New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Fluconazole-Loaded Microemulsions and Fluconazole-Loaded Gel Microemulsions
2.2.2. Characterization of Chitosan-Gelled Microemulsions Loaded with 2% FZ
- (a)
- Determination of drug content and pH
- (b) Rheological measurements
2.2.3. In Vitro Drug Release and Skin Permeation Studies
- (a)
- In vitro drug release studies
- (b) In vitro skin permeation studies
- (c) Data analysis of in vitro drug release and permeation studies
- -
- Zero order model:
- -
- First order model:
- -
- Higuchi model:
- -
- Korsmeyer–Peppas model:
2.2.4. In Vitro Antifungal Activity Assay
2.2.5. Statistical Analysis of Data
3. Results
3.1. Physicochemical Characterization of Chitosan-Gelled Microemulsions Based on Essential Oil and Sucrose Ester
3.1.1. Determination of Drug Content and pH
3.1.2. Rheological Analysis of Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters Containing 2% FZ
3.2. In Vitro Drug Release and Skin Permeation Studies
3.2.1. In Vitro Release of Fluconazole
3.2.2. In Vitro Skin Permeation of Fluconazole
3.3. Evaluation of In Vitro Antifungal Activity of the Experimental Gel Microemulsions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caffrey, A.K.; Obar, J.J. Alarming the innate immune system to invasive fungal infections. Curr. Opin. Microbiol. 2016, 32, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Newton, G.D.; Popovich, N.G. Fungal skin infections. In Handbook of Nonprescription Drugs, 17th ed.; Krinsky, D.L., Berardi, R.R., Ferreri, S.P., Rollins, C.J., Hume, A.L., Tietze, K.J., Eds.; American Pharmacists Association: Washington, DC, USA, 2012; pp. 757–771. [Google Scholar]
- Cleary, J.D.; Lewis, R.E. Fungal infections, cap. 78. In Applied Therapeutics. The Clinical Use of Drugs, 11th ed.; Zeind, C.S., Carvalho, M.G., Eds.; Wolters Kluwer Health: Philadelphia, PA, USA, 2018; pp. 4179–4231. [Google Scholar]
- Robertson, D.B.; Maibach, H.I. Dermatologic Pharmacology, cap. 61. In Basic & Clinical Pharmacology, 14th ed.; Katzung, B.G., Ed.; McGraw-Hill Education: New York, NY, USA, 2018; pp. 1072–1073. [Google Scholar]
- Weinberg, J.M. Increasing Patient Adherence in Antifungal Infection Treatment. J. Clin. Aesthet. Dermatol. 2009, 2, 38–42. [Google Scholar]
- Banerjee, M.; Ghosh, A.K.; Basak, S.; Das, K.D.; Gangopadhyay, D.N. Comparative evaluation of efficacy and safety of topical fluconazole and clotrimazole in the treatment of tinea corporis. J. Pak. Assoc. Derma. 2012, 22, 342–349. [Google Scholar]
- Sigurgeirsson, B.; Hay, R.J. The Antifungal Drugs Used in Skin Disease, cap. 7. In Antibiotic and Antifungal Therapies in Dermatology; Ólafsson, J.H., Hay, R.J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 141–156. [Google Scholar]
- Sobue, S.; Sekiguchi, K.; Nabeshima, T. Intracutaneous distributions of fluconazole, itraconazole, and griseofulvin in Guinea pigs and binding to human stratum corneum. Antimicrob. Agents Chemother. 2004, 48, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Leite-Silva, V.R.; Almeida, M.M.; Fradin, A.; Grice, J.E.; Roberts, M.S. Delivery of drugs applied topically to the skin. Expert Rev. Dermatol. 2012, 7, 383–397. [Google Scholar] [CrossRef]
- Lampiris, H.W.; Maddix, D.S. Antifungal agents, cap. 48. In Basic & Clinical Pharmacology, 14th ed.; Katzung, B.G., Ed.; McGraw-Hill Education: New York, NY, USA, 2018; pp. 853–863. [Google Scholar]
- El-Laithy, H.M.; El-Shaboury, K.M.F. The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS Pharm. Sci. Tech. 2002, 3, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mottaleb, M.M.A.; Mortada, N.D.; Elshamy, A.A.; Awad, G.A.S. Preparation and evaluation of fluconazole gels. Egypt J. Biomed. Sci. 2007, 23, 266–286. [Google Scholar] [CrossRef]
- Ayub, A.C.; Gomes, A.D.; Lima, M.V.; Vianna-Soares, C.D.; Ferreira, L.A. Topical delivery of fluconazole: In vitro skin penetration and permeation using emulsions as dosage forms. Drug Dev. Ind. Pharm. 2007, 33, 273–280. [Google Scholar] [CrossRef]
- Jadhav, K.R.; Kadam, V.J.; Pisal, S.S. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr. Drug. Deliv. 2009, 6, 174–183. [Google Scholar] [CrossRef]
- Salerno, C.; Carlucci, A.M.; Bregni, C. Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS Pharm. Sci. Tech. 2010, 11, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Lalit, S.K.; Panwar, A.S.; Darwhekar, G.; Jain, D.K. Formulation and evaluation of fluconazole amphiphilogel. Der. Pharm. Lett. 2011, 3, 125–131. [Google Scholar]
- Gaikwad, V.L.; Yadav, V.D.; Dhavale, R.P.; Choudhari, P.B.; Jadhav, S.D. Effect of Carbopol 934 and 949 on fluconazole release from topical gel formulation: A factorial approach. Curr. Pharm. Res. 2012, 2, 487–493. [Google Scholar]
- Zhao, S.S.; Du, Q.; Cao, D.Y. Preparation of liposomal fluconazole gel and in vitro transdermal delivery. J. Chin. Pharm. Sci. 2007, 16, 116–118. [Google Scholar]
- Hoeller, S.; Klang, V.; Valenta, C. Skin-compatible lecithin drug delivery systems for fluconazole: Effect of phosphatidylethanolamine and oleic acid on skin permeation. J. Pharm. Pharmacol. 2008, 60, 587–591. [Google Scholar] [CrossRef]
- Patel, M.R.; Patel, R.B.; Parikh, J.R.; Solanki, A.B.; Patel, B.G. Effect of formulation components on the in vitro permeation of microemulsion drug delivery system of fluconazole. AAPS Pharm. Sci. Tech. 2009, 10, 917–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalaria, M.K.; Naik, S.; Misra, A.N. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J. Exp. Biol. 2009, 47, 368–375. [Google Scholar]
- Zakir, F.; Vaidya, B.; Goyal, A.K.; Malik, B.; Vyas, S.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv. 2010, 17, 238–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitkari, B.V.; Korde, S.A.; Mahadik, K.R.; Kokare, C.R. Formulation and evaluation of topical liposomal gel for fluconazole. Indian J. Pharm. Educ. Res. 2010, 44, 324–333. [Google Scholar]
- Gupta, M.; Vyas, S.P. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem. Phys. Lipids. 2012, 165, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Coneac, G.; Vlaia, V.; Olariu, I.; Muţ, A.M.; Anghel, D.F.; Ilie, C.; Popoiu, C.; Lupuleasa, D.; Vlaia, L. Development and Evaluation of New Microemulsion-Based Hydrogel Formulations for Topical Delivery of Fluconazole. AAPS Pharm. Sci. Tech. 2015, 16, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Russell, R. Synthetic excipient challenge all-natural organics offer advantages/challenges to developer and formulators. Pharm. Tech. 2004, 28, 38–50. [Google Scholar]
- Shostak, T.A.; Bilous, S.B.; Hudz, N.; Kalynyuk, T.G. Features of the excipients selection for semi-solid dosage forms. Pharm. Rev. 2015, 1, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Fox, L.T.; Gerber, M.; Du Plessis, J.; Hamman, H.J. Transdermal drug delivery enhancement by compounds of natural origin. Molecules 2011, 16, 10507–10540. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2014, 67, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sen Gupta, K. A Comprehensive Review on Natural Products as Chemical Penetration Enhancer. J. Drug Deliv. Ther. 2021, 11, 176–187. [Google Scholar] [CrossRef]
- Vostinaru, O.; Heghes, S.O.; Filip, L. Safety Profile of Essential Oils. In Essential Oils. Bioactive Compounds; Oliveira, M.S., Silva, S., Da Costa, W.A., Eds.; IntechOpen New Perspectives and Applications: London, UK, 2020; pp. 45–68. [Google Scholar]
- León-Méndez, G.; Pájaro-Castro, N.; Pájaro-Castro, E.; Torrenegra-Alarcon, M.; Herrera-Barros, A. Essential oils as a source of bioactive molecules. Rev. Colomb. Cienc. Químico Farm. 2019, 48, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.C. Biological properties of essential oils and volatiles: Sources of variability. Nat. Volatiles Essent. Oils 2017, 4, 1–13. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.A.; Ahmad, I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl. Microbiol. Biotechnol. 2011, 90, 1083–1094. [Google Scholar] [CrossRef]
- Rózalska, B.; Sadowska, B.; Wieckowska-Szakiel, M.; Budzyńska, A. The synergism of antifungals and essential oils against Candida spp. evaluated by a modified gradient-diffusion method. Med. Dosw. Mikrobiol. 2011, 63, 163–169. [Google Scholar]
- Cardoso, N.N.R.; Alviano, C.S.; Blank, A.F.; Romanos, M.T.V.; Fonseca, B.B.; Rozental, S.; Rodrigues, I.A.; Alviano, D.S. Synergism Effect of the Essential Oil from Ocimum basilicum var. Maria Bonita and Its Major Components with Fluconazole and Its Influence on Ergosterol Biosynthesis. Evid. Based Complement. Altern. Med. 2016, 2016, 5647182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination. Arch. Microbiol. 2020, 202, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Csizmazia, E.; Eros, G.; Berkesi, O.; Berkó, S.; Szabó-Révész, P.; Csányi, E. Penetration enhancer effect of sucrose laurate and Transcutol on ibuprofen. J. Drug Deliv. Sci. Technol. 2011, 21, 411–415. [Google Scholar] [CrossRef]
- Csizmazia, E.; Eros, G.; Berkesi, O.; Berkó, S.; Szabó-Révész, P.; Csányi, E. Ibuprofen penetration enhance by sucrose ester examined by ATR-FTIR in vivo. Pharm. Dev. Technol. 2012, 17, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Balázs, B.; Csizmazia, E.; Berkó, S.; Budai-Szűcs, M.; Szabó-Révész, P.; Csányi, E. New Approach of Sucrose Myristate as a Promising Penetration Enhancer in Dermal Preparations. Tenside Surfactants Deterg. 2015, 52, 375–379. [Google Scholar] [CrossRef]
- Nava-Arzaluz, M.G.; Piñón-Segundo, E.; Ganem-Rondero, A. Sucrose Esters as Transdermal Permeation Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N., Maibach, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 273–290. [Google Scholar]
- Muţ, A.M.; Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V.; Popoiu, C.; Hârjău, M.; Lupuleasa, D. Novel topical chitosan/hydroxypropylmethylcellulose-based hydrogels containing fluconazole and sucrose esters: Formulation, physicochemical characterization and in vitro drug release and permeation. Farmacia 2018, 66, 59–69. [Google Scholar]
- Szüts, A.; Szabó-Révész, P. Sucrose esters as natural surfactants in drug delivery systems-a mini-review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef]
- Klang, V.; Matsko, N.; Raupach, K.; El-Hagin, N.; Valenta, C. Development of sucrose stearate-based nanoemulsions and optimisation through gammacyclodextrin. Eur. J. Pharm. Biopharm. 2011, 79, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Marshall, D.L.; Bullerman, L.B. Antimicrobial Activity of Sucrose Fatty Acid Ester Emulsifiers. J. Food Sci. 1986, 51, 468–470. [Google Scholar] [CrossRef]
- Zhang, X.; Song, F.; Taxipalati, M.; Wei, W.; Feng, F. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters. PLoS ONE 2014, 9, e114845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghmur, A.; de Campo, L.; Glatter, O. Formation and Characterization of Emulsified Microemulsions. In Microemulsions. Properties and Applications; Fanum, M., Ed.; CRC Press Taylor & Francis Group: Bocca Raton, FL, USA, 2009; Volume 144, pp. 185–202. [Google Scholar]
- Jurchin, T.; Gotić, M. Introduction to microemulsions. J. Chem. Chem. Eng. 2013, 62, 389–399. [Google Scholar]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012, 64, 175–193. [Google Scholar] [CrossRef]
- Pappinen, S.; Urtti, A. Microemulsions. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Nanocarriers; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 253–261. [Google Scholar]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Anicescu, M.C.; Dinu-Pîrvu, C.E.; Ghica, M.V.; Talianu, M.T.; Popa, L. Preliminary study regarding the formulation and physical evaluation of some biocompatible, oil in water microemulsions with salicylic acid for dermatologic use. Farmacia 2021, 69, 434–445. [Google Scholar] [CrossRef]
- Todosijević, M.N.; Cekić, N.D.; Savić, M.M.; Gašperlin, M.; Ranđelović, M.R.; Savić, S.D. Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: Formulation approach using D-optimal mixture design. Colloid. Polym. Sci. 2014, 292, 3061–3076. [Google Scholar] [CrossRef]
- Schwarz, J.C.; Klang, V.; Hoppel, M.; Mahrhauser, D.; Valenta, C. Natural microemulsions: Formulation design and skin interaction. Eur. J. Pharm. Biopharm. 2012, 81, 557–562. [Google Scholar] [CrossRef]
- Vlaia, L.; Coneac, G.; Muţ, A.M.; Olariu, I.; Vlaia, V.; Anghel, D.F.; Maxim, M.E.; Dobrescu, A.; Hîrjău, M.; Lupuleasa, D. Topical Biocompatible Fluconazole-Loaded Microemulsions Based on Essential Oils and Sucrose Esters: Formulation Design Based on Pseudo-Ternary Phase Diagrams and Physicochemical Characterization. Processes 2021, 9, 144. [Google Scholar] [CrossRef]
- Cheung, R.C.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Rinaudo, M. Physical Properties of Chitosan and Derivatives in Sol and Gel States. In Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics; Sarmento, B., das Neves, J., Eds.; John Wiley & Sons: West Sussex, UK, 2012; pp. 28–44. [Google Scholar]
- Park, Y.; Kim, M.H.; Park, S.C.; Cheong, H.; Jang, M.K.; Nah, J.W.; Hahm, K.S. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J. Microbiol. Biotechnol. 2008, 18, 1729–1734. [Google Scholar]
- Shih, P.Y.; Liao, Y.T.; Tseng, Y.K.; Deng, F.S.; Lin, C.H. A Potential Antifungal Effect of Chitosan Against Candida albicans Is Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity. Front. Microbiol. 2019, 10, 602. [Google Scholar] [CrossRef]
- Qin, Y.; Li, P.; Guo, Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr. Polym. 2020, 236, 116002. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Aggarwal, D.; Garg, S.; Singla, A.K. Spreading of Semisolid Formulations an Update. Pharm Technol. 2002, 28, 84–105. [Google Scholar]
- Romanian Pharmacopoeia Commission. Farmacopoeea Română, Ediţia a X-a; Editura Medicală: Bucureşti, Romania, 1993; p. 952. [Google Scholar]
- Sirotti, C.; Coceani, N.; Colombo, I.; Lapasin, R.; Grassi, M. Modeling of drug release from microemulsions: A peculiar case. J. Membr. Sci. 2002, 204, 401–412. [Google Scholar] [CrossRef]
- Cojocaru, V.; Ranetti, A.E.; Hinescu, L.G.; Ionescu, M.; Cosmescu, C.; Poştoarcă, A.G.; Cinteză, L.O. Formulation and evaluation of in vitro release kinetics of Na3CADTPA decorporation agent embedded in microemulsion-based gel formulation for topical delivery. Farmacia 2015, 63, 656–664. [Google Scholar]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, M.; Coceani, N.; Magarotto, L. Mathematical Modeling of Drug Release from Microemulsions: Theory in Comparison with Experiments. J. Colloid Interface Sci. 2000, 228, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action. Pharm. Biol. 2017, 55, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H.; Sakai, T.; Tokuyama, C.; Danjo, K. Sugar ester J-1216 enhancers percutaneous permeation of ionized lidocaine. J. Pharm. Sci. 2011, 100, 4482–4490. [Google Scholar] [CrossRef]
- Cázares-Delgadillo, J.; Naik, A.; Kalia, Y.N.; Ganem-Quintanar, A. Skin permeation enhancement by sucrose esters: A pH-dependent phenomenon. Int. J. Pharm. 2005, 297, 204–212. [Google Scholar] [CrossRef]
- Calderilla-Fajardo, S.B.; Cázares-Delgadillo, J.; Villalobos-García, R.; Quintanar-Guerrero, D.; Ganem-Quintanar, A.; Robles, R. Influence of sucrose esters on the in vivo percutaneous penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsion, and emulsion. Drug Dev. Ind. Pharm. 2006, 32, 107–113. [Google Scholar] [CrossRef]
- Goel, N.; Rohilla, H.; Singh, G.; Punia, P. Antifungal Activity of Cinnamon Oil and Olive Oil against Candida Spp. Isolated from Blood Stream Infections. J. Clin. Diagn. Res. 2016, 10, DC09–DC11. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, R. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Alvarez, J.A. Antifungal activities of thyme, clove and oregano essential oils. J. Food Saf. 2007, 27, 91–101. [Google Scholar] [CrossRef]
Gel Microemulsion Components | ME-FZ-D1616-CIN 6% | ME-FZ-D1616-CIN 10% | ME-FZ-D1616-ORG 6% | ME-FZ-D1616-ORG 10% | ME-FZ-D1616-CLV 6% | ME-FZ-D1616-CLV10% |
---|---|---|---|---|---|---|
Fluconazole | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Cinnamon essential oil | 3.0 | 5.0 | - | - | - | - |
Oregano essential oil | - | - | 3.0 | 5.0 | - | - |
Clove essential oil | - | - | - | - | 3.0 | 5.0 |
Isopropyl myristate | 3.0 | 5.0 | 3.0 | 5.0 | 3.0 | 5.0 |
Sucrose palmitate– isopropanol (1:1.5) | 45.0 | 45.0 | - | - | - | - |
Sucrose palmitate– isopropanol (1:2) | - | - | 45.0 | 45.0 | 45.0 | 45.0 |
Chitosan | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 |
2% acetic acid solution | 47.0 | 43.0 | 47.0 | 43.0 | 47.0 | 43.0 |
Gel Microemulsion Components | ME-FZ-D1216-CIN 6% | ME-FZ-D1216-CIN 10% | ME-FZ-D1216-ORG 6% | ME-FZ-D1216-ORG 10% |
---|---|---|---|---|
Fluconazole | 2.0 | 2.0 | 2.0 | 2.0 |
Cinnamon essential oil | 3.0 | 5.0 | - | - |
Oregano essential oil | - | - | 3.0 | 5.0 |
Isopropyl myristate | 3.0 | 5.0 | 3.0 | 5.0 |
Sucrose laurate– isopropanol (1:2) | 45.0 | 45.0 | - | - |
Sucrose laurate– isopropanol (1:1.5) | - | - | 45.0 | 45.0 |
Chitosan | 1.9 | 1.9 | 1.9 | 1.9 |
2% acetic acid solution | 47.0 | 43.0 | 47.0 | 43.0 |
Formulation Code | Drug Content (%) | pH |
---|---|---|
MEGEL-FZ-D1616-CIN 6% | 100.62 ± 0.53 | 4.50 ± 0.017 |
MEGEL-FZ-D1616-CIN 10% | 99.15 ± 0.27 | 4.50 ± 0.011 |
MEGEL-FZ-D1216-CIN 6% | 97.55 ± 0.48 | 4.52 ± 0.005 |
MEGEL-FZ-D1216-CIN 10% | 98.43 ± 0.72 | 4.50 ± 0.004 |
MEGEL-FZ-D1616-ORG 6% | 101.34 ± 0.96 | 4.51 ± 0.010 |
MEGEL-FZ-D1616-ORG 10% | 99.75 ± 0.44 | 4.52 ± 0.016 |
MEGEL-FZ-D1216-ORG 6% | 100.62 ± 0.81 | 4.50 ± 0.019 |
MEGEL-FZ-D1216-ORG 10% | 102.05 ± 0.67 | 4.58 ± 0.047 |
MEGEL-FZ-D1616-CLV 6% | 98.85 ± 0.29 | 4.63 ± 0.025 |
MEGEL-FZ-D1616-CLV 10% | 101.87 ± 0.65 | 4.52 ± 0.013 |
Formulation Code | Apparent Viscosity * (Pa∙s) | Thixotropy (Pa/s) |
---|---|---|
MEGEL-FZ-D1616-CIN 6% | 0.489 | 623.1 |
MEGEL-FZ-D1616-CIN 10% | 0.539 | 741.7 |
MEGEL-FZ-D1216-CIN 6% | 0.463 | 383.3 |
MEGEL-FZ-D1216-CIN 10% | 0.508 | 778.3 |
MEGEL-FZ-D1616-ORG 6% | 0.477 | 804.5 |
MEGEL-FZ-D1616-ORG 10% | 0.437 | 398.4 |
MEGEL-FZ-D1216-ORG 6% | 0.461 | 447.5 |
MEGEL-FZ-D1216-ORG 10% | 0.541 | 487.5 |
MEGEL-FZ-D1616-CLV 6% | 0.442 | 425.4 |
MEGEL-FZ-D1616-CLV 10% | 0.528 | 577.9 |
Formulation Code | Parameters of Rheological Model | Determination Coefficient Specific to Rheological Model | |||
---|---|---|---|---|---|
K | n | RPower law | RCasson | RHerschel–Bulkley | |
MEGEL-FZ-D1616-CIN 6% | 3.359 | 0.594 | 0.9962 | 0.9774 | 0.982 |
MEGEL-FZ-D1616-CIN 10% | 4.44 | 0.561 | 0.9929 | 0.9662 | 0.9644 |
MEGEL-FZ-D1216-CIN 6% | 3.036 | 0.604 | 0.998 | 0.9801 | 0.9931 |
MEGEL-FZ-D1216-CIN 10% | 4.236 | 0.551 | 0.9964 | 0.9748 | 0.9913 |
MEGEL-FZ-D1616-ORG 6% | 3.179 | 0.601 | 0.9969 | 0.978 | 0.9831 |
MEGEL-FZ-D1616-ORG 10% | 2.861 | 0.606 | 0.9954 | 0.9769 | 0.9841 |
MEGEL-FZ-D1216-ORG 6% | 3.047 | 0.600 | 0.9981 | 0.9867 | 0.9877 |
MEGEL-FZ-D1216-ORG 10% | 3.962 | 0.580 | 0.9974 | 0.9771 | 0.9905 |
MEGEL-FZ-D1616-CLV 6% | 2.878 | 0.604 | 0.997 | 0.9798 | 0.9924 |
MEGEL-FZ-D1616-CLV 10% | 4.086 | 0.568 | 0.9968 | 0.9751 | 0.9912 |
Formulation Code | Jss (μg/cm2/h) | KP × 10−6 (cm/h) | tL (h) |
---|---|---|---|
MEGEL-FZ-D1616-CIN 6% | 560.56 ± 1.79 | 280.28 ± 0.93 | 0.12 ± 0.85 |
MEGEL-FZ-D1616-CIN 10% | 712.42 ± 9.94 | 356.21 ± 6.45 | 0.75 ± 1.13 |
MEGEL-FZ-D1216-CIN 6% | 521.46 ± 1.21 | 260.73 ± 0.66 | - |
MEGEL-FZ-D1216-CIN 10% | 548.38 ± 3.48 | 274.19 ± 2.52 | 0.60 ± 1.04 |
MEGEL-FZ-D1616-ORG 6% | 808.51 ± 2.80 | 404.26 ± 1.73 | - |
MEGEL-FZ-D1616-ORG10% | 741.87 ± 1.24 | 370.94 ± 0.68 | - |
MEGEL-FZ-D1216-ORG 6% | 975.89 ± 8.60 | 487.95 ± 7.34 | - |
MEGEL-FZ-D1216-ORG 10% | 512.71 ± 2.03 | 256.36 ± 1.89 | - |
MEGEL-FZ-D1616-CLV 6% | 504.36 ± 2.51 | 252.18 ± 3.08 | 0.38 ± 0.62 |
MEGEL-FZ-D1616-CLV 10% | 464.08 ± 5.15 | 232.04 ± 3.46 | 0.79 ± 0.86 |
Formulation Code | Zero Order | First Order | Higuchi | Korsmeyer–Peppas | |||||
---|---|---|---|---|---|---|---|---|---|
K0 (μg/h) | R2 | K1 (h−1) | R2 | KH (h−0.5) | R2 | KP (h−n) | n | R2 | |
MEGEL-FZ-D1616-CIN 6% | 13.353 | 0.9713 | 0.4915 | 0.9164 | 32.738 | 0.8967 | 1.2203 | 0.9107 | 0.9819 |
MEGEL-FZ-D1616-CIN 10% | 14.298 | 0.9642 | 0.5614 | 0.8834 | 31.374 | 0.8143 | 0.949 | 1.2653 | 0.9885 |
MEGEL-FZ-D1216-CIN 6% | 12.851 | 0.9569 | 0.5981 | 0.8903 | 34.814 | 0.9436 | 1.402 | 0.6768 | 0.9827 |
MEGEL-FZ-D1216-CIN 10% | 12.875 | 0.9862 | 0.4234 | 0.8797 | 30.364 | 0.8712 | 1.207 | 0.8062 | 0.9607 |
MEGEL-FZ-D1616-ORG 6% | 12.268 | 0.8088 | 0.7620 | 0.8724 | 39.154 | 0.926 | 1.4765 | 0.8 | 0.9897 |
MEGEL-FZ-D1616-ORG 10% | 11.798 | 0.8032 | 0.6461 | 0.9029 | 39.945 | 0.9391 | 1.5607 | 0.6608 | 0.9919 |
MEGEL-FZ-D1216-ORG 6% | 9.4754 | 0.6128 | 0.4041 | 0.8331 | 35.729 | 0.7958 | 1.4356 | 0.8954 | 0.8956 |
MEGEL-FZ-D1216-ORG 10% | 11.492 | 0.8287 | 0.4373 | 0.8495 | 33.892 | 0.9042 | 1.2938 | 0.9843 | 0.9616 |
MEGEL-FZ-D1616-CLV 6% | 13.023 | 0.9834 | 0.3202 | 0.7972 | 29.131 | 0.8379 | 1.0285 | 1.0796 | 0.9928 |
MEGEL-FZ-D1616-CLV 10% | 12.139 | 0.9864 | 0.2133 | 0.8400 | 25.540 | 0.7916 | 0.9058 | 1.096 | 0.939 |
Formulation Code | Jss (μg/cm2/h) | KP × 10−6 (cm/h) | tL (h) |
---|---|---|---|
MEGEL-FZ-D1616-CIN 6% | 91.96 ± 9.88 | 45.98 ± 5.31 | 0.19 ± 0.38 |
MEGEL-FZ-D1616-CIN 10% | 302.4 ± 3.55 | 151.2 ± 0.87 | 0.93 ± 1.15 |
MEGEL-FZ-D1216-CIN 6% | 214.6 ± 4.91 | 107.3 ± 2.56 | - |
MEGEL-FZ-D1216-CIN 10% | 288.4 ± 9.73 | 144.2 ± 5.82 | - |
MEGEL-FZ-D1616-ORG 6% | 127.5 ± 6.55 | 63.75 ± 2.68 | - |
MEGEL-FZ-D1616-ORG10% | 239.6 ± 8.35 | 119.8 ± 5.44 | - |
MEGEL-FZ-D1216-ORG 6% | 190.6 ± 4.25 | 95.3 ± 2.14 | - |
MEGEL-FZ-D1216-ORG 10% | 197.0 ± 7.22 | 98.5 ± 3.68 | - |
MEGEL-FZ-D1616-CLV 6% | 135.8 ± 1.45 | 67.9 ± 0.55 | 1.56 ± 1.69 |
MEGEL-FZ-D1616-CLV 10% | 165.4 ± 0.75 | 82.7 ± 0.49 | 1.33 ± 0.94 |
Formulation Code | Diameter of the Inhibition Zone (mm) | |
---|---|---|
Control | Sample | |
MEGEL-FZ-D1616-CIN 6% | 24 ± 0.51 | 48 ± 0.39 |
MEGEL-FZ-D1616-CIN 10% | 42 ± 0.37 | 59 ± 0.27 |
MEGEL-FZ-D1216-CIN 6% | 26 ± 0.19 | 48 ± 0.51 |
MEGEL-FZ-D1216-CIN 10% | 28 ± 0.13 | 58 ± 0.43 |
MEGEL-FZ-D1616-ORG 6% | 30 ± 0.24 | 48 ± 0.33 |
MEGEL-FZ-D1616-ORG 10% | 38 ± 0.17 | 56 ± 0.52 |
MEGEL-FZ-D1216-ORG 6% | 34 ± 0.42 | 58 ± 0.28 |
MEGEL-FZ-D1216-ORG 10% | 41 ± 0.38 | 62 ± 0.61 |
MEGEL-FZ-D1616-CLV 6% | 26 ± 0.11 | 54 ± 0.17 |
MEGEL-FZ-D1616-CLV 10% | 28 ± 0.45 | 58 ± 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlaia, L.; Olariu, I.; Muţ, A.M.; Coneac, G.; Vlaia, V.; Anghel, D.F.; Maxim, M.E.; Stângă, G.; Dobrescu, A.; Suciu, M.; et al. New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole. Pharmaceutics 2022, 14, 75. https://doi.org/10.3390/pharmaceutics14010075
Vlaia L, Olariu I, Muţ AM, Coneac G, Vlaia V, Anghel DF, Maxim ME, Stângă G, Dobrescu A, Suciu M, et al. New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole. Pharmaceutics. 2022; 14(1):75. https://doi.org/10.3390/pharmaceutics14010075
Chicago/Turabian StyleVlaia, Lavinia, Ioana Olariu, Ana Maria Muţ, Georgeta Coneac, Vicenţiu Vlaia, Dan Florin Anghel, Monica Elisabeta Maxim, Gabriela Stângă, Amadeus Dobrescu, Maria Suciu, and et al. 2022. "New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole" Pharmaceutics 14, no. 1: 75. https://doi.org/10.3390/pharmaceutics14010075