A Multilayer Functionalized Drug-Eluting Balloon for Treatment of Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Liposomes
2.3. Characterization of Drug-Loaded Liposomes
2.4. Cell Culture
2.5. Cell Viability and Intracellular Distribution of Liposome and EVL-Loaded Liposome
2.6. Ultrasonic Spray Coating
2.7. Analysis of Surface Properties
2.8. Drug Release and Separation of Coated Layers
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)
2.10. Hemocompatibility Test
2.11. Ex Vivo Drug Transfer Study
2.12. Statistical Analysis
3. Results
3.1. Liposome Characterization
3.2. Cell Viability and Intracellular Distribution of Liposome and EVL-Loaded Liposome
3.3. Analysis of Multilayer-Coated Surface
3.4. Functionalities of PVP Layers
3.5. Anti-Inflammatory Property of the Coating Materials
3.6. Hemocompatibility
3.7. Ex Vivo Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation 2005, 111, 3481–3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuster, V.; Badimon, L.; Badimon, J.J.; Chesebro, J.H. The pathogenesis of coronary artery disease and the acute coronary syndromes. N. Engl. J. Med. 1992, 326, 310–318. [Google Scholar] [PubMed]
- Serruys, P.W.; Morice, M.-C.; Kappetein, A.P.; Colombo, A.; Holmes, D.R.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; Van Den Brand, M.; Bass, E.J. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009, 360, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, B.-W.; Lee, Y.J.; Ban, K.; Park, H.-J. In vivo combinatory gene therapy synergistically promotes cardiac function and vascular regeneration following myocardial infarction. J. Tissue Eng. 2020, 11, 2041731420953413. [Google Scholar] [CrossRef]
- Muramatsu, T.; Onuma, Y.; Zhang, Y.-J.; Bourantas, C.V.; Kharlamov, A.; Diletti, R.; Farooq, V.; Gogas, B.D.; Garg, S.; García-García, H.M. Progress in treatment by percutaneous coronary intervention: The stent of the future. Rev. Esp. Cardiol. 2013, 66, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Byrne, R.A.; Stone, G.W.; Ormiston, J.; Kastrati, A. Coronary balloon angioplasty, stents, and scaffolds. Lancet 2017, 390, 781–792. [Google Scholar] [CrossRef]
- Colleran, R.; Kastrati, A. Percutaneous coronary intervention: Balloons, stents and scaffolds. Clin. Res. Cardiol. 2018, 107, 55–63. [Google Scholar] [CrossRef]
- Lipinski, M.J.; Escarcega, R.O.; Baker, N.C.; Benn, H.A.; Gaglia, M.A.; Torguson, R.; Waksman, R. Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold: A systematic review and meta-analysis. JACC Cardiovasc. Interv. 2016, 9, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Granillo, A.; Rubilar, B.; Rodriguez-Granillo, G.; Rodriguez, A.E. Advantages and disadvantages of biodegradable platforms in drug-eluting stents. World J. Cardiol. 2011, 3, 84. [Google Scholar] [CrossRef]
- Sun, J.; Sun, K.; Bai, K.; Chen, S.; Zhao, F.; Wang, F.; Hong, N.; Hu, H. Oversized composite braided biodegradable stents with post-dilatation for pediatric applications: Mid-term results of a porcine study. Biomater. Sci. 2020, 8, 5183–5195. [Google Scholar] [CrossRef]
- Jeong, D.-W.; Park, W.; Bedair, T.M.; Kang, E.Y.; Kim, I.H.; Park, D.S.; Sim, D.S.; Hong, Y.J.; Koh, W.-G.; Jeong, M.H.; et al. Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide. Biomater. Sci. 2019, 7, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Farah, S.; Domb, A.J. Drug-eluting stents: Developments and current status. J. Control. Release 2012, 161, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Lih, E.; Kum, C.H.; Park, W.; Chun, S.Y.; Cho, Y.; Joung, Y.K.; Park, K.-S.; Hong, Y.J.; Ahn, D.J.; Kim, B.-S.; et al. Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly (lactide-co-glycolide) implants. ACS Nano 2018, 12, 6917–6925. [Google Scholar] [CrossRef] [PubMed]
- Bavry, A.A.; Kumbhani, D.J.; Helton, T.J.; Borek, P.P.; Mood, G.R.; Bhatt, D.L. Late thrombosis of drug-eluting stents: A meta-analysis of randomized clinical trials. Am. J. Med. 2006, 119, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Amabile, N.; Trouillet, C.; Meneveau, N.; Tissot, C.M.; Belle, L.; Combaret, N.; Range, G.; Pansieri, M.; Delaunay, R.; Levesque, S. Mechanical abnormalities associated with first-and second-generation drug-eluting stent thrombosis analyzed by optical coherence tomography in the national PESTO French registry. Int. J. Cardiol. 2017, 227, 161–165. [Google Scholar] [CrossRef]
- Cremers, B.; Speck, U.; Kaufels, N.; Mahnkopf, D.; Kühler, M.; Böhm, M.; Scheller, B. Drug-eluting balloon: Very short-term exposure and overlapping. J. Thromb. Haemost. 2009, 101, 201–206. [Google Scholar]
- Schmidt, A.; Piorkowski, M.; Werner, M.; Ulrich, M.; Bausback, Y.; Bräunlich, S.; Ick, H.; Schuster, J.; Botsios, S.; Kruse, H.-J. First experience with drug-eluting balloons in infrapopliteal arteries: Restenosis rate and clinical outcome. J. Am. Coll. Cardiol. 2011, 58, 1105–1109. [Google Scholar] [CrossRef] [Green Version]
- Cremers, B.; Toner, J.L.; Schwartz, L.B.; von Oepen, R.; Speck, U.; Kaufels, N.; Clever, Y.P.; Mahnkopf, D.; Böhm, M.; Scheller, B. Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter. Clin. Res. Cardiol. 2012, 101, 469–476. [Google Scholar] [CrossRef]
- Marx, S.O.; Marks, A.R. Bench to bedside: The development of rapamycin and its application to stent restenosis. Circulation 2001, 104, 852–855. [Google Scholar] [CrossRef] [Green Version]
- Serruys, P.; Regar, E.; Carter, A. Rapamycin-eluting stent: The onset of a new era in interventional cardiology. Heart 2002, 87, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Dumont, F.J.; Su, Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci. 1995, 58, 373–395. [Google Scholar] [CrossRef]
- Saunders, R.N.; Metcalfe, M.S.; Nicholson, M.L. Rapamycin in transplantation: A review of the evidence. Kidney Int. 2001, 59, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Klawitter, J.; Nashan, B.; Christians, U. Everolimus and sirolimus in transplantation-related but different. Expert. Opin. Drug Saf. 2015, 14, 1055–1070. [Google Scholar] [CrossRef]
- Neumayer, H.-H. Introducing everolimus (Certican) in organ transplantation: An overview of preclinical and early clinical developments. Transplantation 2005, 79, S72–S75. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Rizvi, A.; Newman, W.; Mastali, K.; Wang, J.C.; Caputo, R.; Doostzadeh, J.; Cao, S.; Simonton, C.A.; Sudhir, K. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N. Engl. J. Med. 2010, 362, 1663–1674. [Google Scholar] [CrossRef]
- Nair, B. Final report on the safety assessment of polyvinylpyrrolidone (PVP). Int. J. Toxicol. 1998, 17, 95–130. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Rhim, W.K.; Kim, J.S.; Nam, J.M. Lipid—Gold-Nanoparticle Hybrid-Based Gene Delivery. Small 2008, 4, 1651–1655. [Google Scholar] [CrossRef]
- Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. Appl. Nanotech. Drug Deliv. 2014, 1–100. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Tang, X.; Liu, X.; Cui, X.; Lian, M.; Zhao, M.; Peng, H.; Han, X. Targeted miR-21 loaded liposomes for acute myocardial infarction. J. Mater. Chem. B 2020, 8, 10384–10391. [Google Scholar] [CrossRef]
- Sicard, G.; Paris, C.; Giacometti, S.; Rodallec, A.; Ciccolini, J.; Rocchi, P.; Fanciullino, R. Enhanced Antisense Oligonucleotide Delivery Using Cationic Liposomes Grafted with Trastuzumab: A Proof-of-Concept Study in Prostate Cancer. Pharmaceutics 2020, 12, 1166. [Google Scholar] [CrossRef]
- Tu, B.; He, Y.; Chen, B.; Wang, Y.; Gao, Y.; Shi, M.; Liu, T.; Asrorov, A.M.; Huang, Y. Deformable liposomal codelivery of vorinostat and simvastatin promotes antitumor responses through remodeling tumor microenvironment. Biomater. Sci. 2020, 8, 7166–7176. [Google Scholar] [CrossRef]
- Abud, M.B.; Louzada, R.N.; Isaac, D.L.C.; Souza, L.G.; Dos Reis, R.G.; Lima, E.M.; de Ávila, M.P. In vivo and in vitro toxicity evaluation of liposome-encapsulated sirolimus. Int. J. Retin. Vitr. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Wöhrle, J. Drug-coated balloons for coronary and peripheral interventional procedures. Curr. Cardiol. Rep. 2012, 14, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Seedial, S.M.; Ghosh, S.; Saunders, R.S.; Suwanabol, P.A.; Shi, X.; Liu, B.; Kent, K.C. Local drug delivery to prevent restenosis. J. Vasc. Surg. 2013, 57, 1403–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheller, B.; Speck, U.; Abramjuk, C.; Bernhardt, U.; Böhm, M.; Nickenig, G. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 2004, 110, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, S.G.; Jang, I.; Park, S.H.; Yang, D.; Seo, I.H.; Bong, S.-K.; An, D.H.; Lee, M.K.; Jung, I.K. Linear micro-patterned drug eluting balloon (LMDEB) for enhanced endovascular drug delivery. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Finn, A.V.; John, M.; Nakazawa, G.; Polavarapu, R.; Karmali, V.; Xu, X.; Cheng, Q.; Davis, T.; Raghunathan, C.; Acampado, E. Differential healing after sirolimus, paclitaxel, and bare metal stent placement in combination with peroxisome proliferator-activator receptor γ agonists: Requirement for mTOR/Akt2 in PPARγ activation. Circ. Res. 2009, 105, 1003–1012. [Google Scholar] [CrossRef]
- Marquis-Gravel, G.; Matteau, A.; Potter, B.J.; Gobeil, F.; Noiseux, N.; Stevens, L.-M.; Mansour, S. Impact of Paclitaxel-Eluting Balloons Compared to Second-Generation Drug-Eluting Stents for of In-Stent Restenosis in a Primarily Acute Coronary Syndrome Population. Arq. Bras. Cardiol. 2017, 109, 277–283. [Google Scholar] [CrossRef]
- Radke, P.W.; Joner, M.; Joost, A.; Byrne, R.A.; Hartwig, S.; Bayer, G.; Steigerwald, K.; Wittchow, E. Vascular effects of paclitaxel following drug-eluting balloon angioplasty in a porcine coronary model: The importance of excipients. EuroIntervention 2011, 7, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Liuzzo, J.P.; Ambrose, J.A.; Coppola, J.T. Sirolimus-and taxol-eluting stents differ towards intimal hyperplasia and re-endothelialization. J. Invasive Cardiol. 2005, 17, 497. [Google Scholar] [PubMed]
- Alfonso, F.; Pérez-Vizcayno, M.J.; Cárdenas, A.; García del Blanco, B.; Seidelberger, B.; Iñiguez, A.; Gómez-Recio, M.; Masotti, M.; Velázquez, M.T.; Sanchís, J. A randomized comparison of drug-eluting balloon versus everolimus-eluting stent in patients with bare-metal stent–in-stent restenosis: The RIBS V clinical trial (Restenosis Intra-stent of Bare Metal Stents: Paclitaxel-eluting balloon vs. everolimus-eluting stent). J. Am. Coll. Cardiol. 2014, 63, 1378–1386. [Google Scholar] [PubMed] [Green Version]
- Schwendener, R.A.; Schott, H. Liposome formulations of hydrophobic drugs. Methods Mol. Biol. 2010, 605, 129–138. [Google Scholar]
- Khatik, R.; Dwivedi, P.; Shukla, A.; Srivastava, P.; Rath, S.K.; Paliwal, S.K.; Dwivedi, A.K. Development, characterization and toxicological evaluations of phospholipids complexes of curcumin for effective drug delivery in cancer chemotherapy. Drug Deliv. 2016, 23, 1057–1068. [Google Scholar] [CrossRef]
- Pilch, E.; Musiał, W. Liposomes with an ethanol fraction as an application for drug delivery. Int. J. Mol. Sci. 2018, 19, 3806. [Google Scholar] [CrossRef] [Green Version]
- Zingg, W.; Neumann, A.; Strong, A.; Hum, O.; Absolom, D. Effect of surface roughness on platelet adhesion under static and under flow conditions. Can. J. Surg. 1982, 25, 16–19. [Google Scholar]
- Linneweber, J.; Dohmen, P.M.; Kerzscher, U.; Affeld, K.; Nosé, Y.; Konertz, W. The effect of surface roughness on activation of the coagulation system and platelet adhesion in rotary blood pumps. Artif. Organs 2007, 31, 345–351. [Google Scholar] [CrossRef]
- Kohli, N.; Sawadkar, P.; Ho, S.; Sharma, V.; Snow, M.; Powell, S.; Woodruff, M.A.; Hook, L.; García-Gareta, E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. J. Tissue Eng. 2020, 11, 2041731420901621. [Google Scholar] [CrossRef] [Green Version]
- Xiong, G.M.; Ang, H.; Lin, J.; Lui, Y.S.; Phua, J.L.; Chan, J.N.; Venkatraman, S.; Foin, N.; Huang, Y. Materials technology in drug eluting balloons: Current and future perspectives. J. Control. Rel. 2016, 239, 92–106. [Google Scholar] [CrossRef]
- Yoon, J.-Y.; Kim, D.-W.; Ahn, J.-H.; Choi, E.-J.; Kim, Y.H.; Jeun, M.; Kim, E.-J. Propofol suppresses LPS-induced inflammation in amnion cells via inhibition of NF-κB activation. Tissue Eng. Regen. Med. 2019, 16, 301–309. [Google Scholar] [CrossRef]
- Schillinger, M.; Minar, E. Restenosis after percutaneous angioplasty: The role of vascular inflammation. Vasc. Health Risk. Manag. 2005, 1, 73. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.Y.; Choi, B.; Park, W.; Kim, I.H.; Han, D.K. One step bulk modification of poly(L-lactic acid) composites with functional additives to improve mechanical and biological properties for cardiovascular implant applications. Colloids Surf. B Biointerfaces 2019, 179, 161–169. [Google Scholar] [CrossRef]
- Joviliano, E.E.; Piccinato, C.E.; Dellalibera-Joviliano, R.; Moriya, T.; Évora, P.R. Inflammatory markers and restenosis in peripheral percutaneous angioplasty with intravascular stenting: Current concepts. Ann. Vasc. Surg. 2011, 25, 846–855. [Google Scholar] [CrossRef]
- Skoog, S.A.; Lu, Q.; Malinauskas, R.A.; Sumant, A.V.; Zheng, J.; Goering, P.L.; Narayan, R.J.; Casey, B.J. Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings. J. Biomed. Mater. Res. A 2017, 105, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Chiumiento, A.; Lamponi, S.; Barbucci, R. Role of fibrinogen conformation in platelet activation. Biomacromolecules 2007, 8, 523–531. [Google Scholar] [CrossRef]
- Sivaraman, B.; Latour, R.A. The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials 2010, 31, 832–839. [Google Scholar] [CrossRef] [Green Version]
- Braune, S.; Zhou, S.; Groth, B.; Jung, F. Quantification of adherent platelets on polymer-based biomaterials. Comparison of colorimetric and microscopic assessment. Clin. Hemorheol. Microcirc. 2015, 61, 225–236. [Google Scholar] [CrossRef]
Sample | XPS Atomic Concentration (%) | Contact Angle (°) | RMS Roughness (nm) | |||
---|---|---|---|---|---|---|
C1s | O1s | N1s | P2p | |||
Nylon | 85.09 | 10.47 | 4.43 | - | 92.46 | 28.483 |
PVP | 81.95 | 10.71 | 7.35 | - | 60.2 | 79.304 |
PVP/Lipo+EVL | 84.7 | 12.09 | 1.71 | 1.5 | 19.26 | 135.18 |
PVP/Lipo+EVL/PVP | 81.95 | 10.51 | 7.54 | - | 33.83 | 162.80 |
Condition | Drug Transfer Rate (%) | Drug Remaining (%) | Drug Loss (%) |
---|---|---|---|
Lipo+EVL/PVP (w/o 1st layer) | 50.19 | 33.78 | 14.39 |
PVP/Lipo+EVL/PVP (w/1st layer) | 65.43 | 16.55 | 17.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-I.; Rhim, W.-K.; Kang, E.-Y.; Choi, B.; Kim, J.-H.; Han, D.-K. A Multilayer Functionalized Drug-Eluting Balloon for Treatment of Coronary Artery Disease. Pharmaceutics 2021, 13, 614. https://doi.org/10.3390/pharmaceutics13050614
Lee H-I, Rhim W-K, Kang E-Y, Choi B, Kim J-H, Han D-K. A Multilayer Functionalized Drug-Eluting Balloon for Treatment of Coronary Artery Disease. Pharmaceutics. 2021; 13(5):614. https://doi.org/10.3390/pharmaceutics13050614
Chicago/Turabian StyleLee, Hak-Il, Won-Kyu Rhim, Eun-Young Kang, Bogyu Choi, Jun-Hyeok Kim, and Dong-Keun Han. 2021. "A Multilayer Functionalized Drug-Eluting Balloon for Treatment of Coronary Artery Disease" Pharmaceutics 13, no. 5: 614. https://doi.org/10.3390/pharmaceutics13050614