Metabolism of Diterpenoids Derived from the Bark of Cinnamomum cassia in Human Liver Microsomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Metabolic Stability Studies
2.3. Identification of AHC Metabolites in HLMs
2.4. Metabolism of AHC by SKF-525A: A Nonselective Inhibitor
2.5. Determination of Recombinant cDNA-Expressed CYP Isoforms Included in AHC Metabolism
2.6. LC–MS/MS
2.7. Statistical Analysis
3. Results
3.1. Metabolic Stability of the Seven Diterpenoids in HLMs
3.2. Identification of Phase I Metabolites of AHC
3.3. Interpretation of Metabolite Structure
3.4. Time-Dependent Formation of AHC Metabolites
3.5. Characterization of AHC Metabolism in cDNA-Expressed Recombinant CYP Isoforms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Fan, L.; Fan, S.; Wang, J.; Luo, T.; Tang, Y.; Chen, Z.; Yu, L. Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules 2019, 24, 3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.T.; Ni, L.; Lu, H.X.; Xu, H.Y.; Zou, S.Q.; Zou, X.X. Terpenoids and Their Biological Activities from Cinnamomum: A Review. J. Chem. 2020, 2020, 14. [Google Scholar] [CrossRef]
- Wang, J.; Su, B.; Jiang, H.; Cui, N.; Yu, Z.; Yang, Y.; Sun, Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020, 146, 104675. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Wang, S.-M.; Lu, Q.; Luo, J.; Cheng, Y.-X. Identification of compounds from the water soluble extract of Cinnamomum cassia barks and their inhibitory effects against high-glucose-induced mesangial cells. Molecules 2013, 18, 10930–10943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nohara, T.; Kashiwada, Y.; Tomimatsu, T.; Nishioka, I. Two novel diterpenes from bark of Cinnamomum cassia. Phytochemistry 1982, 21, 2130–2132. [Google Scholar] [CrossRef]
- Yan, Y.M.; Fang, P.; Yang, M.T.; Li, N.; Lu, Q.; Cheng, Y.X. Anti-diabetic nephropathy compounds from Cinnamomum cassia. J. Ethnopharmacol. 2015, 165, 141–147. [Google Scholar] [CrossRef]
- He, S.; Jiang, Y.; Tu, P.F. Three new compounds from Cinnamomum cassia. J. Asian Nat. Prod. Res. 2016, 18, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Fraga, B.M.; Terrero, D.; Gutiérrez, C.; González-Coloma, A. Minor diterpenes from Persea indica: Their antifeedant activity. Phytochemistry 2001, 56, 315–320. [Google Scholar] [CrossRef]
- Isogai, A.; Murakoshi, S.; Suzuki, A.; Tamura, S. Chemistry and biological activities of cinnzeylanine and cinnzeylanol, new insecticidal substances from Cinnamonum zeylanicum Nees. Agric. Biol. Chem. 1977, 41, 1779–1784. [Google Scholar] [CrossRef]
- Pham, V.C.; Nguyen, T.T.A.; Vu, T.O.; Cao, T.Q.; Min, B.S.; Kim, J.A. Five new diterpenoids from the barks of Cinnamomum cassia (L.). J. Presl. Phytochem. Lett. 2019, 32, 23–28. [Google Scholar] [CrossRef]
- Ngo, T.M.; Tran, P.T.; Hoang, L.S.; Lee, J.H.; Min, B.S.; Kim, J.A. Diterpenoids isolated from the root of Salvia miltiorrhiza and their anti-inflammatory activity. Nat. Prod. Res. 2021, 35, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xue, Y.; Shu, P.; Qian, H.; Sa, R.; Xiang, M.; Li, X.-N.; Luo, Z.; Yao, G.; Zhang, Y. Diterpenoids with immunosuppressive activities from Cinnamomum cassia. J. Nat. Prod. 2014, 77, 1948–1954. [Google Scholar] [CrossRef] [PubMed]
- Ooi, L.S.; Li, Y.; Kam, S.-L.; Wang, H.; Wong, E.Y.; Ooi, V.E. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med. 2006, 34, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Shimazawa, T.; Matsuura, N.; Koda, A. Immunopharmacological studies of the aqueous extract of Cinnamomum cassia (CCAq) I. Anti-allergic action. Jpn. J. Pharmacol. 1982, 32, 813–822. [Google Scholar] [CrossRef]
- Anzenbacher, P.; Anzenbacherova, E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001, 58, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Taxak, N.; Bharatam, P.V. Drug metabolism. Resonance 2014, 19, 259–282. [Google Scholar] [CrossRef]
- Lin, J.; Sahakian, D.C.; De Morais, S.; Xu, J.J.; Polzer, R.J.; Winter, S.M. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr. Top. Med. Chem. 2003, 3, 1125–1154. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Humphreys, W.G. Drug metabolite profiling and identification by high-resolution mass spectrometry. J. Biol. Chem. 2011, 286, 25419–25425. [Google Scholar] [CrossRef] [Green Version]
- AlRabiah, H.; Kadi, A.A.; Attwa, M.W.; Mostafa, G.A.E. Development and validation of an HPLC-MS/MS method for the determination of filgotinib, a selective Janus kinase 1 inhibitor: Application to a metabolic stability study. J. Chromatogr. B 2020, 1154, 122195. [Google Scholar] [CrossRef]
- de Sousa, I.P.; Sousa Teixeira, M.V.; Jacometti Cardoso Furtado, N.A. An Overview of Biotransformation and Toxicity of Diterpenes. Molecules 2018, 23, 1387. [Google Scholar] [CrossRef] [Green Version]
- Yagi, A.; Tokubuchi, N.; Nohara, T.; Nonaka, G.; Nishioka, I.; Koda, A. The constituents of Cinnamomi Cortex. I. structures of cinncassiol A and its glucoside. Chem. Pharm. Bull. 1980, 28, 1432–1436. [Google Scholar] [CrossRef] [Green Version]
- Nohara, T.; Tokubuchi, N.; Kuroiwa, M.; Nishioka, I. The constituents of Cinnamomi Cortex. III. Structures of cinncassiol B and its glucoside. Chem. Pharm. Bull. 1980, 28, 2682–2686. [Google Scholar] [CrossRef] [Green Version]
- Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 2002, 54, 1271–1294. [Google Scholar] [CrossRef]
- Thummel, K.; Wilkinson, G. In vitro and in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 389–430. [Google Scholar] [CrossRef]
- Kato, M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab. Pharmacokinet. 2008, 23, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Strolin Benedetti, M.; Whomsley, R.; Baltes, E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin. Drug Metab. Toxicol. 2006, 2, 895–921. [Google Scholar] [CrossRef]
- Skiles, G.L.; Yost, G.S. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole. Chem. Res. Toxicol. 1996, 9, 291–297. [Google Scholar] [CrossRef]
- Moore, C.D.; Reilly, C.A.; Yost, G.S. CYP3A4-Mediated oxygenation versus dehydrogenation of raloxifene. Biochemistry 2010, 49, 4466–4475. [Google Scholar] [CrossRef] [Green Version]
- Obach, R.S. Mechanism of cytochrome P4503A4- and 2D6-catalyzed dehydrogenation of ezlopitant as probed with isotope effects using five deuterated analogs. Drug Metab. Dispos. 2001, 29, 1599–1607. [Google Scholar]
- Wen, B.; Chen, Y.; Fitch, W.L. Metabolic activation of nevirapine in human liver microsomes: Dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab. Dispos. 2009, 37, 1557–1562. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.M.; Pham, V.C.; Lee, S.; Kim, J.A. Metabolism of Diterpenoids Derived from the Bark of Cinnamomum cassia in Human Liver Microsomes. Pharmaceutics 2021, 13, 1316. https://doi.org/10.3390/pharmaceutics13081316
Choi SM, Pham VC, Lee S, Kim JA. Metabolism of Diterpenoids Derived from the Bark of Cinnamomum cassia in Human Liver Microsomes. Pharmaceutics. 2021; 13(8):1316. https://doi.org/10.3390/pharmaceutics13081316
Chicago/Turabian StyleChoi, Su Min, Van Cong Pham, Sangkyu Lee, and Jeong Ah Kim. 2021. "Metabolism of Diterpenoids Derived from the Bark of Cinnamomum cassia in Human Liver Microsomes" Pharmaceutics 13, no. 8: 1316. https://doi.org/10.3390/pharmaceutics13081316
APA StyleChoi, S. M., Pham, V. C., Lee, S., & Kim, J. A. (2021). Metabolism of Diterpenoids Derived from the Bark of Cinnamomum cassia in Human Liver Microsomes. Pharmaceutics, 13(8), 1316. https://doi.org/10.3390/pharmaceutics13081316