Current Perspective on Nasal Delivery Systems for Chronic Rhinosinusitis
Abstract
:1. Introduction
2. Compounds
2.1. Saline
2.2. Corticosteroids
2.3. Antibiotics
2.4. Antifungals
2.5. Decongestants
2.6. Novel Therapeutic Agents
2.6.1. Surfactant
2.6.2. Hyaluronic Acid
2.6.3. Colloidal Silver
2.6.4. Xylitol
2.6.5. Manuka Honey
3. Methods of Nasal Drug Delivery
3.1. Nasal Drops
3.2. Nasal Irrigation
3.3. Nasal Spray
3.4. Sonic Nebulization
3.5. Mucosal Atomization Device (MAD)
3.6. Biomaterials
3.7. Sinus Implants
4. Recent Advances and Future Prospects
4.1. Nanoparticles
4.2. Nanofibers
4.3. Cell-Penetrating Peptides (CPPs)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hastan, D.; Fokkens, W.J.; Bachert, C.; Newson, R.B.; Bislimovska, J.; Bockelbrink, A.; Bousquet, P.J.; Brozek, G.; Bruno, A.; Dahlen, S.E.; et al. Chronic rhinosinusitis in Europe-an underestimated disease. A GA (2) LEN study. Allergy 2011, 66, 1216–1223. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Gilani, S. Prevalence of Potential Adult Chronic Rhinosinusitis Symptoms in the United States. Otolaryngol. Head Neck Surg. 2018, 159, 522–525. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, N.H.; Seong, S.Y.; Kim, K.R.; Lee, G.B.; Kim, K.S. Prevalence and risk factors of chronic rhinosinusitis in Korea. Am. J. Rhinol. Allergy 2011, 25, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.B.; Fu, Q.L.; Zhang, H.; Cheng, L.; Wang, Y.J.; Zhu, D.D.; Lv, W.; Liu, S.X.; Li, P.Z.; Ou, C.Q.; et al. Epidemiology of chronic rhinosinusitis: Results from a cross-sectional survey in seven Chinese cities. Allergy 2015, 70, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Fokkens, W.J.L.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; Terezinha Anselmo-Lima, W.; et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef]
- Stevens, W.W.; Lee, R.J.; Schleimer, R.P.; Cohen, N.A. Chronic rhinosinusitis pathogenesis. J. Allergy Clin. Immunol. 2015, 136, 1442–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beule, A.G. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2010, 9. [Google Scholar] [CrossRef]
- Grassin-Delyle, S.; Buenestado, A.; Naline, E.; Faisy, C.; Blouquit-Laye, S.; Couderc, L.J.; Le Guen, M.; Fischler, M.; Devillier, P. Intranasal drug delivery: An efficient and non-invasive route for systemic administration: Focus on opioids. Pharm. Ther. 2012, 134, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Lobaina Mato, Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int. J. Pharm. 2019, 572, 118813. [Google Scholar] [CrossRef] [PubMed]
- Carr, W.W.; Yawn, B.P. Management of allergic rhinitis in the era of effective over-the-counter treatments. Postgrad. Med. 2017, 129, 572–580. [Google Scholar] [CrossRef]
- Casale, M.; Moffa, A.; Cassano, M.; Carinci, F.; Lopez, M.A.; Trecca, E.M.C.; Torretta, S.; Rinaldi, V.; Pignataro, L. Saline nasal irrigations for chronic rhinosinusitis: From everyday practice to evidence-based medicine. An update. Int. J. Immunopathol. Pharm. 2018, 32, 2058738418802676. [Google Scholar] [CrossRef] [Green Version]
- Chong, L.Y.; Head, K.; Hopkins, C.; Philpott, C.; Glew, S.; Scadding, G.; Burton, M.J.; Schilder, A.G. Saline irrigation for chronic rhinosinusitis. Cochrane Database Syst. Rev. 2016, 4, CD011995. [Google Scholar] [CrossRef] [Green Version]
- Succar, E.F.; Turner, J.H.; Chandra, R.K. Nasal saline irrigation: A clinical update. Int. Forum Allergy Rhinol. 2019, 9, S4–S8. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Tian, Q.; Zhao, F.; Kelly, H.S.; Shores, S.L.; Camacho, F.D.; Sperling, A.I.; Andrade, M.S.; Collier, J.H.; Chong, A.S. Adjuvant-free nanofiber vaccine induces in situ lung dendritic cell activation and TH17 responses. Sci. Adv. 2020, 6, eaba0995. [Google Scholar] [CrossRef]
- Liu, L.; Pan, M.; Li, Y.; Tan, G.; Yang, Y. Efficacy of nasal irrigation with hypertonic saline on chronic rhinosinusitis: Systematic review and meta-analysis. Braz. J. Otorhinolaryngol. 2020, 86, 639–646. [Google Scholar] [CrossRef]
- Low, T.H.; Woods, C.M.; Ullah, S.; Carney, A.S. A double-blind randomized controlled trial of normal saline, lactated Ringer’s, and hypertonic saline nasal irrigation solution after endoscopic sinus surgery. Am. J. Rhinol. Allergy 2014, 28, 225–231. [Google Scholar] [CrossRef]
- Culig, J.; Leppée, M.; Vceva, A.; Djanic, D. Efficiency of hypertonic and isotonic seawater solutions in chronic rhinosinusitis. Med. Glas. 2010, 7, 116–123. [Google Scholar]
- Bonnomet, A.; Luczka, E.; Coraux, C.; De Gabory, L. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline. Int. Forum Allergy Rhinol. 2016, 6, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Perić, A.; Kovačević, S.V.; Barać, A.; Gaćeša, D.; Perić, A.V.; Jožin, S.M. Efficacy of hypertonic (2.3%) sea water in patients with aspirin-induced chronic rhinosinusitis following endoscopic sinus surgery. Acta Otolaryngol. 2019, 139, 529–535. [Google Scholar] [CrossRef]
- Wang, J.; Shen, L.; Huang, Z.Q.; Luo, Q.; Li, M.Y.; Tu, J.H.; Han, M.; Ye, J. Efficacy of buffered hypertonic seawater in different phenotypes of chronic rhinosinusitis with nasal polyps after endoscopic sinus surgery: A randomized double-blind study. Am. J. Otolaryngol. 2020, 41, 102554. [Google Scholar] [CrossRef]
- Snidvongs, K.; Thanaviratananich, S. Update on Intranasal Medications in Rhinosinusitis. Curr. Allergy Asthma Rep. 2017, 17, 47. [Google Scholar] [CrossRef]
- Grayson, J.W.; Harvey, R.J. Topical corticosteroid irrigations in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2019, 9, S9–S15. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.J.; Snidvongs, K.; Kalish, L.H.; Oakley, G.M.; Sacks, R. Corticosteroid nasal irrigations are more effective than simple sprays in a randomized double-blinded placebo-controlled trial for chronic rhinosinusitis after sinus surgery. Int. Forum Allergy Rhinol. 2018, 8, 461–470. [Google Scholar] [CrossRef]
- Leopold, D.A.; Elkayam, D.; Messina, J.C.; Kosik-Gonzalez, C.; Djupesland, P.G.; Mahmoud, R.A. Navigate II: Randomized, double-blind trial of the exhalation delivery system with fluticasone for nasal polyposis. J. Allergy Clin. Immunol. 2019, 143, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Tait, S.; Kallogjeri, D.; Suko, J.; Kukuljan, S.; Schneider, J.; Piccirillo, J.F. Effect of Budesonide Added to Large-Volume, Low-pressure Saline Sinus Irrigation for Chronic Rhinosinusitis: A Randomized Clinical Trial. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lou, H.; Wang, X.; Wang, Y.; Fan, E.; Li, Y.; Wang, H.; Bachert, C.; Zhang, L. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2015, 135, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Chong, L.Y.; Head, K.; Hopkins, C.; Philpott, C.; Burton, M.J.; Schilder, A.G. Different types of intranasal steroids for chronic rhinosinusitis. Cochrane Database Syst. Rev. 2016, 4, Cd011993. [Google Scholar] [CrossRef] [Green Version]
- Gyawali, B.R.; Pradhan, B.; Thapa, N. Comparison of outcomes of triamcinolone versus normal saline soaked polyvinyl alcohol pack following bilateral endoscopic sinus surgery. Rhinology 2019, 57, 287–292. [Google Scholar] [CrossRef]
- Xu, J.; Park, S.J.; Park, H.S.; Han, R.; Rha, K.S.; Kim, Y.M. Effects of triamcinolone-impregnated nasal dressing on subjective and objective outcomes following endoscopic sinus surgery. Eur. Arch. Otorhinolaryngol. 2016, 273, 4351–4357. [Google Scholar] [CrossRef]
- Snidvongs, K.; Pratt, E.; Chin, D.; Sacks, R.; Earls, P.; Harvey, R.J. Corticosteroid nasal irrigations after endoscopic sinus surgery in the management of chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2012, 2, 415–421. [Google Scholar] [CrossRef]
- Jang, D.W.; Lachanas, V.A.; Segel, J.; Kountakis, S.E. Budesonide nasal irrigations in the postoperative management of chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2013, 3, 708–711. [Google Scholar] [CrossRef]
- Thamboo, A.; Manji, J.; Szeitz, A.; Santos, R.D.; Hathorn, I.; Gan, E.C.; Alsaleh, S.; Javer, A.R. The safety and efficacy of short-term budesonide delivered via mucosal atomization device for chronic rhinosinusitis without nasal polyposis. Int. Forum Allergy Rhinol. 2014, 4, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.M.; Bleier, B.S. Future topical medications in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2019, 9, S32–S46. [Google Scholar] [CrossRef] [Green Version]
- Maina, I.W.; Patel, N.N.; Cohen, N.A. Understanding the Role of Biofilms and Superantigens in Chronic Rhinosinusitis. Curr. Otorhinolaryngol. Rep. 2018, 6, 253–262. [Google Scholar] [CrossRef]
- Desrosiers, M.Y.; Salas-Prato, M. Treatment of chronic rhinosinusitis refractory to other treatments with topical antibiotic therapy delivered by means of a large-particle nebulizer: Results of a controlled trial. Otolaryngol. Head Neck Surg. 2001, 125, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, B.M.; Cleveland, K.W. Nebulized antibiotics for the treatment of refractory bacterial chronic rhinosinusitis. Ann. Pharm. 2011, 45, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, S.H. Mupirocin in the Treatment of Staphylococcal Infections in Chronic Rhinosinusitis: A Meta-Analysis. PLoS ONE 2016, 11, e0167369. [Google Scholar] [CrossRef]
- Mainz, J.G.; Schädlich, K.; Schien, C.; Michl, R.; Schelhorn-Neise, P.; Koitschev, A.; Koitschev, C.; Keller, P.M.; Riethmüller, J.; Wiedemann, B.; et al. Sinonasal inhalation of tobramycin vibrating aerosol in cystic fibrosis patients with upper airway Pseudomonas aeruginosa colonization: Results of a randomized, double-blind, placebo-controlled pilot study. Drug Des. Dev. Ther. 2014, 8, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, W.F.; Fawaz, S.A.; Rabie, H.; Hamdy, T.A.; Shokry, Y.A. Effect of topical ofloxacin on bacterial biofilms in refractory post-sinus surgery rhino-sinusitis. Eur. Arch. Otorhinolaryngol. 2015, 272, 2355–2361. [Google Scholar] [CrossRef]
- Lee, V.S.; Davis, G.E. Culture-directed topical antibiotic treatment for chronic rhinosinusitis. Am. J. Rhinol. Allergy 2016, 30, 414–417. [Google Scholar] [CrossRef] [Green Version]
- Shikani, A.H.; Khoueir, N.; Jabra-Rizk, M.A.; Shikani, H.J.; Basaraba, R.J.; Leid, J.G. Topical therapy for refractory rhinosinusitis caused by methicillin-resistant Staphylococcus aureus: First report in a prospective series. Auris Nasus Larynx 2018, 45, 994–999. [Google Scholar] [CrossRef]
- Hashemian, F.; Hashemian, F.; Molaali, N.; Rouini, M.; Roohi, E.; Torabian, S. Clinical effects of topical antifungal therapy in chronic rhinosinusitis: A randomized, double-blind, placebo-controlled trial of intranasal fluconazole. EXCLI J. 2016, 15, 95–102. [Google Scholar] [CrossRef]
- Zia, S.; Naqvi, S.U.; Ahmed, S.; Farrukh, M.S.; Sheikh, S.M. Role of Amphotericin B in Nasal Irrigation for Chronic Rhinosinusitis with Nasal Polyps. J. Coll. Phys. Surg. Pak. 2019, 29, 732–735. [Google Scholar] [CrossRef]
- Khalil, Y.; Tharwat, A.; Abdou, A.G.; Essa, E.; Elsawy, A.H.; Elnakib, O.; Elnaidany, N.F. The role of antifungal therapy in the prevention of recurrent allergic fungal rhinosinusitis after functional endoscopic sinus surgery: A randomized, controlled study. Ear Nose Throat J. 2011, 90, E1–E7. [Google Scholar] [CrossRef] [Green Version]
- Head, K.; Sharp, S.; Chong, L.Y.; Hopkins, C.; Philpott, C. Topical and systemic antifungal therapy for chronic rhinosinusitis. Cochrane Database Syst. Rev. 2018, 9, CD012453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirtsreesakul, V.; Khanuengkitkong, T.; Ruttanaphol, S. Does oxymetazoline increase the efficacy of nasal steroids in treating nasal polyposis? Am. J. Rhinol. Allergy 2016, 30, 195–200. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Bernstein, D.I.; Prenner, B.M.; Berger, W.E.; Shekar, T.; Teper, A.A. Mometasone furoate nasal spray plus oxymetazoline nasal spray: Short-term efficacy and safety in seasonal allergic rhinitis. Am. J. Rhinol. Allergy 2013, 27, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Baroody, F.M.; Brown, D.; Gavanescu, L.; DeTineo, M.; Naclerio, R.M. Oxymetazoline adds to the effectiveness of fluticasone furoate in the treatment of perennial allergic rhinitis. J. Allergy Clin. Immunol. 2011, 127, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, M.R.; Grant, D.; McKean, S.A.; Eng, C.Y.; Townend, J.; Evans, A.S. Xylometazoline hydrochloride 0.1 per cent versus physiological saline in nasal surgical aftercare: A randomised, single-blinded, comparative clinical trial. J. Laryngol. Otol. 2009, 123, 85–90. [Google Scholar] [CrossRef]
- Rosen, P.L.; Palmer, J.N.; O’Malley, B.W., Jr.; Cohen, N.A. Surfactants in the management of rhinopathologies. Am. J. Rhinol. Allergy 2013, 27, 177–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.H.; Wu, J.; Dorminy, C.A.; Chandra, R.K. Safety and tolerability of surfactant nasal irrigation. Int. Forum Allergy Rhinol. 2017, 7, 809–812. [Google Scholar] [CrossRef]
- Fastenberg, J.H.; Hsueh, W.D.; Mustafa, A.; Akbar, N.A.; Abuzeid, W.M. Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Desrosiers, M.; Myntti, M.; James, G. Methods for removing bacterial biofilms: In vitro study using clinical chronic rhinosinusitis specimens. Am. J. Rhinol. 2007, 21, 527–532. [Google Scholar] [CrossRef]
- Tamashiro, E.; Banks, C.A.; Chen, B.; Gudis, D.A.; Dogrhamji, L.; Myntti, M.; Medina, J.; Chiu, A.G.; Cohen, N.A. In vivo effects of citric acid/zwitterionic surfactant cleansing solution on rabbit sinus mucosa. Am. J. Rhinol. Allergy 2009, 23, 597–601. [Google Scholar] [CrossRef]
- Kofonow, J.M.; Adappa, N.D. In vitro Antimicrobial Activity of SinuSurf. ORL J. Otorhinolaryngol. Relat. Spec. 2012, 74, 179–184. [Google Scholar] [CrossRef]
- Casale, M.; Moffa, A.; Sabatino, L.; Pace, A.; Oliveto, G.; Vitali, M.; Baptista, P.; Salvinelli, F. Hyaluronic Acid: Perspectives in Upper Aero-Digestive Tract. A Systematic Review. PLoS ONE 2015, 10, e0130637. [Google Scholar] [CrossRef]
- Ardizzoni, A.; Neglia, R.G.; Baschieri, M.C.; Cermelli, C.; Caratozzolo, M.; Righi, E.; Palmieri, B.; Blasi, E. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J. Mat. Sci. Mat. Med. 2011, 22, 2329–2338. [Google Scholar] [CrossRef] [Green Version]
- Turino, G.M.; Cantor, J.O. Hyaluronan in respiratory injury and repair. Am. J. Respir. Crit. Care Med. 2003, 167, 1169–1175. [Google Scholar] [CrossRef]
- Marcuzzo, A.V.; Tofanelli, M.; Boscolo Nata, F.; Gatto, A.; Tirelli, G. Hyaluronate effect on bacterial biofilm in ENT district infections: A review. APMIS 2017, 125, 763–772. [Google Scholar] [CrossRef]
- Cassandro, E.; Chiarella, G.; Cavaliere, M.; Sequino, G.; Cassandro, C.; Prasad, S.C.; Scarpa, A.; Iemma, M. Hyaluronan in the Treatment of Chronic Rhinosinusitis with Nasal Polyposis. Indian J. Otolaryngol. Head Neck Surg. 2015, 67, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Vila Dominguez, A.; Ayerbe Algaba, R.; Miro Canturri, A.; Rodriguez Villodres, A.; Smani, Y. Antibacterial Activity of Colloidal Silver against Gram-Negative and Gram-Positive Bacteria. Antibiotics 2020, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Barras, F.; Aussel, L.; Ezraty, B. Silver and Antibiotic, New Facts to an Old Story. Antibiotics 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Ooi, M.L.; Richter, K.; Bennett, C.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.J. Topical Colloidal Silver for the Treatment of Recalcitrant Chronic Rhinosinusitis. Front. Microbiol. 2018, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.R.; Krishnan, R.; Rotenberg, B.W.; Sowerby, L.J. The effectiveness of topical colloidal silver in recalcitrant chronic rhinosinusitis: A randomized crossover control trial. J. Otolaryngol. Head Neck Surg. 2017, 46, 64. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Tang, X.; Wei, J.; Dai, F.; Sun, G. Xylitol nasal irrigation in the treatment of chronic rhinosinusitis. Am. J. Otolaryngol. 2017, 38, 383–389. [Google Scholar] [CrossRef]
- Ahuja, V.; Macho, M.; Ewe, D.; Singh, M.; Saha, S.; Saurav, K. Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods 2020, 9, 1592. [Google Scholar] [CrossRef]
- Rabago, D.; Kille, T.; Mundt, M.; Obasi, C. Results of a RCT assessing saline and xylitol nasal irrigation for CRS and fatigue in Gulf War illness. Laryngoscope Investig. Otolaryngol. 2020, 5, 613–620. [Google Scholar] [CrossRef]
- Zabner, J.; Seiler, M.P.; Launspach, J.L.; Karp, P.H.; Kearney, W.R.; Look, D.C.; Smith, J.J.; Welsh, M.J. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc. Natl. Acad. Sci. USA 2000, 97, 11614–11619. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Lee, T.; Hardcastle, T.; Biswas, K.; Radcliff, F.; Douglas, R. The in vitro effect of xylitol on chronic rhinosinusitis biofilms. Rhinology 2016, 54, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Turnbull, L.; Burke, C.M.; Liu, M.; Carter, D.A.; Schlothauer, R.C.; Whitchurch, C.B.; Harry, E.J. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2014, 2, e326. [Google Scholar] [CrossRef] [Green Version]
- Majtan, J.; Bohova, J.; Horniackova, M.; Klaudiny, J.; Majtan, V. Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytother. Res. 2014, 28, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Niaz, K.; Maqbool, F.; Bahadar, H.; Abdollahi, M. Health Benefits of Manuka Honey as an Essential Constituent for Tissue Regeneration. Curr. Drug Metab. 2017, 18, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.S.; Humphreys, I.M.; Purcell, P.L.; Davis, G.E. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis: A randomized controlled trial. Int. Forum Allergy Rhinol. 2017, 7, 365–372. [Google Scholar] [CrossRef]
- Ooi, M.L.; Jothin, A.; Bennett, C.; Ooi, E.H.; Vreugde, S.; Psaltis, A.J.; Wormald, P.J. Manuka honey sinus irrigations in recalcitrant chronic rhinosinusitis: Phase 1 randomized, single-blinded, placebo-controlled trial. Int. Forum Allergy Rhinol. 2019, 9, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Cai, F.; Huang, S.; Zhu, X.; Geng, J.; Liu, J.; Lv, L.; Zhang, Y.; Zhao, Y. Assessment of three types of intranasal nebulization devices in three-dimensional printed models and volunteers: A pilot study. Int. Forum Allergy Rhinol. 2020, 10. [Google Scholar] [CrossRef]
- Rudman, K.L.; O’Brien, E.K.; Leopold, D.A. Radiographic distribution of drops and sprays within the sinonasal cavities. Am. J. Rhinol. Allergy 2011, 25, 94–97. [Google Scholar] [CrossRef]
- Merkus, P.; Ebbens, F.A.; Muller, B.; Fokkens, W.J. Influence of anatomy and head position on intranasal drug deposition. Eur. Arch. Otorhinolaryngol. Head Neck 2006, 263, 827–832. [Google Scholar] [CrossRef]
- Mori, E.; Merkonidis, C.; Cuevas, M.; Gudziol, V.; Matsuwaki, Y.; Hummel, T. The administration of nasal drops in the Kaiteki position allows for delivery of the drug to the olfactory cleft: A pilot study in healthy subjects. Eur. Arch. Otorhinolaryngol. 2016, 273, 939–943. [Google Scholar] [CrossRef]
- Trabut, S.; Friedrich, H.; Caversaccio, M.; Negoias, S. Challenges in topical therapy of chronic rhinosinusitis: The case of nasal drops application–A systematic review. Auris Nasus Larynx 2020, 47, 536–543. [Google Scholar] [CrossRef]
- Aremu, S.K.; Orewole, T.O. Topical Management of chronic rhinosinusitis—A literature review. Adv. Treat. Ent. Disord. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Aukema, A.A.; Mulder, P.G.; Fokkens, W.J. Treatment of nasal polyposis and chronic rhinosinusitis with fluticasone propionate nasal drops reduces need for sinus surgery. J. Allergy Clin. Immunol. 2005, 115, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Stokken, J.K. Saline Irrigation and Topical Nasal Steroids. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 880. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Esposito, S. Nasal Irrigation: An Imprecisely Defined Medical Procedure. Int. J. Environ. Res. Public Health 2017, 14, 516. [Google Scholar] [CrossRef]
- Campos, J.; Heppt, W.; Weber, R. Nasal douches for diseases of the nose and the paranasal sinuses—A comparative in vitro investigation. Eur. Arch. Otorhinolaryngol. 2013, 270, 2891–2899. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.W.; Harvey, R.J.; Rudmik, L.; Hwang, P.H.; Schlosser, R.J. Distribution of topical agents to the paranasal sinuses: An evidence-based review with recommendations. Int. Forum Allergy Rhinol. 2013, 3, 691–703. [Google Scholar] [CrossRef]
- Orlandi, R.R.; Kingdom, T.T.; Hwang, P.H. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis Executive Summary. Int. Forum Allergy Rhinol. 2016, 6, S3–S21. [Google Scholar] [CrossRef]
- Piromchai, P.; Puvatanond, C.; Kirtsreesakul, V.; Chaiyasate, S.; Suwanwech, T. A multicenter survey on the effectiveness of nasal irrigation devices in rhinosinusitis patients. Laryngoscope Investig. Otolaryngol. 2020, 5, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Kanjanawasee, D.; Seresirikachorn, K.; Chitsuthipakorn, W.; Snidvongs, K. Hypertonic Saline Versus Isotonic Saline Nasal Irrigation: Systematic Review and Meta-analysis. Am. J. Rhinol. Allergy 2018, 32, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Hamilton, C.; Samuelson, C.G.; Maley, A.; Wilson, M.N.; Venkatesan, T.K.; Joseph, N.J. Dead Sea salt irrigations vs saline irrigations with nasal steroids for symptomatic treatment of chronic rhinosinusitis: A randomized, prospective double-blind study. Int. Forum Allergy Rhinol. 2012, 2, 252–257. [Google Scholar] [CrossRef]
- Lam, K.; Tan, B.K.; Lavin, J.M.; Meen, E.; Conley, D.B. Comparison of nasal sprays and irrigations in the delivery of topical agents to the olfactory mucosa. Laryngoscope 2013, 123, 2950–2957. [Google Scholar] [CrossRef]
- Shrestha, K.; Van Strien, J.; Singh, N.; Inthavong, K. Primary break-up and atomization characteristics of a nasal spray. PLoS ONE 2020, 15, e0236063. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, T.R.; Rapiejko, P.; Sova, J.; Dobrowolska, K. Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model. Int. J. Pharm. 2020, 574, 118911. [Google Scholar] [CrossRef] [PubMed]
- Djupesland, P.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res. 2013, 3, 42–62. [Google Scholar] [CrossRef] [Green Version]
- Alnasser, S. A Review on Nasal Drug Delivery System and Its Contribution in Therapeutic Management. Asian J. Pharm. Clin. Res. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Laube, B.L. Devices for aerosol delivery to treat sinusitis. J. Aerosol Med. 2007, 20, S5–S17. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Holmes, T.D.; Gao, J.; Guilmette, R.A.; Li, S.; Surakitbanharn, Y.; Rowlings, C. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J. Aerosol Med. 2001, 14, 267–280. [Google Scholar] [CrossRef]
- Guo, Y.; Laube, B.; Dalby, R. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm. Res. 2005, 22, 1871–1878. [Google Scholar] [CrossRef]
- Foo, M.Y.; Cheng, Y.S.; Su, W.C.; Donovan, M.D. The influence of spray properties on intranasal deposition. J. Aerosol Med. 2007, 20, 495–508. [Google Scholar] [CrossRef]
- Foo, M.Y.; Sawant, N.; Overholtzer, E.; Donovan, M.D. A Simplified Geometric Model to Predict Nasal Spray Deposition in Children and Adults. AAPS PharmSciTech 2018, 19, 2767–2777. [Google Scholar] [CrossRef]
- Calmet, H.; Inthavong, K.; Eguzkitza, B.; Lehmkuhl, O.; Houzeaux, G.; Vázquez, M. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS ONE 2019, 14, e0221330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soudry, E.; Wang, J.; Vaezeafshar, R.; Katznelson, L.; Hwang, P.H. Safety analysis of long-term budesonide nasal irrigations in patients with chronic rhinosinusitis post endoscopic sinus surgery. Int. Forum Allergy Rhinol. 2016, 6, 568–572. [Google Scholar] [CrossRef]
- Hong, S.N.; Kim, D.Y. What is the Optimal Method for Steroid Delivery in the Treatment of Chronic Rhinosinusitis with Nasal Polyps? Allergy Asthma Immunol. Res. 2019, 11, 443–445. [Google Scholar] [CrossRef]
- Bosnic-Anticevich, S.; Costa, E.; Menditto, E.; Lourenco, O.; Novellino, E.; Bialek, S.; Briedis, V.; Buonaiuto, R.; Chrystyn, H.; Cvetkovski, B.; et al. ARIA pharmacy 2018 Allergic rhinitis care pathways for community pharmacy: Airways ICPs initiative (European Innovation Partnership on Active and Healthy Ageing, DG Connect and DG Sante) POLLAR (Impact of Air Pollution on Asthma and Rhinitis) GARD Demonstration project. Allergy 2019, 74, 1219–1236. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, V.; Banigo, A.; McMurran, A.E.L.; Shakeel, M.; Ram, B. Does intranasal steroid spray technique affect side effects and compliance? Results of a patient survey. J. Laryngol. Otol. 2017, 131, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Guillerm, R.; Badre, R.; Flottes, L.; Riu, R.; Rey, A. A new method of aerosol penetration into the sinuses. Presse Med. 1959, 67, 1097–1098. [Google Scholar] [PubMed]
- Durand, M.; Le Guellec, S.; Pourchez, J.; Dubois, F.; Aubert, G.; Chantrel, G.; Vecellio, L.; Hupin, C.; De Gersem, R.; Reychler, G.; et al. Sonic aerosol therapy to target maxillary sinuses. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2012, 129, 244–250. [Google Scholar] [CrossRef]
- Durand, M.; Pourchez, J.; Aubert, G.; Le Guellec, S.; Navarro, L.; Forest, V.; Rusch, P.; Cottier, M. Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: New insights into the mechanisms involved. Int. J. Pharm. 2011, 421, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, Y.; Banglawala, S.M.; Chin, C.J.; Cote, D.W.J.; Dalgorf, D.; De Almeida, J.R.; Desrosiers, M.; Gall, R.M.; Gevorgyan, A.; Hassan, A.H.; et al. Consensus document for prescription of nebulization in rhinology. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2014, 131, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Reychler, G.; Colbrant, C.; Huart, C.; Le Guellec, S.; Vecellio, L.; Liistro, G.; Rombaux, P. Effect of three-drug delivery modalities on olfactory function in chronic sinusitis. Laryngoscope 2015, 125, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, M.; Bhatti, S.F.M.; Van Ham, L.; Platt, S.; Jeffery, N.D.; Tipold, A.; Siedenburg, J.; Volk, H.A.; Hasegawa, D.; Gallucci, A.; et al. Intranasal Midazolam versus Rectal Diazepam for the Management of Canine Status Epilepticus: A Multicenter Randomized Parallel-Group Clinical Trial. J. Vet. Intern. Med. 2017, 31, 1149–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, L.C.; Arvin, B.; Zulkiflee, A.B.; Prepageran, N. Lidocaine/Phenylephrine Nasal Spray versus Nebulization Prior to Nasoendoscopy: A Randomized Controlled Trial. Otolaryngol. Head Neck Surg. 2018, 159, 783–788. [Google Scholar] [CrossRef]
- Kanowitz, S.J.; Batra, P.S.; Citardi, M.J. Topical budesonide via mucosal atomization device in refractory postoperative chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 2008, 139, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Manji, J.; Singh, G.; Okpaleke, C.; Dadgostar, A.; Al-Asousi, F.; Amanian, A.; Macias-Valle, L.; Finkelstein, A.; Tacey, M.; Thamboo, A.; et al. Safety of long-term intranasal budesonide delivered via the mucosal atomization device for chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2017, 7, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Moffa, A.; Costantino, A.; Rinaldi, V.; Sabatino, L.; Trecca, E.M.C.; Baptista, P.; Campisi, P.; Cassano, M.; Casale, M. Nasal Delivery Devices: A Comparative Study on Cadaver Model. Biomed. Res. Int. 2019, 2019, 4602651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, A.R.; Thamboo, A.; Manji, J.; Dar Santos, R.C.; Gan, E.C.; Anstead, A.; Javer, A.R. The effect of head position on the distribution of topical nasal medication using the Mucosal Atomization Device: A cadaver study. Int. Forum Allergy Rhinol. 2013, 3, 958–962. [Google Scholar] [CrossRef]
- Varshney, R.; Lee, J.T. Current trends in topical therapies for chronic rhinosinusitis: Update and literature review. Expert Opin. Drug Deliv. 2017, 14, 257–271. [Google Scholar] [CrossRef]
- Rudmik, L.; Mace, J.; Mechor, B. Effect of a dexamethasone Sinu-Foam™ middle meatal spacer on endoscopic sinus surgery outcomes: A randomized, double-blind, placebo-controlled trial. Int. Forum Allergy Rhinol. 2012, 2, 248–251. [Google Scholar] [CrossRef]
- Lelegren, M.J.; Bloch, R.A.; Lam, K.K. Intraoperative Applications of Topical Corticosteroid Therapy for Chronic Rhinosinusitis. Ear Nose Throat J. 2020. [Google Scholar] [CrossRef]
- Adriaensen, G.; Lim, K.H.; Fokkens, W.J. Safety and efficacy of a bioabsorbable fluticasone propionate-eluting sinus dressing in postoperative management of endoscopic sinus surgery: A randomized clinical trial. Int. Forum Allergy Rhinol. 2017, 7, 813–820. [Google Scholar] [CrossRef]
- Côté, D.W.; Wright, E.D. Triamcinolone-impregnated nasal dressing following endoscopic sinus surgery: A randomized, double-blind, placebo-controlled study. Laryngoscope 2010, 120, 1269–1273. [Google Scholar] [CrossRef]
- Rawl, J.W.; McQuitty, R.A.; Khan, M.H.; Reichert, L.K.; Kuo, Y.F.; Chaaban, M.R. Comparison of steroid-releasing stents vs. nonabsorbable packing as middle meatal spacers. Int. Forum Allergy Rhinol. 2020, 10, 328–333. [Google Scholar] [CrossRef]
- Han, J.K.; Kern, R.C. Topical therapies for management of chronic rhinosinusitis: Steroid implants. Int. Forum Allergy Rhinol. 2019, 9, S22–S26. [Google Scholar] [CrossRef] [Green Version]
- Goshtasbi, K.; Abouzari, M.; Abiri, A.; Yasaka, T.; Sahyouni, R.; Bitner, B.; Tajudeen, B.A.; Kuan, E.C. Efficacy of steroid-eluting stents in management of chronic rhinosinusitis after endoscopic sinus surgery: Updated meta-analysis. Int. Forum Allergy Rhinol. 2019, 9, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Matheny, K.E. Bioabsorbable steroid-releasing sinus implants in the frontal and maxillary sinuses: 2-year follow-up. Allergy Rhinol. 2015, 6, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Luong, A.; Ow, R.A.; Singh, A.; Weiss, R.L.; Han, J.K.; Gerencer, R.; Stolovitzky, J.P.; Stambaugh, J.W.; Raman, A. Safety and Effectiveness of a Bioabsorbable Steroid-Releasing Implant for the Paranasal Sinus Ostia: A Randomized Clinical Trial. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.L.; Singh, A.; Luong, A.; Ow, R.A.; Shotts, S.D.; Sautter, N.B.; Han, J.K.; Stambaugh, J.; Raman, A. Randomized controlled trial of a bioabsorbable steroid-releasing implant in the frontal sinus opening. Laryngoscope 2016, 126, 2659–2664. [Google Scholar] [CrossRef]
- Lee, J.T.; Han, J.K. Sinus implants for chronic rhinosinusitis: Technology evaluation. Expert Opin. Drug Deliv. 2013, 10, 1735–1748. [Google Scholar] [CrossRef]
- Shen, J.; Welch, K.; Kern, R. Mometasone furoate sinus implant–A new targeted approach to treating recurrent nasal polyp disease. Expert Rev. Clin. Pharm. 2018, 11, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Han, J.K.; Forwith, K.D.; Smith, T.L.; Kern, R.C.; Brown, W.J.; Miller, S.K.; Ow, R.A.; Poetker, D.M.; Karanfilov, B.; Matheny, K.E.; et al. Resolve: A randomized, controlled, blinded study of bioabsorbable steroid-eluting sinus implants for in-office treatment of recurrent sinonasal polyposis. Int. Forum Allergy Rhinol. 2014, 4, 861–870. [Google Scholar] [CrossRef]
- Kern, R.C.; Stolovitzky, J.P.; Silvers, S.L.; Singh, A.; Lee, J.T.; Yen, D.M.; Iloreta, A.M.C., Jr.; Langford, F.P.J.; Karanfilov, B.; Matheny, K.E.; et al. A phase 3 trial of mometasone furoate sinus implants for chronic sinusitis with recurrent nasal polyps. Int. Forum Allergy Rhinol. 2018, 8, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Forwith, K.D.; Han, J.K.; Stolovitzky, J.P.; Yen, D.M.; Chandra, R.K.; Karanfilov, B.; Matheny, K.E.; Stambaugh, J.W.; Gawlicka, A.K. Resolve: Bioabsorbable steroid-eluting sinus implants for in-office treatment of recurrent sinonasal polyposis after sinus surgery: 6-month outcomes from a randomized, controlled, blinded study. Int. Forum Allergy Rhinol. 2016, 6, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Yoo, H.S. The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar. Drugs 2020, 18, 605. [Google Scholar] [CrossRef]
- Perez-Gonzalez, G.L.; Villarreal-Gomez, L.J.; Serrano-Medina, A.; Torres-Martinez, E.J.; Cornejo-Bravo, J.M. Mucoadhesive electrospun nanofibers for drug delivery systems: Applications of polymers and the parameters roles. Int. J. Nanomed. 2019, 14, 5271–5285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.C.H.; Park, Y.S.; Kim, H.; Zhang, M.; Moon, C.; Huang, Y. Cell-Penetrating Peptide-Mediated Topical Delivery of Biomacromolecular Drugs. Curr. Pharm. Biotechnol. 2014, 15, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Vert, M.; Doi, Y.; Hellwich, K.-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Swider, E.; Koshkina, O.; Tel, J.; Cruz, L.J.; De Vries, I.J.M.; Srinivas, M. Customizing poly (lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater. 2018, 73, 38–51. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, H.; Bao, G. Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano 2015, 9, 8655–8671. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Li, Y.; Du, J.; Wang, S.; Zheng, J.; Yang, Q.; Chen, X. One-pot synthesis of polyacrylamide-gold nanocomposite. Mat. Chem. Phys. 2007, 106, 412–415. [Google Scholar] [CrossRef]
- Turos, E.; Shim, J.Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett. 2007, 17, 53–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renu, S.; Renukaradhya, G.J. Chitosan Nanoparticle Based Mucosal Vaccines Delivered Against Infectious Diseases of Poultry and Pigs. Front. Bioeng. Biotechnol. 2020, 8, 558349. [Google Scholar] [CrossRef]
- Hiroi, T.; Iwatani, K.; Iijima, H.; Kodama, S.; Yanagita, M.; Kiyono, H. Nasal immune system: Distinctive Th0 and Th1/Th2 type environments in murine nasal-associated lymphoid tissues and nasal passage, respectively. Eur. J. Immunol. 1998, 28, 3346–3353. [Google Scholar] [CrossRef]
- Brandtzaeg, P. Secretory IgA: Designed for Anti-Microbial Defense. Front. Immunol. 2013, 4, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, S.K.; O’Hanlon, D.E.; Harrold, S.; Man, S.T.; Wang, Y.Y.; Cone, R.; Hanes, J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA 2007, 104, 1482–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006, 116, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Braverman, I.; Haick, H. Breath volatolomics for diagnosing chronic rhinosinusitis. Int. J. Nanomed. 2018, 13, 4661–4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Far, J.; Abdel-Haq, M.; Gruber, M.; Abu Ammar, A. Developing Biodegradable Nanoparticles Loaded with Mometasone Furoate for Potential Nasal Drug Delivery. ACS Omega 2020, 5, 7432–7439. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.M.; Wang, X.; Marin-Muller, C.; Wang, H.; Lin, P.H.; Yao, Q.; Chen, C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 2009, 9, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Y.; Dong, D.; Li, X.; Li, Z.; Li, S.; Wang, J. Effects of isosorbide mononitrate loaded nanoparticles conjugated with anti-Staphylococcus aureus α-toxin on Staphylococcus aureus biofilms. Exp. Ther. Med. 2020, 19, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.K.; Suk, J.S.; Pace, A.; Wang, Y.Y.; Yang, M.; Mert, O.; Chen, J.; Kim, J.; Hanes, J. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 2011, 32, 6285–6290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshweiat, A.; Ambrus, R.; Csoka, I. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr. Med. Chem. 2019, 26, 6459–6492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Khajavi, R.; Abbasipour, M.; Bahador, A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Torres-Martinez, E.J.; Cornejo Bravo, J.M.; Serrano Medina, A.; Perez Gonzalez, G.L.; Villarreal Gomez, L.J. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018, 15, 1360–1374. [Google Scholar] [CrossRef]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.F.; Liu, F.; Brown, M.B. Advances in oral transmucosal drug delivery. J. Control. Release 2011, 153, 106–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattar, M.; Sayed, O.M.; Lane, M.E. Oral transmucosal drug delivery--current status and future prospects. Int. J. Pharm. 2014, 471, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Sofi, H.S.; Abdal-Hay, A.; Ivanovski, S.; Zhang, Y.S.; Sheikh, F.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mat. Sci. Eng. C Mat. Biol. Appl. 2020, 111, 110756. [Google Scholar] [CrossRef]
- Cagil, E.M.; Hameed, O.; Ozcan, F. Production of a new platform based calixarene nanofiber for controlled release of the drugs. Mat. Sci. Eng. C Mat. Biol. Appl. 2019, 100, 466–474. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Ong, H.X.; Bradbury, P.; Kourmatzis, A.; Traini, D.; Young, P.; Li, M.; Cheng, S. Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opin. Drug Deliv. 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/33410717/ (accessed on 1 January 2021). [CrossRef]
- Raucher, D.; Ryu, J.S. Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol. Med. 2015, 21, 560–570. [Google Scholar] [CrossRef]
- Guidotti, G.; Brambilla, L.; Rossi, D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharm. Sci. 2017, 38, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Peng, H.; Kang, J.; Sun, D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed. Rep. 2016, 4, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinca, A.; Chien, W.M.; Chin, M.T. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. Int. J. Mol. Sci. 2016, 17, 263. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Chen, C.; Qin, J.; Liu, Q.; Wang, Q.; Xu, X.; Wang, J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv. 2017, 24, 752–764. [Google Scholar] [CrossRef] [Green Version]
- Kurrikoff, K.; Veiman, K.L.; Kunnapuu, K.; Peets, E.M.; Lehto, T.; Parnaste, L.; Arukuusk, P.; Langel, U. Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid-modified cell penetrating peptide. Sci. Rep. 2017, 7, 17056. [Google Scholar] [CrossRef]
- Silva, S.; Almeida, A.J.; Vale, N. Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review. Biomolecules 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Hwang, S.; Khalmuratova, R.; Kang, S.; Lee, M.; Song, Y.; Park, J.W.; Yu, J.; Shin, H.W.; Lee, Y. Alpha-Helical cell-penetrating peptide-mediated nasal delivery of resveratrol for inhibition of epithelial-to-mesenchymal transition. J. Control. Release 2020, 317, 181–194. [Google Scholar] [CrossRef]
Classification | Compounds |
---|---|
Saline | Isotonic saline (0.9%), Hypertonic saline (>0.9%), Hypotonic saline (<0.9%) Ringer-Lactate solution Isotonic/Hypertonic seawater |
Corticosteroid | 1st generation: beclomethasone dipropionate, flunisolide, budesonide, triamcinolone 2nd generation: fluticasone furoate, fluticasone propionate, ciclesonide, MF, betamethasone sodium phosphate |
Antibiotics | Carboxylic acid: mupirocin Glycopeptide: vancomycin Aminoglycoside: neomycin, tobramycin, gentamicin Fluoroquinolone: levofloxacin Cephalosporin: ceftazidime, ceftriaxone |
Antifungals | Amphotericin B, Fluconazole |
Decongestants | Oxymetazoline, Xylometazoline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, J.; Lee, K.; Kim, T.H. Current Perspective on Nasal Delivery Systems for Chronic Rhinosinusitis. Pharmaceutics 2021, 13, 246. https://doi.org/10.3390/pharmaceutics13020246
Tai J, Lee K, Kim TH. Current Perspective on Nasal Delivery Systems for Chronic Rhinosinusitis. Pharmaceutics. 2021; 13(2):246. https://doi.org/10.3390/pharmaceutics13020246
Chicago/Turabian StyleTai, Junhu, Kijeong Lee, and Tae Hoon Kim. 2021. "Current Perspective on Nasal Delivery Systems for Chronic Rhinosinusitis" Pharmaceutics 13, no. 2: 246. https://doi.org/10.3390/pharmaceutics13020246
APA StyleTai, J., Lee, K., & Kim, T. H. (2021). Current Perspective on Nasal Delivery Systems for Chronic Rhinosinusitis. Pharmaceutics, 13(2), 246. https://doi.org/10.3390/pharmaceutics13020246