Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Stock Solutions
2.3. Cell Line
2.4. Cytotoxicity and Proliferation Assays
2.5. Reporter Gene Assays
2.6. Impact of IFN-α 2a on the Expression of Drug Disposition Genes
2.7. Quantification of mRNA Expression by Real-Time RT-PCR
2.8. Impact of IFN-α 2a on CYP3A4 Metabolic Activity
2.9. Statistical Analysis
3. Results
3.1. Impact of IFN-α 2a on NF-ĸB or PXR Activities over Time
3.2. Impact of IFN-α 2a on mRNA Expression of Selected Drug Disposition Genes
3.3. Impact of IFN-α 2a on CYP3A4 Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borden, E.C.; Sen, G.C.; Uze, G.; Silverman, R.H.; Ransohoff, R.M.; Foster, G.R.; Stark, G.R. Interferons at Age 50: Past, Current and Future Impact on Biomedicine. Nat. Rev. Drug Discov. 2007, 6, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Borden, E.C. Interferons α and β in Cancer: Therapeutic Opportunities from New Insights. Nat. Rev. Drug Discov. 2019, 18, 219–234. [Google Scholar] [CrossRef]
- Medrano, R.F.V.; Hunger, A.; Mendonça, S.A.; Barbuto, J.A.M.; Strauss, B.E. Immunomodulatory and Antitumor Effects of Type I Interferons and Their Application in Cancer Therapy. Oncotarget 2017, 8, 71249–71284. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Grossberg, S.E. The Effects of Interferon-α on the Production and Action of Other Cytokines. Semin. Oncol. 1998, 25, 23–29. [Google Scholar]
- Borden, E.C.; Parkinson, D. A Perspective on the Clinical Effectiveness and Tolerance of Interferon-α. Semin. Oncol. 1998, 25, 3–8. [Google Scholar]
- Morgan, E.T. Impact of Infectious and Inflammatory Disease on Cytochrome P450-Mediated Drug Metabolism and Pharmacokinetics. Clin. Pharmacol. Ther. 2009, 85, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Hermann, M. Immunological Response as a Source to Variability in Drug Metabolism and Transport. Front. Pharmacol. 2012, 3, 8. [Google Scholar] [CrossRef]
- Lee, J.-I.; Zhang, L.; Men, A.Y.; Kenna, L.A.; Huang, S.-M. CYP-Mediated Therapeutic Protein-Drug Interactions: Clinical Findings, Proposed Mechanisms and Regulatory Implications. Clin. Pharmacokinet. 2010, 49, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Green, M.D. Drug Interaction Studies of Therapeutic Proteins or Monoclonal Antibodies. J. Clin. Pharmacol. 2007, 47, 1540–1554. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, Y.-H.; Yang, Z.; Rodrigues, A.D. Effect of Interferon-A2b on the Expression of Various Drug-Metabolizing Enzymes and Transporters in Co-Cultures of Freshly Prepared Human Primary Hepatocytes. Xenobiotica 2011, 41, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Brennan, B.J.; Xu, Z.-X.; Grippo, J.F. Effect of Peginterferon Alfa-2a (40KD) on Cytochrome P450 Isoenzyme Activity. Br. J. Clin. Pharmacol. 2013, 75, 497–506. [Google Scholar] [CrossRef]
- Williams, S.J.; Baird-Lambert, J.A.; Farrell, G.C. Inhibition of Theophylline Metabolism by Interferon. Lancet 1987, 330, 939–941. [Google Scholar] [CrossRef]
- Israel, B.C.; Blouin, R.A.; McIntyre, W.; Shedlofsky, S. Effects of Interferon-α Monotherapy on Hepatic Drug Metabolism in Cancer Patients. Br. J. Clin. Pharmacol. 1993, 36, 229–235. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Craig, P.I.; Tapner, M.; Farrell, G.C. Interferon Suppresses Erythromycin Metabolism in Rats and Human Subjects. Hepatology 1993, 17, 230–235. [Google Scholar] [CrossRef]
- Williams, S.J.; Farrell, G.C. Inhibition of Antipyrine Metabolism by Interferon. Br. J. Clin. Pharmacol. 1986, 22, 610–612. [Google Scholar] [CrossRef]
- Pageaux, G.P.; le Bricquir, Y.; Berthou, F.; Bressot, N.; Picot, M.C.; Blanc, F.; Michel, H.; Larrey, D. Effect of Interferon-α on Cytochrome P-450 Isoforms 1A2 and 3A Activites in Patients with Chronic Hepatitis C. Eur. J. Gastroenterol. Hepatol. 1998, 10, 491–495. [Google Scholar] [CrossRef]
- Becquemont, L.; Chazouilleres, O.; Serfaty, L.; Poirier, J.M.; Broly, F.; Jaillon, P.; Poupon, R.; Funck-Brentano, C. Effect of Interferon α-Ribavirin Bitherapy on Cytochrome P450 1A2 and 2D6 and N-Acetyltransferase-2 Activities in Patients with Chronic Active Hepatitis C. Clin. Pharmacol. Ther. 2002, 71, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Tolson, A.H.; Wang, H. Regulation of Drug-Metabolizing Enzymes by Xenobiotic Receptors: PXR and CAR. Adv. Drug Deliv. Rev. 2010, 62, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ke, S.; Liu, D.; Sheng, T.; Thomas, P.E.; Rabson, A.B.; Gallo, M.A.; Xie, W.; Tian, Y. Role of NF-κB in Regulation of PXR-Mediated Gene Expression: A Mechanism for the Suppression of Cytochrome P-450 3A4 by Proinflammatory Agents. J. Biol. Chem. 2006, 281, 17882–17889. [Google Scholar] [CrossRef]
- Sato, I.; Shimbo, T.; Kawasaki, Y.; Masaki, N. Comparison of Peginterferon Alfa-2a and Alfa-2b for Treatment of Patients with Chronic Hepatitis C: A Retrospective Study Using the Japanese Interferon Database. Drug Des. Devel. Ther. 2014, 9, 283–290. [Google Scholar] [CrossRef][Green Version]
- Craxì, A. PEG IFN Alfa-2a vs. Alfa-2b: And the Winner Is...? J. Hepatol. 2010, 52, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Czerwiński, M.; Gilligan, K.; Westland, K.; Ogilvie, B.W. Effects of Monocyte Chemoattractant Protein-1, Macrophage Inflammatory Protein-1α, and Interferon-A2a on P450 Enzymes in Human Hepatocytes in vitro. Pharmacol. Res. Perspect. 2019, 7, e00551. [Google Scholar] [CrossRef] [PubMed]
- Flaman, A.S.; Gravel, C.; Hashem, A.M.; Tocchi, M.; Li, X. The Effect of Interferon-α on the Expression of Cytochrome P450 3A4 in Human Hepatoma Cells. Toxicol. Appl. Pharmacol. 2011, 253, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, S.; Koster, A.S.; Beijnen, J.H.; Schellens, J.H.M.; Meijerman, I. Comparison of Two Immortalized Human Cell Lines to Study Nuclear Receptor-Mediated CYP3A4 Induction. Drug Metab. Dispos. 2008, 36, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mugundu, G.M.; Desai, P.B.; Thummel, K.E.; Unadkat, J.D. Intestinal Human Colon Adenocarcinoma Cell Line LS180 Is an Excellent Model to Study Pregnane X Receptor, but Not Constitutive Androstane Receptor, Mediated CYP3A4 and Multidrug Resistance Transporter 1 Induction: Studies with Anti-Human Immunodeficiency virus protease inhibitors. Drug Metab. Dispos. 2008, 36, 1172–1180. [Google Scholar] [CrossRef]
- Brandin, H.; Viitanen, E.; Myrberg, O.; Arvidsson, A.-K. Effects of Herbal Medicinal Products and Food Supplements on Induction of CYP1A2, CYP3A4 and MDR1 in the Human Colon Carcinoma Cell Line LS180. Phytother. Res. 2007, 21, 239–244. [Google Scholar] [CrossRef]
- Yamasaki, D.; Nakamura, T.; Okamura, N.; Kokudai, M.; Inui, N.; Takeuchi, K.; Watanabe, H.; Hirai, M.; Okumura, K.; Sakaeda, T. Effects of Acid and Lactone Forms of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors on the Induction of MDR1 Expression and Function in LS180 Cells. Eur. J. Pharm. Sci. 2009, 37, 126–132. [Google Scholar] [CrossRef]
- Peters, T.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Interaction of the Mitotic Kinesin Eg5 Inhibitor Monastrol with P-Glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol. 2006, 372, 291–299. [Google Scholar] [CrossRef]
- Rigalli, J.P.; Reuter, T.; Herold-Mende, C.; Dyckhoff, G.; Haefeli, W.E.; Weiss, J.; Theile, D. Minor Role of Pregnane-x-Receptor for Acquired Multidrug Resistance in Head and Neck Squamous Cell Carcinoma in vitro. Cancer Chemother. Pharmacol. 2013, 71, 1335–1343. [Google Scholar] [CrossRef]
- García-Piñeres, A.J.; Lindenmeyer, M.T.; Merfort, I. Role of Cysteine Residues of P65/NF-κB on the Inhibition by the Sesquiterpene Lactone Parthenolide and N-Ethyl Maleimide, and on Its Transactivating Potential. Life Sci. 2004, 75, 841–856. [Google Scholar] [CrossRef]
- Kwok, B.H.B.; Koh, B.; Ndubuisi, M.I.; Elofsson, M.; Crews, C.M. The Anti-Inflammatory Natural Product Parthenolide from the Medicinal Herb Feverfew Directly Binds to and Inhibits IκB Kinase. Chem. Biol. 2001, 8, 759–766. [Google Scholar] [CrossRef]
- Albermann, N.; Schmitz-Winnenthal, F.H.; Z’graggen, K.; Volk, C.; Hoffmann, M.M.; Haefeli, W.E.; Weiss, J. Expression of the Drug Transporters MDR1/ABCB1, and PXR in Peripheral Blood Mononuclear Cells and Their Relationship with the Expression in Intestine and Liver. Biochem. Pharmacol. 2005, 70, 949–958. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef]
- Weiss, J.; Theile, D.; Haefeli, W.E. Rifampicin Alters the Expression of Reference Genes Used to Normalize Real-Time Quantitative RT-PCR Data. Naunyn Schmiedebergs Arch. Pharmacol. 2012, 385, 1025–1034. [Google Scholar] [CrossRef]
- Theile, D.; Wagner, L.; Haefeli, W.E.; Weiss, J. In vitro Evidence Suggesting That the Toll-like Receptor 7 and 8 Agonist Resiquimod (R-848) Unlikely Affects Drug Levels of Co-Administered Compounds. Eur. J. Pharm. Sci. 2021, 162, 105826. [Google Scholar] [CrossRef]
- Zhang, Z.-B.; Wang, Q.-Y.; Ke, Y.-X.; Liu, S.-Y.; Ju, J.-Q.; Lim, W.A.; Tang, C.; Wei, P. Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit. Cell Syst. 2017, 5, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.L.; Fruin, A.B.; Gower, A.C.; Gonzales, K.D.; Stucchi, A.F.; Andry, C.D.; Brien, M.O.; Becker, J.M. NF-ΚB Activation Precedes Increases in MRNA Encoding Neurokinin-1 Receptor, Proinflammatory Cytokines, and Adhesion Molecules in Dextran Sulfate Sodium–Induced Colitis in Rats. Dig. Dis. Sci. 2005, 50, 2366–2378. [Google Scholar] [CrossRef]
- Vosters, O.; Beuneu, C.; Movahedi, N.N.B.; Pipeleers, E.A.I.S.D.; Goldman, M.; Verhasselt, V. CD40 Expression on Human Pancreatic Duct Cells: Role in Nuclear Factor-Kappa B Activation and Production of pro-Inflammatory Cytokines. Diabetologia 2004, 47, 660–668. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bajraktari, G.; Weiss, J. The Aglycone Diosmetin Has the Higher Perpetrator Drug-Drug Interaction Potential Compared to the Parent Flavone Diosmin. J. Funct. Foods 2020, 67, 103842. [Google Scholar] [CrossRef]
- Pavek, P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front. Pharmacol. 2016, 7, 456. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gade, P.; Xiao, W.; Kalvakolanu, D.V. The Interferon Signaling Network and Transcription Factor C/EBP-β. Cell. Mol. Immunol. 2007, 4, 407–418. [Google Scholar] [PubMed]
- Roy, S.K.; Wachira, S.J.; Weihua, X.; Hu, J.; Kalvakolanu, D.V. CCAAT/Enhancer-Binding Protein-β Regulates Interferon-Induced Transcription through a Novel Element. J. Biol. Chem. 2000, 275, 12626–12632. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, C.P.; Jover, R.; Donato, M.T.; Castell, J.; Gómez-Lechón, M.J. Transcriptional Regulation and Expression of CYP3A4 in Hepatocytes. Curr. Drug Metab. 2007, 8, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Jover, R.; Bort, R.; Gómez-Lechón, J.; Castell, J.V. Down-Regulation of Human CYP3A4 by the Inflammatory Signal Interleukin 6: Molecular Mechanism and Transcription Factors Involved. FASEB J. 2002, 16, 1799–1801. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, C.P.; Gómez-Lechón, M.J.; Castell, J.V.; Jover, R. Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver Inhibitory Protein). Mol. Pharmacol. 2005, 67, 2088–2101. [Google Scholar] [CrossRef]
- Weiss, J.; Theile, D.; Spalwisz, A.; Burhenne, J.; Riedel, K.-D.; Haefeli, W.E. Influence of Sildenafil and Tadalafil on the Enzyme- and Transporter-Inducing Effects of Bosentan and Ambrisentan in LS180 Cells. Biochem. Pharmacol. 2013, 85, 265–273. [Google Scholar] [CrossRef]




| Exposure Time | NF-ĸB Activity | PXR Activity | ||
|---|---|---|---|---|
| IFN-α 2a 1000 U/mL | IFN-α 2a 5000 U/mL | IFN-α 2a 1000 U/mL | IFN-α 2a 5000 U/mL | |
| 2 h | <0.0001 | <0.0001 | 0.546 | 0.666 |
| 6 h | 0.0078 | 0.002 | <0.0001 | <0.0001 |
| 24 h | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
| 30 h | 0.010 | 0.0003 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theile, D.; Wagner, L.; Bay, C.; Haefeli, W.E.; Weiss, J. Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics 2021, 13, 808. https://doi.org/10.3390/pharmaceutics13060808
Theile D, Wagner L, Bay C, Haefeli WE, Weiss J. Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics. 2021; 13(6):808. https://doi.org/10.3390/pharmaceutics13060808
Chicago/Turabian StyleTheile, Dirk, Lelia Wagner, Cindy Bay, Walter Emil Haefeli, and Johanna Weiss. 2021. "Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes" Pharmaceutics 13, no. 6: 808. https://doi.org/10.3390/pharmaceutics13060808
APA StyleTheile, D., Wagner, L., Bay, C., Haefeli, W. E., & Weiss, J. (2021). Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics, 13(6), 808. https://doi.org/10.3390/pharmaceutics13060808

