The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibiotics
2.2. Analgesic Drugs
2.3. Antidepressants
2.4. Anticoagulant Drugs
2.5. Immunosuppressants
2.6. Thyroid Hormones
2.7. Antidiabetic Drugs
2.8. Loop Diuretics
2.9. Proton-Pump Inhibitors
2.10. Vitamins
2.11. Mineral Elements
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLachlan, L.A.; Chaar, B.B.; Um, I.S. Pharmacokinetic changes post–bariatric surgery: A scoping review. Obes. Rev. 2020, 21, e12988. [Google Scholar] [CrossRef]
- Tarnowski, W.; Jaworski, P. Bariatric operations in clinical practice. Gastroenterol. Klin. 2018, 10, 93–101. [Google Scholar]
- Ivezaj, V.; Benoit, S.C.; Davis, J.; Engel, S.; Lloret-Linares, C.; Mitchell, J.E.; Pepino, M.Y.; Rogers, A.M.; Steffen, K.; Sogg, S. Changes in Alcohol Use after Metabolic and Bariatric Surgery: Predictors and Mechanisms. Curr. Psychiatry Rep. 2019, 21, 85. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.B.S.; De Nucci, G.; Lemos, F.N.; de Albuquerque Lima Babadopulos, R.F.; Rohleder, A.V.P.; Fechine, F.V.; Antunes, N.J.; Mendes, G.D.; do Nascimento, D.F.; de Moraes, M.O.; et al. Impact of Bariatric Surgery on the Pharmacokinetics Parameters of Amoxicillin. Obes. Surg. 2019, 29, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Leven, C.; Hoffmann, C.; Roche, C.; Couturaud, F.; Thereaux, J.; Lacut, K. Impact of bariatric surgery on oral anticoagulants pharmacology, and consequences for clinical practice: A narrative review. Fundam. Clin. Pharmacol. 2020, 35, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Porażka, J.; Karbownik, A.; Murawa, D.; Spychała, A.; Firlej, M.; Grabowski, T.; Murawa, P.; Grześkowiak, E.; Szałek, E. The pharmacokinetics of oral ketoprofen in patients after gastric resection. Pharmacol. Rep. 2017, 69, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Candi, E.; Tesauro, M.; Cardillo, C.; Di Daniele, N.; Melino, G. Metabolic profiling of visceral adipose tissue from obese subjects with or without metabolic syndrome. Biochem. J. 2018, 475, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.M.; Ferreira, G.; Duarte, H. Metabolic Activity in the Visceral and Subcutaneous Adipose Tissues by FDG-PET/CT in Obese Patients. Acta Med. Port. 2017, 30, 813. [Google Scholar] [CrossRef] [Green Version]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardo, M.; Bellia, A.; Mattiuzzo, F.; Franchi, A.; Ferri, C.; Elvira, P.; Guglielmi, V.; D’Adamo, M.; Giuseppe, A.; Gentileschi, P.; et al. Frequent Follow-Up Visits Reduce Weight Regain in Long-Term Management After Bariatric Surgery. Bariatr. Surg. Pr. Patient Care 2015, 10, 119–125. [Google Scholar] [CrossRef]
- Stoklossa, C.J.; Atwal, S. Nutrition Care for Patients with Weight Regain after Bariatric Surgery. Gastroenterol. Res. Pr. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bellia, A.; Marinoni, G.; D’Adamo, M.; Guglielmi, V.; Lombardo, M.; Donadel, G.; Gentileschi, P.; Lauro, D.; Federici, M.; Lauro, R.; et al. Parathyroid Hormone and Insulin Resistance in Distinct Phenotypes of Severe Obesity: A Cross-Sectional Analysis in Middle-Aged Men and Premenopausal Women. J. Clin. Endocrinol. Metab. 2012, 97, 4724–4732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeles, P.C.; Robertsen, I.; Seeberg, L.T.; Krogstad, V.; Skattebu, J.; Sandbu, R.; Åsberg, A.; Hjelmesaeth, J. The influence of bariatric surgery on oral drug bioavailability in patients with obesity: A systematic review. Obes. Rev. 2019, 20, 1299–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.-S.; Ryu, K.W.; Lee, J.H.; Kim, Y.W.; Choi, J.I.; Kim, M.-J.; Park, Y.-I.; Hwang, A.; Park, S.R. Postgastrectomy pharmacokinetic changes of S-1 in patients with localized advanced gastric cancer. J. Clin. Pharmacol. 2015, 55, 926–935. [Google Scholar] [CrossRef]
- Nomura, E.; Kayano, H.; Machida, T.; Uda, S.; Nabeshima, K.; Nakamura, K.; Lee, S.-W.; Kawai, M.; Izumi, H.; Yamamoto, S.; et al. Functional Evaluation for Various Methods of Gastrectomy and Reconstruction for Gastric Cancer. Tokai J. Exp. Clin. Med. 2019, 44, 108–112. [Google Scholar]
- Stange, D.E.; Weitz, J. Methods of Reconstruction—BI, BII, Roux-en-Y, Jejunal Interposition, Proximal Gastrectomy and Pouch Reconstruction. In Gastric Cancer; Strong, V., Ed.; Springer: Cham, Switzerland, 2015; pp. 175–183. [Google Scholar]
- Porat, D.; Markovic, M.; Zur, M.; Fine-Shamir, N.; Azran, C.; Shaked, G.; Czeiger, D.; Vaynshtein, J.; Replyanski, I.; Sebbag, G.; et al. Increased Paracetamol Bioavailability after Sleeve Gastrectomy: A Crossover Pre- vs. Post-Operative Clinical Trial. J. Clin. Med. 2019, 8, 1949. [Google Scholar] [CrossRef] [Green Version]
- Szałek, E.; Murawa, D.; Grześkowiak, E.; Kamińska, A.; Połom, K. Pharmacokinetic changes of orally administered drugs in patients after gastrectomy. Anestezjol. Ratow. 2008, 2, 448–453. [Google Scholar]
- EuroSurg Collaborative Body mass index and complications following major gastrointestinal surgery: A prospective, international cohort study and meta-analysis. Color. Dis. 2018, 20, O215–O225. [CrossRef] [Green Version]
- Barr, W.H.; Zola, E.M.; Candler, E.L.; Hwang, S.-M.; Tendolkar, A.V.; Shamburek, R.; Parker, B.; Hilty, M.D. Differential absorption of amoxicillin from the human small and large intestine. Clin. Pharmacol. Ther. 1994, 56, 279–285. [Google Scholar] [CrossRef]
- de Velde, F.; de Winter, B.C.M.; Koch, B.C.P.; van Gelder, T.; Mouton, J.W.; COMBACTE-NET consortium. Non-linear absorption pharmacokinetics of amoxicillin: Consequences for dosing regimens and clinical breakpoints. J. Antimicrob. Chemother. 2016, 71, 2909–2917. [Google Scholar] [CrossRef] [Green Version]
- Mellon, G.; Hammas, K.; Burdet, C.; Duval, X.; Carette, C.; El-Helali, N.; Massias, L.; Mentré, F.; Czernichow, S.; Crémieux, A.-C. Population pharmacokinetics and dosing simulations of amoxicillin in obese adults receiving co-amoxiclav. J. Antimicrob. Chemother. 2020, 75, 3611–3618. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.L.P.P.D.P.; Montanha, M.C.; Alcantara, C.D.S.; Silva, S.R.B.; Kuroda, C.M.; Yamada, S.S.; Nicacio, A.E.; Maldaner, L.; Visentainer, J.V.; Simões, C.F.; et al. Pharmacokinetics of amoxicillin in obese and nonobese subjects. Br. J. Clin. Pharmacol. 2021, 87, 3227–3233. [Google Scholar] [CrossRef] [PubMed]
- Montanha, M.C.; Magon, T.F.D.S.; Alcantara, C.D.S.; Simões, C.F.; Bin Silva, S.R.; Kuroda, C.M.; Yamada, S.S.; De Oliveira, L.E.S.; Nasser, D.; Junior, N.N.; et al. Reduced bioavailability of oral amoxicillin tablets compared to suspensions in Roux-en-Y gastric bypass bariatric subjects. Br. J. Clin. Pharmacol. 2019, 85, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Neu, H.C. Clinical microbiology of azithromycin. Am. J. Med. 1991, 91, S12–S18. [Google Scholar] [CrossRef]
- Luke, D.R.; Foulds, G. Disposition of oral azithromycin in humans. Clin. Pharmacol. Ther. 1997, 61, 641–648. [Google Scholar] [CrossRef]
- Padwal, R.; Ben-Eltriki, M.; Wang, X.; Langkaas, L.-A.; Sharma, A.M.; Birch, D.W.; Karmali, S.; Brocks, D.R. Effect of gastric bypass surgery on azithromycin oral bioavailability. J. Antimicrob. Chemother. 2012, 67, 2203–2206. [Google Scholar] [CrossRef] [Green Version]
- Terp, D.K.; Rybak, M.J. Ciprofloxacin. Drug. Intell. Clin. Pharm. 1987, 21, 568–574. [Google Scholar] [CrossRef]
- Szałek, E.; Tomczak, H.; Smuszkiewicz, P.; Kamińska, A.; Grześkowiak, E.; Skóra, M. Basic PK/PD parameters used in antimicrobial therapy. Anestezjol. Ratow. 2009, 3, 88–93. [Google Scholar]
- Rivas, A.B.; Lopez-Picado, A.; Salas-Butrón, M.d.R.; Terleira, A.; Sanchez Pernaute, A.; Torres Garcia, A.J.; Moreno Lopera, C.; Chicharro, L.M.; Bandrés, F.; Rubio Herrera, M.A.; et al. Effect of Roux-en-Y gastric surgery on ciprofloxacin pharmacokinetics: An obvious effect? Eur. J. Clin. Pharmacol. 2019, 75, 647–654. [Google Scholar] [CrossRef]
- Sharma, C.V.; Mehta, V. Paracetamol: Mechanisms and updates. Contin. Educ. Anaesth. Crit. Care Pain. 2014, 14, 153–158. [Google Scholar] [CrossRef]
- Marcotte, J.H.; Patel, K.M.; Gaughan, J.P.; Dy, J.; Kwiatt, M.E.; McClane, S.J.; Desai, R.G. Oral Versus Intravenous Aceta-minphen within an Enhanced Recovery after Surgery Protocol in Colorectal Surgery. Pain Physician. 2020, 23, 57–64. [Google Scholar] [CrossRef]
- van Rongen, A.; Välitalo, P.A.J.; Peeters, M.Y.M.; Boerma, D.; Huisman, F.W.; van Ramshorst, B.; van Dongen, E.P.A.; van den Anker, J.N.; Knibbe, C.A.J. Morbidly Obese Patients Exhibit Increased CYP2E1-Mediated Oxidation of Acetaminophen. Clin. Pharmacokinet. 2016, 55, 833–847. [Google Scholar] [CrossRef] [Green Version]
- Szałek, E.; Kamińska, A.; Murawa, D.; Połom, K.; Urbaniak, B.; Sobiech, M.; Grześkowiak, E.; Grabowski, T.; Wolc, A.; Kokot, Z.J.; et al. Comparison of the pharmacokinetics of paracetamol from two generic products in patients after total gastric resection. Pharmacol. Rep. 2011, 63, 1518–1525. [Google Scholar] [CrossRef]
- Szałek, E.; Karbownik, A.; Murawa, D.; Połom, K.; Urbaniak, B.; Grabowski, T.; Wolc, A.; Więckiewicz, A.; Grześkowiak, E.; Kokot, Z.J.; et al. The pharmacokinetics of the effervescent vs. conventional tramadol/paracetamol fixed-dose combination tablet in patients after total gastric resection. Pharmacol. Rep. 2014, 66, 159–164. [Google Scholar] [CrossRef]
- Shipton, E.A. Tramadol--present and future. Anaesth. Intensive Care. 2000, 28, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Sverrisdóttir, E.; Lund, T.M.; Olesen, A.E.; Drewes, A.M.; Christrup, L.L.; Kreilgaard, M. A review of morphine and morphine-6-glucuronide’s pharmacokinetic-pharmacodynamic relationships in experimental and clinical pain. Eur. J. Pharm. Sci. 2015, 74, 45–62. [Google Scholar] [CrossRef]
- Summary of Product Characteristics Sevredol 20mg. Available online: https://www.medicines.org.uk/emc/product/1020/smpc#gref (accessed on 31 August 2021).
- Lloret-Linares, C.; Hirt, D.; Bardin, C.; Bouillot, J.-L.; Oppert, J.-M.; Poitou, C.; Chast, F.; Mouly, S.; Scherrmann, J.-M.; Bergmann, J.-F.; et al. Effect of a Roux-en-Y Gastric Bypass on the Pharmacokinetics of Oral Morphine Using a Population Approach. Clin. Pharmacokinet. 2014, 53, 919–930. [Google Scholar] [CrossRef]
- Szałek, E.; Karbownik, A.; Murawa, D.; Połom, K.; Tezyk, A.; Gracz, J.; Grabowski, T.; Grześkowiak, E.; Biczysko-Murawa, A.; Murawa, P. The pharmacokinetics of oral oxycodone in patients after total gastric resection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3126–3133. [Google Scholar]
- Valtola, A.; Morse, J.D.; Florkiewicz, P.; Hautajärvi, H.; Lahtinen, P.; Musialowicz, T.; Anderson, B.J.; Ranta, V.-P.; Kokki, H. Bioavailability of oxycodone by mouth in coronary artery bypass surgery patients – A randomized trial. J. Drug Assess. 2020, 9, 117–128. [Google Scholar] [CrossRef]
- Marzinke, M.A.; Petrides, A.K.; Steele, K.; Schweitzer, M.A.; Magnuson, T.H.; Reinblatt, S.P.; Coughlin, J.W.; Clarke, W. Decreased Escitalopram Concentrations Post–Roux-en-Y Gastric Bypass Surgery. Ther. Drug Monit. 2015, 37, 408–412. [Google Scholar] [CrossRef]
- Roerig, J.L.; Steffen, K.; Zimmerman, C.; Mitchell, J.E.; Crosby, R.D.; Cao, L. Preliminary comparison of sertraline levels in postbariatric surgery patients versus matched nonsurgical cohort. Surg. Obes. Relat. Dis. 2012, 8, 62–66. [Google Scholar] [CrossRef]
- Saiz-Rodríguez, M.; Belmonte, C.; Román, M.; Ochoa, D.; Koller, D.; Talegón, M.; Ovejero-Benito, M.C.; López-Rodríguez, R.; Cabaleiro, T.; Abad-Santos, F. Effect of Polymorphisms on the Pharmacokinetics, Pharmacodynamics and Safety of Sertraline in Healthy Volunteers. Basic Clin. Pharmacol. Toxicol. 2017, 122, 501–511. [Google Scholar] [CrossRef]
- Roerig, J.L.; Steffen, K.J.; Zimmerman, C.; Mitchell, J.E.; Crosby, R.; Cao, L. A Comparison of Duloxetine Plasma Levels in Postbariatric Surgery Patients Versus Matched Nonsurgical Control Subjects. J. Clin. Psychopharmacol. 2013, 33, 479–484. [Google Scholar] [CrossRef]
- Aiyer, R.; Barkin, R.L.; Bhatia, A. Treatment of neuropathic pain with venlafaxine: A systematic review. Pain Med. 2017, 18, 1999–2012. [Google Scholar] [CrossRef]
- Krieger, C.A.; Cunningham, J.L.; Reid, J.M.; Langman, L.J.; Grothe, K.B.; Clark, M.M.; Dierkhising, R.A. Comparison of Bioavailability of Single-Dose Extended-Release Venlafaxine Capsules in Obese Patients Before and After Gastric Bypass Surgery. Pharmacotherapy 2017, 37, 1374–1382. [Google Scholar] [CrossRef]
- Vandenberghe, F.; Gilet, P.; Daali, Y.; Favre, L.; Eap, C.B. Bioavailability of Vortioxetine after a Roux-en-Y Gastric Bypass. Obes. Surg. 2021, 31, 1353–1356. [Google Scholar] [CrossRef]
- Kröll, D.; Stirnimann, G.; Vogt, A.; Lai, D.L.L.; Borbély, Y.M.; Altmeier, J.; Schädelin, S.; Candinas, D.; Alberio, L.; Nett, P.C. Pharmacokinetics and pharmacodynamics of single doses of rivaroxaban in obese patients prior to and after bariatric surgery. Br. J. Clin. Pharmacol. 2017, 83, 1466–1475. [Google Scholar] [CrossRef]
- Kröll, D.; Nett, P.C.; Borbély, Y.M.; Schädelin, S.; Calderara, D.B.; Alberio, L.; Stirnimann, G. The effect of bariatric surgery on the direct oral anticoagulant rivaroxaban: The extension study. Surg. Obes. Relat. Dis. 2018, 14, 1890–1896. [Google Scholar] [CrossRef]
- Blair, H.A.; Keating, G.M. Dabigatran Etexilate: A Review in Nonvalvular Atrial Fibrillation. Drugs 2017, 77, 331–344. [Google Scholar] [CrossRef]
- Grainger, B.; Holloway, R.; Merriman, E.; Booth, M.; Royle, G.; Babor, R.; Beban, G.; Young, L. Evidence of impaired dabigatran absorption following laparoscopic Roux-en-Y gastric bypass surgery: The Auckland regional experience (2011–2018). Br. J. Haematol. 2020, 191, e67–e69. [Google Scholar] [CrossRef]
- Rottenstreich, A.; Barkai, A.; Arad, A.; Raccah, B.H.; Kalish, Y. The effect of bariatric surgery on direct-acting oral anticoagulant drug levels. Thromb. Res. 2018, 163, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Byon, W.; Garonzik, S.; Boyd, R.A.; Frost, C.E. Apixaban: A Clinical Pharmacokinetic and Pharmacodynamic Review. Clin. Pharmacokinet. 2019, 58, 1265–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitar, Z.I.; Maadarani, O.S.; Mohsen, M.J.; Alkazemi, N.U. Bariatric Surgery can Lower the Efficacy of DOACs. Eur. J. Case Rep. Intern. Med. 2020, 7, 001954. [Google Scholar] [CrossRef] [PubMed]
- Steffen, K.J.; Wonderlich, J.; Erickson, A.L.; Strawsell, H.; Mitchell, J.E.; Crosby, R. Comparison of Warfarin Dosages and International Normalized Ratios Before and After Roux-en-Y Gastric Bypass Surgery. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 876–880. [Google Scholar] [CrossRef]
- Holt, C.D. Overview of Immunosuppressive Therapy in Solid Organ Transplantation. Anesthesiol. Clin. 2017, 35, 365–380. [Google Scholar] [CrossRef]
- Chen, L.; Liberatore, L.; Chin, T.; Walker, S.; Fanous, H.; Nash, M.M.; Rapi, L.; Huckle, J.; Zaltzman, J.S.; Prasad, G.V.R. The Impact of Total Gastrectomy on Pharmacokinetics in Kidney Transplant Immunosuppressive Drug Regimes: A Case Study. Transplantation 2017, 101, 2213–2217. [Google Scholar] [CrossRef]
- Diwan, T.S.; Lichvar, A.B.; Leino, A.D.; Vinks, A.A.; Christians, U.; Shields, A.R.; Cardi, M.A.; Fukuda, T.; Mizuno, T.; Kaiser, T.; et al. Pharmacokinetic and pharmacogenetic analysis of immunosuppressive agents after laparoscopic sleeve gastrectomy. Clin. Transplant. 2017, 31, e12975. [Google Scholar] [CrossRef]
- Patel, D.; Wairkar, S. Recent advances in cyclosporine drug delivery: Challenges and opportunities. Drug Deliv. Transl. Res. 2019, 9, 1067–1081. [Google Scholar] [CrossRef]
- Rogers, C.C.; Alloway, R.R.; Wesley Alexander, J.; Cardi, M.; Trofe, J.; Vinks, A.A. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: A pilot study. Clin. Transplant. 2008, 22, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Lamoureux, F.; Picard, N.; Boussera, B.; Sauvage, F.-L.; Marquet, P. Sirolimus and everolimus intestinal absorption and interaction with calcineurin inhibitors: A differential effect between cyclosporine and tacrolimus. Fundam. Clin. Pharmacol. 2012, 26, 463–472. [Google Scholar] [CrossRef]
- Chan, G.; Hajjar, R.; Boutin, L.; Garneau, P.Y.; Pichette, V.; Lafrance, J.; Elftouh, N.; Michaud, J.; Du Souich, P. Prospective study of the changes in pharmacokinetics of immunosuppressive medications after laparoscopic sleeve gastrectomy. Arab. Archaeol. Epigr. 2019, 20, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Tariciotti, L.; D’Ugo, S.; Manzia, T.M.; Tognoni, V.; Sica, G.; Gentileschi, P.; Tisone, G. Combined liver transplantation and sleeve gastrectomy for end-stage liver disease in a bariatric patient: First European case-report. Int. J. Surg. Case Rep. 2016, 28, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Gadiraju, S.; Lee, C.J.; Cooper, D.S. Levothyroxine Dosing Following Bariatric Surgery. Obes. Surg. 2016, 26, 2538–2542. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Bianciardi, E.; Ippoliti, S.; Nardella, J.; Fabi, F.; Gentileschi, P. Long-term effects of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass for the treatment of morbid obesity: A monocentric prospective study with minimum follow-up of 5 years. Updates Surg. 2017, 69, 101–107. [Google Scholar] [CrossRef]
- Padwal, R.S.; Gabr, R.Q.; Sharma, A.M.; Langkaas, L.A.; Birch, D.W.; Karmali, S.; Brocks, D.R. Effect of gastric bypass surgery on the absorption and bioavailability of metformin. Diabetes Care 2011, 34, 1295–1300. [Google Scholar] [CrossRef] [Green Version]
- Terao, T.; Matsuda, K.; Shouji, H. Improvement in site-specific intestinal absorption of furosemide by Eudragit L100-55. J. Pharm. Pharmacol. 2001, 53, 433–440. [Google Scholar] [CrossRef]
- Tandra, S.; Chalasani, N.; Jones, D.R.; Mattar, S.; Hall, S.D.; Vuppalanchi, R. Pharmacokinetic and pharmacodynamic alterations in the Roux-en-Y gastric bypass recipients. Ann. Surg. 2013, 258, 262–269. [Google Scholar] [CrossRef]
- Mostafavi, A. Relative bioavailability of omeprazole capsules after oral dosing. DARU J. Pharm. Sci. 2004, 12, 146–150. [Google Scholar]
- Sawaya, R.A.; Jaffe, J.; Friedenberg, L.; Friedenberg, F.K. Vitamin, mineral, and drug absorption following bariatric surgery. Curr. Drug Metab. 2012, 13, 1345–1355. [Google Scholar] [CrossRef]
- Al Mansoori, A.; Shakoor, H.; Ali, H.I.; Feehan, J.; Al Dhaheri, A.S.; Cheikh Ismail, L.; Bosevski, M.; Apostolopoulos, V.; Stojanovska, L. The Effects of Bariatric Surgery on Vitamin B Status and Mental Health. Nutrients 2021, 13, 1383. [Google Scholar] [CrossRef]
- Lupoli, R.; Lembo, E.; Saldalamacchia, G.; Avola, C.K.; Angrisani, L.; Capaldo, B. Bariatric surgery and long-term nutritional issues. World J. Diabetes 2017, 8, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Enani, G.; Bilgic, E.; Lebedeva, E.; Delisle, M.; Vergis, A.; Hardy, K. The incidence of iron deficiency anemia post-Roux-en-Y gastric bypass and sleeve gastrectomy: A systematic review. Surg. Endosc. 2019, 34, 3002–3010. [Google Scholar] [CrossRef] [PubMed]
- Jamil, O.; Gonzalez-Heredia, R.; Quadri, P.; Hassan, C.; Masrur, M.; Berger, R.; Bernstein, K.; Sanchez-Johnsen, L. Micronutrient Deficiencies in Laparoscopic Sleeve Gastrectomy. Nutrients 2020, 12, 2896. [Google Scholar] [CrossRef] [PubMed]
- Schafer, A.L.; Weaver, C.M.; Black, D.M.; Wheeler, A.L.; Chang, H.; Szefc, G.V.; Stewart, L.; Rogers, S.J.; Carter, J.T.; Posselt, A.M.; et al. Intestinal Calcium Absorption Decreases Dramatically After Gastric Bypass Surgery Despite Optimization of Vitamin D Status. J. Bone Miner. Res. 2015, 30, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
Stage | Action | Results |
---|---|---|
I | Key words (‘gastrectomy’, ‘gastric bypass’, ‘bariatric surgery’ AND ‘pharmacokinetic’, ‚absorption’ and ‚bioavailability) Databases: Cochrane, PubMed, Scopus | 814 |
II | Due to the small number of studies in recent years, the time criterion has not been applied | 383 |
III | Clinical trial | 383 |
IV | Independent verification and inclusion of research by two authors inclusion criteria: The groups of drugs selected by the authors: Antibiotics, Analgesic drugs, Antidepressants, Anticoagulant drugs, Immunosuppressants, Thyroid hormones, Antidiabetic drugs, Loop diuretics, Proton-pump inhibitors, Vitamins, Mineral elements | 34 |
Drug | Type of Surgery | Time after Surgery | Study Group Size | Changes in PK/PD | References |
---|---|---|---|---|---|
Acetaminophen | SG | 4–6 months | 9 | ↑AUC, Cmax and tmax | [17] |
RYGB | 6–7 days | 30 | ↓Cmax and AUC | [34] | |
Tramadol | RYGB | 7–10 days | 26 | ↓Cmax (eff) ↓tmax | [35] |
Ketoprofen | total gastrectomy | 6–11 days | 15 | ↓Cmax and tmax ↑Vd | [6] |
partial gastrectomy | 6–11 days | 5 | |||
Morphine | RYGB | 6 months | 30 | ↑AUC, Cmax ↓tmax | [39] |
Oxycodone | total gastrectomy | 24 | ↓tmax | [40] | |
Rivaroxaban | SG | 3 days | 6 | ↑AUC and Cmax | [49] |
RYGB | 3 days | 6 | ↑AUC and tmax ↓Cmax | ||
SG | 6–8 months | 6 | ↑tmax | [50] | |
RYGB | 6–8 months | 6 | ↑tmax ↓Cmax | ||
Dabigatran | RYGB | 9 | ↓Cmax | [52] | |
Warfarin | RYGB | 6 months | 12 | Maintaining the INR level required lower doses | [56] |
Tacrolimus | SG | 9–12 months | 12 | ↑AUC and Cmax | [63] |
RYGB | 6 | ↓AUC:dose ratio | [61] | ||
RYGB | 1 | ↑Cmax and AUC | [58] | ||
Mycophenolate mofetil | SG | 9–12 months | 12 | ↓Cl/F ↑t1/2 | [63] |
Enteric-coated mycophenolate sodium | SG | 9–12 months | 12 | ↓Cl/F ↓tmax | [63] |
Sirolimus | RYGB | 6 | ↓AUC: dose ratio ↓AUC0–∞ and AUC0–12 | [61] | |
MPA (active form of mycophenolate mofetil) | RYGB | 6 | ↓Cmax and mean AUC0–12 | [61] | |
Ciclosporin | RYGB | 1 | ↓Cmax | [58] | |
Escitalopram | RYGB | 2 and 6 weeks | 4 | ↓C | [42] |
Sertraline | RYGB | 9–15 months | 5 | ↓AUC0–10.5 and Cmax | [43] |
Duloxetine | RYGB | 9–15 months | 10 | ↓AUC0–∞ and tmax | [45] |
Vortioxetine | RYGB | 91 days | 1 | ↓C | [48] |
Metformin | RYGB | ≥3 months | 16 | ↑AUC0–∞ and Cmax | [66] |
Furosemide | RYGB | <12 months | 13 | ↑tmax | [69] |
Omeprazole | RYGB | <12 months | 18 | ↓tmax | [69] |
Levothyroxine | meta-analysis | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miedziaszczyk, M.; Ciabach, P.; Szałek, E. The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements. Pharmaceutics 2021, 13, 2111. https://doi.org/10.3390/pharmaceutics13122111
Miedziaszczyk M, Ciabach P, Szałek E. The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements. Pharmaceutics. 2021; 13(12):2111. https://doi.org/10.3390/pharmaceutics13122111
Chicago/Turabian StyleMiedziaszczyk, Miłosz, Patrycja Ciabach, and Edyta Szałek. 2021. "The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements" Pharmaceutics 13, no. 12: 2111. https://doi.org/10.3390/pharmaceutics13122111