Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mice and Ethics Statement
2.3. Vaccination Schedule
2.4. Systemic Antibody Responses
2.5. Cell-Mediated and Mucosal Immunity
2.6. Statistical Analysis
3. Results
3.1. Spike-PELC:CpG Formulations
3.2. PELC:CpG Induces Protective Antibodies against SARS-CoV-2
3.3. PELC:CpG Drives IgA Production in BALF and NLF
3.4. PELC:CpG Rephrases the Activation of Cell-Mediated Immunity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afkhami, S.; D’Agostino, M.R.; Zhang, A.; Stacey, H.D.; Marzok, A.; Kang, A.; Singh, R.; Bavananthasivam, J.; Ye, G.; Luo, X.; et al. Respiratory Mucosal Delivery of Next-Generation COVID-19 Vaccine Provides Robust Protection against Both Ancestral and Variant Strains of SARS-CoV-2. Cell 2022, 185, 896–915. [Google Scholar] [CrossRef] [PubMed]
- Ku, M.W.; Bourgine, M.; Authié, P.; Lopez, J.; Nemirov, K.; Moncoq, F.; Noirat, A.; Vesin, B.; Nevo, F.; Blanc, C.; et al. Intranasal Vaccination with a Lentiviral Vector Protects against SARS-CoV-2 in Preclinical Animal Models. Cell Host Microbe 2021, 29, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. The Race for Coronavirus Vaccines: A Graphical Guide. Nature 2020, 580, 576–577. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Barouch, D.H. T Cell Immunity to COVID-19 Vaccines. Science 2022, 377, 821–822. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. ‘Killer’ Immune Cells Still Recognize Omicron Variant. Nature 2022, 601, 307. [Google Scholar] [CrossRef] [PubMed]
- Gallo, O.; Locatello, L.G.; Mazzoni, A.; Novelli, L.; Annunziato, F. The Central Role of the Nasal Microenvironment in the Transmission, Modulation, and Clinical Progression of SARS-CoV-2 Infection. Mucosal Immunol. 2021, 14, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, E.C.; Ward, R.W. Mucosal Vaccines–Fortifying the Frontiers. Nat. Rev. Immunol. 2022, 22, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M.S.L.; Moodley, D.; Hanley, S.; et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.M.; Liu, M.C.; Chen, Y.H.; Lee, W.S.; Hwang, S.J.; Cheng, S.H.; Ko, W.C.; Hwang, K.P.; Wang, N.C.; Lee, Y.L.; et al. Safety and Immunogenicity of CpG 1018 and Aluminium Hydroxide-Adjuvanted SARS-CoV-2 S-2P Protein Vaccine MVC-COV1901: Interim Results of a Large-Scale, Double-Blind, Randomised, Placebo-Controlled Phase 2 Trial in Taiwan. Lancet Respir. Med. 2021, 9, 1396–1406. [Google Scholar] [CrossRef]
- Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.Y.; Couture, M.; D’Aoust, M.A.; Dhaliwall, J.; Finkle, C.; et al. Phase 1 Randomized Trial of a Plant-Derived Virus-Like Particle Vaccine for COVID-19. Nat. Med. 2021, 27, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Huang, C.Y.; Ho, H.M.; Lee, C.H.; Lai, P.T.; Wu, S.C.; Liu, S.J.; Huang, M.H. Nanoemulsion Adjuvantation Strategy of Tumor-Associated Antigen Therapy Rephrases Mucosal and Immunotherapeutic Signatures Following Intranasal Vaccination. J. Immunother. Cancer 2020, 8, e001022. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.M.; Huang, C.Y.; Cheng, Y.J.; Chen, I.H.; Liu, S.J.; Huang, C.H.; Huang, M.H. Squalene Nanoemulsion Reinforces Mucosal and Immunological Fingerprints Following Intravaginal Delivery. Biomed. Pharmacother. 2021, 141, 111799. [Google Scholar] [CrossRef] [PubMed]
- Yeh, D.W.; Lai, C.Y.; Liu, Y.L.; Lu, C.H.; Tseng, P.H.; Yuh, C.H.; Yu, G.Y.; Liu, S.J.; Leng, C.H.; Chuang, T.H. CpG-Oligodeoxynucleotides Developed for Grouper Toll-Like Receptor (TLR) 21s Effectively Activate Mouse and Human TLR9s Mediated Immune Responses. Sci. Rep. 2017, 7, 17297. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Huang, C.Y.; Huang, M.H. Impact of Antigen-Adjuvant Associations on Antigen Uptake and Antigen-Specific Humoral Immunity in Mice Following Intramuscular Injection. Biomed. Pharmacother. 2019, 118, 109373. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.M.; Huang, C.Y.; Cheng, Y.J.; Shen, K.Y.; Tzeng, T.T.; Liu, S.J.; Chen, H.W.; Huang, C.H.; Huang, M.H. Assessment of Adjuvantation Strategy of Lipid Squalene Nanoparticles for Enhancing the Immunogenicity of a SARS-CoV-2 Spike Subunit Protein against COVID-19. Int. J. Pharm. 2021, 607, 121024. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Chen, C.C.; Huang, M.H.; Huang, C.H.; Jan, J.T.; Wu, S.C. Use of PELC/CpG Adjuvant for Intranasal Immunization with Recombinant Hemagglutinin to Develop H7N9 Mucosal Vaccine. Vaccines 2020, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Chai, K.M.; Tzeng, T.T.; Shen, K.Y.; Liao, H.C.; Lin, J.J.; Chen, M.Y.; Yu, G.Y.; Dou, H.Y.; Liao, C.L.; Chen, H.W.; et al. DNA Vaccination Induced Protective Immunity against SARS CoV-2 Infection in Hamsterss. PLoS Negl. Trop. Dis. 2021, 15, e0009374. [Google Scholar] [CrossRef] [PubMed]
- Kingstad-Bakke, B.; Lee, W.; Chandrasekar, S.S.; Gasper, D.J.; Salas-Quinchucua, C.; Cleven, T.; Sullivan, J.A.; Talaat, A.; Osorio, J.E.; Suresh, M. Vaccine-Induced Systemic and Mucosal T Cell Immunity to SARS-CoV-2 Viral Variants. Proc. Natl. Acad. Sci. USA 2022, 119, e2118312119. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Huang, C.H.; Liu, S.J.; Chen, H.W.; Leng, C.H.; Chong, P.; Huang, M.H. Polysorbasome: A Colloidal Vesicle Contoured by Polymeric Bioresorbable Amphiphiles as an Immunogenic Depot for Vaccine Delivery. ACS Appl. Mater Interfaces 2018, 10, 12553–12561. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, M.; Zhang, X.; Li, S.; Lu, Q.; Zeng, H.; Hou, H.; Li, H.; Zhang, M.; Jiang, F.; et al. Antibody-Dependent Cellular Cytotoxicity Response to SARS-CoV-2 in COVID-19 Patients. Signal Transduct. Target. Ther. 2021, 6, 346. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Z-Avg (nm) (b) | PDI (c) | Zeta-Potential (mV) |
---|---|---|---|
PBS | N.D. | N.D. | −22.9 ± 10.5 |
Spike protein | 105 ± 4 | 0.541 ± 0.036 | −5.9 ± 2.5 |
Spike-CpG | 110 ± 3 | 0.502 ± 0.019 | −14.2 ± 10.0 |
Spike-PELC | 273 ± 0 | 0.139 ± 0.008 | −10.6 ± 1.9 |
Spike-PELC:CpG | 266 ± 4 | 0.176 ± 0.014 | −12.6 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, H.-M.; Huang, C.-Y.; Yang, C.-H.; Liu, S.-J.; Chen, H.-W.; Yu, G.-Y.; Chen, J.-K.; Chuang, T.-H.; Huang, M.-H. Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery. Pharmaceutics 2022, 14, 2539. https://doi.org/10.3390/pharmaceutics14112539
Ho H-M, Huang C-Y, Yang C-H, Liu S-J, Chen H-W, Yu G-Y, Chen J-K, Chuang T-H, Huang M-H. Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery. Pharmaceutics. 2022; 14(11):2539. https://doi.org/10.3390/pharmaceutics14112539
Chicago/Turabian StyleHo, Hui-Min, Chiung-Yi Huang, Chung-Hsiang Yang, Shih-Jen Liu, Hsin-Wei Chen, Guann-Yi Yu, Jen-Kun Chen, Tsung-Hsien Chuang, and Ming-Hsi Huang. 2022. "Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery" Pharmaceutics 14, no. 11: 2539. https://doi.org/10.3390/pharmaceutics14112539
APA StyleHo, H.-M., Huang, C.-Y., Yang, C.-H., Liu, S.-J., Chen, H.-W., Yu, G.-Y., Chen, J.-K., Chuang, T.-H., & Huang, M.-H. (2022). Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery. Pharmaceutics, 14(11), 2539. https://doi.org/10.3390/pharmaceutics14112539