Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. Cultures
2.2.1. Cell Cultures
2.2.2. Parasite Cultures
2.3. Biological Assays
2.3.1. Epimastigote Susceptibility Assay (Monotherapy)
2.3.2. Trypomastigote/Amastigote Susceptibility Assay
2.3.3. Epimastigote Susceptibility Assay (Combined Therapy)
2.3.4. Cytotoxicity Assays
2.4. Oxygen Consumption Inhibition Analysis
2.5. Transmembrane Anion Transport Experiments
3. Results
3.1. Epimastigote Susceptibility Assay (Monotherapy)
3.2. Trypomastigote/Amastigote Susceptibility Assay
3.3. Drug Synergism Assays
3.4. Cytotoxicity
3.5. Selectivity Index (SI)
3.6. Oxygen Consumption Inhibition Analysis
3.7. Transmembrane Anion Transport Experiments
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Fact Sheet No. 340. Available online: http://www.who.int/mediacentre/factsheets/fs340/en/ (accessed on 18 September 2020).
- Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J. 2017, 15, 98–103. [Google Scholar] [CrossRef]
- Gascon, J.; Bern, C.; Pinazo, M.J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 2010, 115, 22–27. [Google Scholar] [CrossRef]
- Jackson, Y.; Pinto, A.; Pett, S. Chagas disease in Australia and New Zealand: Risks and needs for public health interventions. Trop. Med. Int. Health 2014, 19, 212–218. [Google Scholar] [CrossRef]
- Luquetti, A.O.; Rassi, A. Diagnóstico laboratorial da infecção pelo Trypanosoma cruzi. In Trypanosoma Cruzi e Doença de Chagas, 2nd ed.; Brener, Z., Andrade, A.Z., Baral-Neto, M., Eds.; Koogan: Melbourne, Australia, 2000; pp. 344–378. [Google Scholar]
- Bern, C. Chagas’ disease. N. Engl. J. Med. 2015, 373, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- Paucar, R.; Moreno-Viguri, E.; Pérez-Silanes, S. Challenges in Chagas disease drug discovery: A review. Curr. Med. Chem. 2016, 23, 3154–3170. [Google Scholar] [CrossRef] [Green Version]
- Prata, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis. 2001, 1, 92–100. [Google Scholar] [CrossRef]
- Bilate, A.; Cunha-Neto, E. Chagas disease cardiomyopathy: Current concepts of an old disease. Rev. Inst. Med. Trop. Sao Paulo 2008, 50, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Coura, J.R. Present situation and new strategies for Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 2009, 104, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol. 2006, 25, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Hasslocher-Moreno, A.M.; do Brasil, P.E.; de Sousa, A.S.; Xavier, S.S.; Chambela, M.C.; Sperandio da Silva, G.M. Safety of benznidazole use in the treatment of chronic Chagas’ disease. J. Antimicrob. Chemother. 2012, 67, 1261–1266. [Google Scholar] [CrossRef] [Green Version]
- Müller Kratz, J.; Garcia Bournissen, F.; Forsyth, C.J.; Sosa-Estani, S. Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert Rev. Clin. Pharmacol. 2018, 11, 943–957. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Molina, J.A.; Pérez-Ayala, A.; Moreno, S.; Fernández-González, M.C.; Zamora, J.; López-Velez, R. Use of benznidazole to treat chronic Chagas’ disease: A systematic review with a meta-analysis. J. Antimicrob. Chemother. 2009, 64, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Filardi, L.S.; Brener, Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 755–759. [Google Scholar] [CrossRef]
- Bustamante, J.M.; Craft, J.M.; Crowe, B.D.; Ketchie, S.A.; Tarleton, R.L. New, Combined, and Reduced Dosing Treatment Protocols Cure Trypanosoma cruzi infection in Mice. J. Infect. Dis. 2014, 209, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J. Chagas disease: Pushing through the pipeline. Nature 2010, 465, S12–S15. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Irace, C.; Costagliola, F.; Castelluccio, F.; Villani, G.; Calado, G. A new cytotoxic tambjamine alkaloid from the Azorean nudibranch Tambja Ceutae. Bioorg. Med. Chem. Lett. 2010, 20, 2668–2670. [Google Scholar] [CrossRef]
- Gale, P.A.; Pérez-Tomás, R.; Quesada, R. Anion transporters and biological systems. Acc. Chem. Res. 2013, 46, 2801–2813. [Google Scholar]
- Barros-Nepomuceno, F.W.A.; de Araújo Viana, D.; Pinheiro, D.P.; de Cássia Evangelista de Oliveira, F.; Magalhães Ferreira, J.R.; de Queiroz, M.G. The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells. ChemMedChem 2021, 16, 420–428. [Google Scholar] [CrossRef]
- Pinkerton, D.M.; Banwell, M.G.; Garson, M.J.; Kumar, N.; de Moraes, M.O.; Cavalcanti, B.C. Antimicrobial and cytotoxic activities of synthetically derived tambjamines C and E–J, BE-18591, and a related alkaloid from the marine bacterium Pseudoalteromonas tunicata. Chem. Biodivers. 2010, 7, 1311–1324. [Google Scholar] [CrossRef]
- Carreira-Barral, I.; Mielczarek, M.; Alonso-Carrillo, D.; Capurro, V.; Soto-Cerrato, V.; Pérez Tomás, R. Click-tambjamines as efficient and tunable bioactive anion transporters. Chem. Commun. 2020, 56, 3218–33221. [Google Scholar] [CrossRef] [PubMed]
- Tomás, A.M.; Castro, H. Redox metabolism in mitochondria of trypanosomatids. Antioxid. Redox Signal. 2013, 19, 696–707. [Google Scholar] [CrossRef] [Green Version]
- Kancharla, P.; Kelly, J.X.; Reynolds, K.A. Synthesis and structure-activity relationships of Tambjamines and B-ring functioalized prodiginines as potent antimalarials. J. Med. Chem. 2015, 58, 7286–7309. [Google Scholar] [CrossRef] [Green Version]
- Herráez, R.; Mur, A.; Merlos, A.; Viñas, M.; Vinuesa, T. Using prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi. J. Venom. Anim. Toxins Trop. Dis. 2019, 25. [Google Scholar] [CrossRef]
- Fiore, M.; Cossu, C.; Capurro, V.; Picco, C.; Ludovico, A.; Mielczarek, M. Small molecule -facilitated anion transporters in cells for a novel therapeutic approach to cystic fibrosis. Br. J. Pharmacol. 2019, 176, 1764–1779. [Google Scholar] [CrossRef]
- de Díaz Greñu, B.; Iglesias Hernández, P.; Espona, M.; Quiñonero, D.; Light, M.E.; Torroba, T. Synthetic prodiginine Obatoclax (GX15-070) and related analogues: Anion binding, transmembrane transport, and cytotoxicity properties. Chem. Eur. J. 2011, 17, 14074–14083. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Barral, I.; Rumbo, C.; Mielczarek, M.; Alonso-Carrillo, D.; Herran, E.; Pastor, M. Small molecule anion transporters display in vitro antimicrobial activity against clinically relevant bacterial strains. Chem. Commun. 2019, 55, 10080–10083. [Google Scholar] [CrossRef]
- Vinuesa, T.; Herráez, R.; Oliver, L.; Elizondo, E.; Acarregui, A.; Esquisabel, A. Benznidazole nanoformulates: A chance to improve therapeutics for chagas disease. Am. J. Trop. Med. Hyg. 2017, 97, 1469–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoes-Silva, M.R.; De Araújo, J.S.; Peres, R.B.; Da Silva, P.B.; Batista, M.M.; De Azevedo, L.D. Repurposing strategies for Chagas disease therapy: The effect of imatinib and derivatives against Trypanosoma cruzi. Parasitology 2019, 146, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Vercesi, A.E.; Bernardes, C.F.; Hoffmann, M.E.; Gadelha, F.R.; Docampo, R. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J. Biol. Chem. 1991, 266, 14431–14434. [Google Scholar] [CrossRef]
- Fonseca-Berzal, C.; DA Silva, C.F.; Menna-Barreto, R.F.; Batista, M.M.; Escario, J.A.; Arán, V.J. Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes. Parasitology 2016, 143, 1469. [Google Scholar] [CrossRef]
- Ehrenkaufer, G.; Li, P.; Stebbins, E.E.; Kangussu-Marcolino, M.M.; Debnath, A.; White, C.V. Identification of anisomycin, prodigiosin and obatoclax as compounds with broad-spectrum anti-parasitic activity. PLoS Negl. Trop. Dis. 2020, 14, e0008150. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Melo, P.; Durán, N.; Haun, M. Cytotoxicity of prodigiosin and benznidazole on V79 cells. Toxicol. Lett. 2000, 116, 237–242. [Google Scholar] [CrossRef]
- Fidalgo, L.M.; Gille, L. Mitochondria and Trypanosomatids: Targets and drugs. Pharm. Res. 2011, 28, 2758–2770. [Google Scholar] [CrossRef]
- Genes, C.; Baquero, E.; Echeverri, F.; Maya, J.D.; Triana, O. Mitochondrial dysfunction in Trypanosoma cruzi: The role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasit Vectors 2011, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinazo, M.J.; Muñoz, J.; Posada, E.; López-Chejade, P.; Gállego, M.; Ayala, E. Tolerance of benznidazole in treatment of Chagas disease in adults. Antimicrob. Agents Chemother. 2010, 54, 4896–4899. [Google Scholar] [CrossRef] [Green Version]
- González-Ramos, J.; Noguera-Morel, L.; Tong, H.Y.; Ramirez, E.; Ruiz-Bravo, E.; Bellon, T. Two cases of overlap severe cutaneous adverse reactions to benznidazole treatment for asymptomatic Chagas disease in a non-endemic country. Br. J. Dermatol. 2016, 175, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Crespillo-Andújar, C.; Robles, M.C.; Norman, F.F.; Pérez-Molina, J.A. Severe immune thrombocytopaenia in a patient taking benznidazole for chronic Chagas disease. BMJ Case Rep. 2018. [Google Scholar] [CrossRef]
- Molina, I.; Salvador, F.; Sánchez-Montalvá, A.; Treviño, B.; Serre, N.; Sao Avilés, A. Toxic profile of benznidazole in patients with chronic Chagas disease: Risk factors and comparison of the product from two different manufacturers. Antimicrob. Agents Chemother. 2015, 59, 6125–6131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | IC50 (µM) ƚ |
---|---|
MM3 | 4.52 ± 1.43 |
MM4 | 5.08 ± 0.62 |
MM5 | 129.91 ± 34.66 |
EH123 | 198.78 ± 49.93 |
Obatoclax | 3.46 ± 0.96 |
Synthetic prodigiosin | 0.46 ± 0.03 |
Natural prodigiosin | 0.54 ± 0.25 |
Benznidazole | 18.96 ± 7.07 |
Compound | % Trypomastigote/Amastigote Growth Inhibition (%T/A GI ± SD) * | IC50 (µM) ƚ |
---|---|---|
MM3 | 97.09 ± 3.01 | 1.9 ± 0.45 |
MM4 | ND | ND |
Obatoclax | 88.42 ± 6 | 2.60 ± 0.4 |
Synthetic prodigiosin | 100 ± 0 | 0.57 ± 0.19 |
Natural prodigiosin | 100 ± 0 | 0.1 ± 0.04 |
Benznidazole | 76.01 ± 5.02 | 1.76 ± 0.34 |
Combination Drugs | FICi |
---|---|
Benznidazole + 0.25x IC50 of MM3 | 0.79 |
Benznidazole + 0.25x IC50 of MM4 | 0.70 |
Benznidazole + 0.25x IC50 of Obatoclax | 1.80 |
Benznidazole + 0.25x IC50 of synthetic prodigiosin | 0.73 |
Benznidazole + 0.25x IC50 of natural prodigiosin | 0.81 |
L-929 | ||
---|---|---|
Compound | % Cytotoxicity ± SD * | IC50 (µM) ƚ |
MM3 | 88.38 ± 2.75 | 12.21 ± 0.28 |
MM4 | 64.24 ± 10.51 | 14.04 ± 1.28 |
MM5 | ND | ND |
EH123 | 3.72 ± 1.14 | 171.66 ± 0.5 |
Obatoclax | 63.53 ± 1.63 | 5.83 ± 1.07 |
Synthetic prodigiosin | 95.75 ± 0.06 | 3.06 ± 0.01 |
Natural prodigiosin | 95.8 ± 0.09 | 5 ± 0.83 |
Benznidazole | 0 ± 0 | 1372.3 ± 0.5 |
Compound | 100 µM ± SD (n = 9) * | 10 µM ± SD (n = 9) * | 1 µM ± SD (n = 9) * | IC50 (µM) ƚ |
---|---|---|---|---|
MM3 | 94.36 ± 0.5 | 24.87 ± 8.92 | 0.99 ± 0.92 | 46.01 ± 8.15 |
MM4 | 85.15 ± 9.91 | 19.07 ± 3.94 | 0 ± 0 | 52.54 ± 9.21 |
Obatoclax | 74.8 ± 4.06 | 63.3 ± 16.95 | 10.4 ± 4.80 | 8.18 ± 1.87 |
Synthetic prodigiosin | 95.2 ± 0.94 | 90.5 ± 0.82 | 15 ± 6.12 | 5.15 ± 0.39 |
Natural prodigiosin | ND | 87.97 ± 5.94 | 2.29 ± 3.97 | 6.02 ± 0.5 |
Benznidazole | 0.18 ± 0.08 | 0.44 ± 0.61 | 0 ± 0 | >100 |
Compound | Epimastigotes | Trypomastigotes |
---|---|---|
MM3 | 2.70 | 6.42 |
MM4 | 2.76 | ND |
EH123 | 0.86 | ND |
Obatoclax | 1.68 | 2.24 |
Synthetic prodigiosin | 6.65 | 5.36 |
Natural prodigiosin | 9.25 | 50 |
Benznidazole | 72.37 | 779.71 |
Oxygen Uptake (pmol/sec/Million Cells) | % Oxygen Uptake Inhibition (½ IC50) ƚ | |
---|---|---|
Control | 2.69 ± 0.06 | - |
MM3 | 1.58 ± 0.05 | 41.26% |
MM4 | 2.62 ± 0.04 | 2.60% |
Natural prodigiosin | 0.73 ± 0.06 | 72.8% |
Synthetic prodigiosin | 2.33 ± 0.09 | 13.58% |
Obatoclax | 2.69 ± 0 | 0% |
Oxygen Uptake (pmol/sec/Million Cells) | % Oxygen Uptake Inhibition (¾ IC50)ƚ | |
Control | 2.69 ± 0.06 | - |
MM3 | 1.56 ± 0.06 | 42% |
MM4 | 2.61 ± 0.04 | 2.97% |
Natural prodigiosin | ND | ND |
Synthetic prodigiosin | 1.74 ± 0.17 | 35.18% |
Obatoclax | 2.69 ± 0 | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herráez, R.; Quesada, R.; Dahdah, N.; Viñas, M.; Vinuesa, T. Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi. Pharmaceutics 2021, 13, 705. https://doi.org/10.3390/pharmaceutics13050705
Herráez R, Quesada R, Dahdah N, Viñas M, Vinuesa T. Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi. Pharmaceutics. 2021; 13(5):705. https://doi.org/10.3390/pharmaceutics13050705
Chicago/Turabian StyleHerráez, Rocío, Roberto Quesada, Norma Dahdah, Miguel Viñas, and Teresa Vinuesa. 2021. "Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi" Pharmaceutics 13, no. 5: 705. https://doi.org/10.3390/pharmaceutics13050705
APA StyleHerráez, R., Quesada, R., Dahdah, N., Viñas, M., & Vinuesa, T. (2021). Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi. Pharmaceutics, 13(5), 705. https://doi.org/10.3390/pharmaceutics13050705