N-(6-(N,N-di(N-(2-(N,N-di(N-(2-aminoethyl)carbamoylethyl)amino)ethyl)carbamoylethyl)amino)hexyl)carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene, [G2-paco]. White Solid Foam, m.p. 69 °C, Yield: 0.96 g (85%)
2.3.3. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis[N-(6-(N,N-di(N-(2-(N,N-di(N-(2-aminoethyl)carbamoylethyl)amino)ethyl)carbamoylethyl)amino)hexyl)carbamoylmethoxy]-2,8,14,20-tetrathiacalix[4]arene [G2-alt]. White Solid Foam, m.p. 75 °C, Yield: 0.99 g (88%)
2.4. Procedure for the Synthesis of the Compound G0.5-Monomer
N-(6-(N,N-di(methoxycarbonylethyl)amino)hexyl)-2-(4-(tert-butyl)phenoxy)acetamide, [G0.5-monomer]. Viscous Yellowish Oil, Yield: 2.70 g (97%)
2.5. Procedure for the Synthesis of the Compound G1-Monomer
N-(6-(N,N-di(N-(2-aminoethyl)carbamoylethyl)amino)hexyl)-2-(4-(tert-butyl)phenoxy)acetamide, [G1-monomer]. Viscous Yellowish Oil, Yield: 0.76 g (97%)
2.6. Preparation of the Compounds G1∙HCl, G2∙HCl and G1-Monomer∙HCl
2.7. Study of the PAMAM-Calix-Dendrimers Emission Properties
2.8. Study of Hemolysis Activity
3. Results and Discussion
3.1. Synthesis of the Second Generation of Poly(Amidoamine) Dendrimers Based on p-Tert-Butylthiacalixarene (PAMAM-Calix-Dendrimers) in Different Conformations
3.2. Spectral Properties of the First and Second Generation of PAMAM-Calix-Dendrimers
3.3. Binding of the Catecholamines by the G1 and G2 PAMAM-Calix-Dendrimers
3.4. Hemolytic Activity of the G1-alt and G2-alt PAMAM-Calix-Dendrimers
3.5. In Vitro Release Studies of Catecholamines from Their Complexes with PAMAM-Calix-Dendrimers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philippu, A. (Ed.) In Vivo Neuropharmacology and Neurophysiology; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Oberbeck, R. Catecholamines: Physiological Immunomodulators During Health and Illness. Curr. Med. Chem. 2006, 13, 1979–1989. [Google Scholar] [CrossRef]
- Khan, F.H.; Ahlberg, C.D.; Chow, C.A.; Shah, D.R.; Koo, B.B. Iron, Dopamine, Genetics, and Hormones in the Pathophysiology of Restless Legs Syndrome. J. Neurol. 2017, 264, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, K.; Noworyta-Sokołowska, K.; Jurczak, A.; Górska, A.; Rogóż, Z.; Gołembiowska, K. Risperidone and Escitalopram Co-Administration: A Potential Treatment of Schizophrenia Symptoms with Less Side Effects. Pharmacol. Rep. 2017, 69, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Post, M.R.; Lieberman, O.J.; Mosharov, E.V. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson’s Disease? Front. Neurosci. 2018, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Fact Sheet—Dementia. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 23 September 2022).
- De Backer, D.; Foulon, P. Minimizing Catecholamines and Optimizing Perfusion. Crit. Care 2019, 23, 149. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, C.; Pang, Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019, 9, 790. [Google Scholar] [CrossRef]
- Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; et al. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020, 25, 3982. [Google Scholar] [CrossRef]
- Dzmitruk, V.; Apartsin, E.; Ihnatsyeu-Kachan, A.; Abashkin, V.; Shcharbin, D.; Bryszewska, M. Dendrimers Show Promise for SiRNA and MicroRNA Therapeutics. Pharmaceutics 2018, 10, 126. [Google Scholar] [CrossRef]
- Pedziwiatr-Werbicka, E.; Milowska, K.; Dzmitruk, V.; Ionov, M.; Shcharbin, D.; Bryszewska, M. Dendrimers and Hyperbranched Structures for Biomedical Applications. Eur. Polym. J. 2019, 119, 61–73. [Google Scholar] [CrossRef]
- Nunes, D.; Loureiro, J.A.; Pereira, M.C. Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer’s Drugs. Pharmaceutics 2022, 14, 2296. [Google Scholar] [CrossRef]
- Hao, M.; Chen, B.; Zhao, X.; Zhao, N.; Xu, F.-J. Organic/Inorganic Nanocomposites for Cancer Immunotherapy. Mater. Chem. Front. 2020, 4, 2571–2609. [Google Scholar] [CrossRef]
- Chowdhury, S.; Toth, I.; Stephenson, R.J. Dendrimers in Vaccine Delivery: Recent Progress and Advances. Biomaterials 2022, 280, 121303. [Google Scholar] [CrossRef] [PubMed]
- Taghavi Pourianazar, N.; Mutlu, P.; Gunduz, U. Bioapplications of Poly(Amidoamine) (PAMAM) Dendrimers in Nanomedicine. J. Nanopart. Res. 2014, 16, 2342. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukherjee, S.; Abourehab, M.A.S.; Sahebkar, A.; Kesharwani, P. Exploring Dendrimer-Based Drug Delivery Systems and Their Potential Applications in Cancer Immunotherapy. Eur. Polym. J. 2022, 177, 111471. [Google Scholar] [CrossRef]
- Ahlawat, J.; Guillama Barroso, G.; Masoudi Asil, S.; Alvarado, M.; Armendariz, I.; Bernal, J.; Carabaza, X.; Chavez, S.; Cruz, P.; Escalante, V.; et al. Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood–Brain Barrier: Challenges and Possibilities. ACS Omega 2020, 5, 12583–12595. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Shi, X. Dendrimer-Based Nanodevices for Targeted Drug Delivery Applications. J. Mater. Chem. B 2013, 1, 4199–4211. [Google Scholar] [CrossRef]
- Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In Vitro Cytotoxicity Testing of Polycations: Influence of Polymer Structure on Cell Viability and Hemolysis. Biomaterials 2003, 24, 1121–1131. [Google Scholar] [CrossRef]
- Duncan, R.; Izzo, L. Dendrimer Biocompatibility and Toxicity. Adv. Drug Deliv. Rev. 2005, 57, 2215–2237. [Google Scholar] [CrossRef]
- Labieniec-Watala, M.; Watala, C. PAMAM Dendrimers: Destined for Success or Doomed to Fail? Plain and Modified PAMAM Dendrimers in the Context of Biomedical Applications. J. Pharm. Sci. 2015, 104, 2–14. [Google Scholar] [CrossRef]
- Iki, N. Thiacalixarenes. In Calixarenes and Beyond; Springer: Cham, Switzerland, 2016; pp. 335–362. [Google Scholar] [CrossRef]
- Solovieva, S.E.; Burilov, V.A.; Antipin, I.S. Thiacalix[4]Arene’s Lower Rim Derivatives: Synthesis and Supramolecular Properties. Macroheterocycles 2017, 10, 134–146. [Google Scholar] [CrossRef][Green Version]
- Shurpik, D.N.; Padnya, P.L.; Stoikov, I.I.; Cragg, P.J. Antimicrobial Activity of Calixarenes and Related Macrocycles. Molecules 2020, 25, 5145. [Google Scholar] [CrossRef]
- Fasting, C.; Schalley, C.A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E.-W.; Haag, R. Multivalency as a Chemical Organization and Action Principle. Angew. Chem. Int. Ed. 2012, 51, 10472–10498. [Google Scholar] [CrossRef]
- Padnya, P.L.; Terenteva, O.S.; Akhmedov, A.A.; Iksanova, A.G.; Shtyrlin, N.V.; Nikitina, E.V.; Krylova, E.S.; Shtyrlin, Y.G.; Stoikov, I.I. Thiacalixarene Based Quaternary Ammonium Salts as Promising Antibacterial Agents. Bioorg. Med. Chem. 2021, 29, 115905. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.F.P.; Mastelaro, V.R.; Vieira, E.G.; do Carmo, D.R. β-cyclodextrine PAMAM Dendrimer Surface Doped with Silver and Hexacyanoferrate (III) and its Applications for Dopamine Detection in Synthetic Samples. Electroanalysis 2022, 34, 1–13. [Google Scholar] [CrossRef]
- Mostovaya, O.; Padnya, P.; Shiabiev, I.; Mukhametzyanov, T.; Stoikov, I. PAMAM-Calix-Dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int. J. Mol. Sci. 2021, 22, 11901. [Google Scholar] [CrossRef] [PubMed]
- Mostovaya, O.A.; Padnya, P.L.; Shurpik, D.N.; Shiabiev, I.E.; Stoikov, I.I. Novel Lactide Derivatives of p-tert-Butylthiacalix[4]Arene: Directed Synthesis and Molecular Recognition of Catecholamines. J. Mol. Liq. 2021, 327, 114806. [Google Scholar] [CrossRef]
- Lyu, Z.; Ding, L.; Huang, A.Y.-T.; Kao, C.-L.; Peng, L. Poly(Amidoamine) Dendrimers: Covalent and Supramolecular Synthesis. Mater. Today Chem. 2019, 13, 34–48. [Google Scholar] [CrossRef]
- He, M.; McLuckey, S.A. Tandem Mass Spectrometry of Half-Generation PAMAM Dendrimer Anions. Rapid Commun. Mass Spectrom. 2004, 18, 960–972. [Google Scholar] [CrossRef]
- Tolić, L.P.; Anderson, G.A.; Smith, R.D.; Brothers, H.M., II; Spindler, R.; Tomalia, D.A. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Characterization of High Molecular Mass Starburst™ Dendrimers. Int. J. Mass Spectrom. Ion Process. 1997, 165–166, 405–418. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Klajnert-Maculewicz, B.; Johnson, K.A.-M.; Brinkman, H.F.; Janaszewska, A.; Hedstrand, D.M. Non-Traditional Intrinsic Luminescence: Inexplicable Blue Fluorescence Observed for Dendrimers, Macromolecules and Small Molecular Structures Lacking Traditional/Conventional Luminophores. Prog. Polym. Sci. 2019, 90, 35–117. [Google Scholar] [CrossRef]
- Larson, C.L.; Tucker, S.A. Intrinsic Fluorescence of Carboxylate-Terminated Polyamido Amine Dendrimers. Appl. Spectrosc. 2001, 55, 679–683. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, D.; Su, Z.; Bryce, M.R. Recent Advances in Oligomers/Polymers with Unconventional Chromophores. Mater. Chem. Front. 2021, 5, 60–75. [Google Scholar] [CrossRef]
- Wang, D.; Imae, T. Fluorescence Emission from Dendrimers and Its PH Dependence. J. Am. Chem. Soc. 2004, 126, 13204–13205. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Imae, T.; Miki, M. Fluorescence Emission from PAMAM and PPI Dendrimers. J. Colloid Interface Sci. 2007, 306, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ficker, M.; Paolucci, V.; Christensen, J.B. Improved Large-Scale Synthesis and Characterization of Small and Medium Generation PAMAM Dendrimers. Can. J. Chem. 2017, 95, 954–964. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Mostovaya, O.A.; Sevastyanov, D.A.; Lenina, O.A.; Sapunova, A.S.; Voloshina, A.D.; Petrov, K.A.; Kovyazina, I.V.; Cragg, P.J.; Stoikov, I.I. Supramolecular Neuromuscular Blocker Inhibition by a Pillar[5]Arene through Aqueous Inclusion of Rocuronium Bromide. Org. Biomol. Chem. 2019, 17, 9951–9959. [Google Scholar] [CrossRef] [PubMed]
- Yavorovska, V.I.; Labyntseva, R.D.; Bevza, O.V.; Pugach, A.Y.; Drapailo, A.B.; Cherenok, S.O.; Kalchenko, V.I. Thiacalix[4]Arene Phosphonate C-800 as a Novel Fluorescent Probe for Zinc in Living Cells. Ukr. Biochem. J 2021, 93, 26–36. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; p. 954. [Google Scholar]
- Valeur, B. Molecular Fluorescence: Principles and Application; Wiley-VCH: Weinheim, Germany, 2001; p. 383. [Google Scholar]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Padnya, P.L.; Khripunova, I.A.; Mostovaya, O.A.; Mukhametzyanov, T.A.; Evtugyn, V.G.; Vorobev, V.V.; Osin, Y.N.; Stoikov, I.I. Self-Assembly of Chiral Fluorescent Nanoparticles Based on Water-Soluble L-Tryptophan Derivatives of p-tert-Butylthiacalix[4]Arene. Beilstein J. Nanotechnol. 2017, 8, 1825–1835. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, V.; Aggarwal, S.; Tiwari, A.K.; Chuttani, K.; Pratap, R.; Mishra, A.K. Design, Synthesis, and Biological Evaluation of Catecholamine Vehicle for Studying Dopaminergic System. Chem. Biol. Drug Des. 2013, 82, 226–232. [Google Scholar] [CrossRef]
- Lelou, E.; Corlu, A.; Nesseler, N.; Rauch, C.; Mallédant, Y.; Seguin, P.; Aninat, C. The Role of Catecholamines in Pathophysiological Liver Processes. Cells 2022, 11, 1021. [Google Scholar] [CrossRef]
- Kulikova, T.; Padnya, P.; Shiabiev, I.; Rogov, A.; Stoikov, I.; Evtugyn, G. Electrochemical Sensing of Interactions between DNA and Charged Macrocycles. Chemosensors 2021, 9, 347. [Google Scholar] [CrossRef]
- Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers: Relationship Between Structure and Biocompatibility In Vitro, and Preliminary Studies on The Biodistribution of 125I-Labelled Polyamidoamine Dendrimers In Vivo. J. Control. Release 2000, 65, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeon, M.; Paeng, K.-J.; Paeng, I.R. Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Catecholamine, Dopamine in Serum. Anal. Chim. Acta 2008, 619, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Barreto, W.J.; Ponzoni, S.; Sassi, P. A Raman and UV-Vis Study of Catecholamines Oxidized with Mn(III). Spectrochim. Acta Part A 1998, 55, 65–72. [Google Scholar] [CrossRef]
- Vavilova, A.A.; Nosov, R.V.; Mostovaya, O.A.; Stoikov, I.I. Synthesis of Three Stereoisomers of p-tert-Butylthiacalix[4]Arene Substituted with (Ethoxycarbonyl)Methoxy and Fluorescent 1-Amidoanthraquinone Fragments. Macroheterocycles 2016, 9, 294–300. [Google Scholar] [CrossRef][Green Version]
- Lang, K.; Prošková, P.; Kroupa, J.; Morávek, J.; Stibor, I.; Pojarová, M.; Lhoták, P. The Synthesis and Complexation of Novel Azosubstituted Calix[4]Arenes and Thiacalix[4]Arenes. Dyes Pigm. 2008, 77, 646–652. [Google Scholar] [CrossRef]
- Siva, S.; Venkatesh, G.; Prabhu, A.A.M.; Sankaranarayanan, R.K.; Rajendiran, N. Absorption and Fluorescence Spectral Characteristics of Norepinephrine, Epinephrine, Isoprenaline, Methyl Dopa, Terbutaline and Orciprenaline Drugs. Phys. Chem. Liq. 2012, 50, 434–452. [Google Scholar] [CrossRef]
- Mostovaya, O.A.; Gorbachuk, V.V.; Bazanova, O.B.; Gerasimov, A.V.; Evtugyn, V.G.; Osin, Y.N.; Myakushev, V.D.; Rizvanov, I.K.; Stoikov, I.I. Thiacalixarene “Knot” Effect on Protein Binding by Oligolactic Acid Particles. Mater. Chem. Front. 2019, 3, 292–300. [Google Scholar] [CrossRef]
- Mostovaya, O.A.; Padnya, P.L.; Vavilova, A.A.; Shurpik, D.N.; Khairutdinov, B.I.; Mukhametzyanov, T.A.; Khannanov, A.A.; Kutyreva, M.P.; Stoikov, I.I. Tetracarboxylic Acids on a Thiacalixarene Scaffold: Synthesis and Binding of Dopamine Hydrochloride. New J. Chem. 2018, 42, 177–183. [Google Scholar] [CrossRef]
- Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef]
- Brynn Hibbert, D.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [PubMed]
- Bindfit v0.5, Open Data Fit. Available online: https://supramolecular.org/bindfit/ (accessed on 7 October 2022).
- Strange, P.G. The Energetics of Ligand Binding at Catecholamine Receptors. Trends Pharmacol. Sci. 1996, 17, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Mostovaya, O.A.; Padnya, P.L.; Shurpik, D.N.; Vavilova, A.A.; Evtugyn, V.G.; Osin, Y.N.; Stoikov, I.I. Iminodiacetic Derivatives of p-tert-Butylthiacalix[4]Arene: Synthesis and Influence of Conformation on the Aggregation with Bismarck Brown Y. Macroheterocycles 2017, 10, 154–163. [Google Scholar] [CrossRef]
- Domański, D.M.; Klajnert, B.; Bryszewska, M. Influence of PAMAM Dendrimers on Human Red Blood Cells. Bioelectrochemistry 2004, 63, 189–191. [Google Scholar] [CrossRef]
- Kesharwani, P.; Mishra, V.; Jain, N.K. Generation Dependent Hemolytic Profile of Folate Engineered Poly(Propyleneimine) Dendrimer. J. Drug Delivery Sci. Technol. 2015, 28, 1–6. [Google Scholar] [CrossRef]
- Serri, A.; Mahboubi, A.; Zarghi, A.; Moghimi, H.R. PAMAM-dendrimer Enhanced Antibacterial Effect of Vancomycin Hydrochloride Against Gram-Negative Bacteria. J. Pharm. Pharm. Sci. 2019, 22, 10–21. [Google Scholar] [CrossRef]
Compound | C, M | d, nm | PDI |
---|---|---|---|
G1-monomer | 2 × 10−4 | 103.8 ± 1.3 | 0.26 ± 0.01 |
1 × 10−4 | 107.5 ± 1.4 | 0.26 ± 0.01 | |
5 × 10−5 | 109.7 ± 4.6 | 0.27 ± 0.02 | |
1 × 10−5 | 114.9 ± 2.3 | 0.24 ± 0.01 | |
G1-cone | 1 × 10−4 | 22 ± 16 | 0.46 ± 0.14 |
5 × 10−5 | 165 ± 61 | 0.54 ± 0.25 | |
1 × 10−5 | 258 ± 3 | 0.21 ± 0.02 | |
G1-paco | 1 × 10−4 | 111 ± 44 | 0.78 ± 0.13 |
5 × 10−5 | 332 ± 30 | 0.62 ± 0.13 | |
1 × 10−5 | 600 ± 64 | 0.37 ± 0.05 | |
G1-alt | 1 × 10−4 | 1101 ± 47 | 0.38 ± 0.04 |
5 × 10−5 | 1041 ± 87 | 0.40 ± 0.07 | |
1 × 10−5 | 903 ± 44 | 0.46 ± 0.07 | |
G2-cone | 1 × 10−4 | 574 ± 33 | 0.49 ± 0.08 |
5 × 10−5 | 985 ± 68 | 0.72 ± 0.07 | |
1 × 10−5 | 423 ± 39 | 0.62 ± 0.08 | |
G2-paco | 1 × 10−4 | 1156 ± 78 | 0.51 ± 0.08 |
5 × 10−5 | 1274 ± 144 | 0.62 ± 0.11 | |
1 × 10−5 | 860 ± 185 | 0.82 ± 0.12 | |
G2-alt | 1 × 10−4 | 2293 ± 704 | 0.46 ± 0.25 |
5 × 10−5 | 1632 ± 353 | 0.69 ± 0.22 | |
1 × 10−5 | 1208 ± 277 | 0.83 ± 0.15 |
Compound | The Binding Constant Ka (% Error)/logKa | ||
---|---|---|---|
Dopamine HCl | L-Adrenaline HCl | L-Noradrenaline HCl | |
G1-cone | 8550 (0.26)/3.93 | 10,188 (0.46)/4.00 | 17,014 (0.59)/4.23 |
G1-paco | 7130 (0.45)/3.85 | 9236 (0.37)/3.97 | 17,208 (0.50)/4.24 |
G1-alt | 32,800 (0.78)/4.52 | 28,356 (0.93)/4.45 | 52,435 (0.89)/4.72 |
G2-cone | 24,688 (0.54)/4.39 | 30,857 (1.08)/4.49 | 14,430 (0.55)/4.16 |
G2-paco | 21,953 (0.61)/4.34 | 23,695 (0.62)/4.37 | 14,471 (0.40)/4.16 |
G2-alt | 37,152 (0.72)/4.57 | 55,198 (1.01)/4.74 | 17,977 (0.50)/4.25 |
System | d, nm | PDI |
---|---|---|
Dopamine HCl/G1-cone | 376 ± 11 | 0.22 ± 0.01 |
Dopamine HCl/G1-paco | 745 ± 25 | 0.20 ± 0.05 |
Dopamine HCl/G1-alt | 873 ± 63 | 0.51 ± 0.06 |
Dopamine HCl/G2-cone | 444 ± 54 | 0.22 ± 0.18 |
Dopamine HCl/G2-paco | 898 ± 125 | 0.50 ± 0.26 |
Dopamine HCl/G2-alt | 1416 ± 367 | 0.84 ± 0.11 |
Noradrenaline HCl/G1-cone | 516 ± 34 | 0.23 ± 0.02 |
Noradrenaline HCl/G1-paco | 536 ± 7 | 0.21 ± 0.07 |
Noradrenaline HCl/G1-alt | 1258 ± 78 | 0.49 ± 0.10 |
Noradrenaline HCl/G2-cone | 423 ± 33 | 0.40 ± 0.04 |
Noradrenaline HCl/G2-paco | 829 ± 99 | 0.52 ± 0.08 |
Noradrenaline HCl/G2-alt | 1153 ± 146 | 0.53 ± 0.20 |
Adrenaline HCl/G1-cone | 273 ± 10 | 0.25 ± 0.02 |
Adrenaline HCl/G1-paco | 572 ± 23 | 0.30 ± 0.08 |
Adrenaline HCl/G1-alt | 654 ± 23 | 0.25 ± 0.14 |
Adrenaline HCl/G2-cone | 311 ± 27 | 0.28 ± 0.06 |
Adrenaline HCl/G2-paco | 684 ± 99 | 0.63 ± 0.08 |
Adrenaline HCl/G2-alt | 1446 ± 306 | 0.89 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostovaya, O.; Shiabiev, I.; Pysin, D.; Stanavaya, A.; Abashkin, V.; Shcharbin, D.; Padnya, P.; Stoikov, I. PAMAM-Calix-Dendrimers: Second Generation Synthesis, Fluorescent Properties and Catecholamines Binding. Pharmaceutics 2022, 14, 2748. https://doi.org/10.3390/pharmaceutics14122748
Mostovaya O, Shiabiev I, Pysin D, Stanavaya A, Abashkin V, Shcharbin D, Padnya P, Stoikov I. PAMAM-Calix-Dendrimers: Second Generation Synthesis, Fluorescent Properties and Catecholamines Binding. Pharmaceutics. 2022; 14(12):2748. https://doi.org/10.3390/pharmaceutics14122748
Chicago/Turabian StyleMostovaya, Olga, Igor Shiabiev, Dmitry Pysin, Alesia Stanavaya, Viktar Abashkin, Dzmitry Shcharbin, Pavel Padnya, and Ivan Stoikov. 2022. "PAMAM-Calix-Dendrimers: Second Generation Synthesis, Fluorescent Properties and Catecholamines Binding" Pharmaceutics 14, no. 12: 2748. https://doi.org/10.3390/pharmaceutics14122748
APA StyleMostovaya, O., Shiabiev, I., Pysin, D., Stanavaya, A., Abashkin, V., Shcharbin, D., Padnya, P., & Stoikov, I. (2022). PAMAM-Calix-Dendrimers: Second Generation Synthesis, Fluorescent Properties and Catecholamines Binding. Pharmaceutics, 14(12), 2748. https://doi.org/10.3390/pharmaceutics14122748