Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer—A Combined In Silico and In Vitro Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Retrieval and Structural Refinement
2.2. Hypothesis Generation and Molecular Docking
2.3. Machine Learning-Based Standalone Rescoring Function
2.4. Chemical Similarity Calculations
2.5. Binding Free Energy and DFT Calculations
2.6. Assessing the Stability and Binding Mode of 2IVU–Ligand Complex
2.7. In Vitro Analysis
3. Results and Discussion
3.1. Pharmacophore Modeling and Virtual Screening
3.2. Rescoring Methodologies
3.3. Postdocking MM-GBSA Analysis
3.4. HOMO–LUMO Theory Analysis
3.5. Interaction Pattern and Pharmacokinetic Analysis
3.6. Protein–Ligand Complex Stability Analysis
3.7. Residue Mobility Analysis (RMSF)
3.8. Hydrogen Bond Analysis
3.9. Free Energy Landscape (FEL)
3.10. MM-PBSA
3.11. In Silico Evaluation of Lead Compounds against Point Mutant RET Receptor
3.12. Cell Viability Analysis of DB07194 against LC-2/ad
4. Limitations and Future Prospective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 2018, 8, 836–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef]
- Ju, Y.S.; Lee, W.C.; Shin, J.Y.; Lee, S.; Bleazard, T.; Won, J.K.; Kim, Y.T.; Kim, J.I.; Kang, J.H.; Seo, J.S. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012, 22, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gainor, J.F.; Shaw, A.T. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 2013, 18, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Kohno, T.; Ichikawa, H.; Totoki, Y.; Yasuda, K.; Hiramoto, M.; Nammo, T.; Sakamoto, H.; Tsuta, K.; Furuta, K.; Shimada, Y.; et al. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med. 2012, 18, 375. [Google Scholar] [CrossRef] [PubMed]
- Borrello, M.G.; Ardini, E.; Locati, L.D.; Greco, A.; Licitra, L.; Pierotti, M.A. RET inhibition: Implications in cancer therapy. Expert Opin. Ther. Targets 2013, 17, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhou, Q. Diagnostics, therapeutics and RET inhibitor resistance for RET fusion–positive non-small cell lung cancers and future perspectives. Cancer Treat. Rev. 2021, 96, 102153. [Google Scholar] [CrossRef]
- Solomon, B.J.; Tan, L.; Lin, J.J.; Wong, S.Q.; Hollizeck, S.; Ebata, K.; Tuch, B.B.; Yoda, S.; Gainor, J.F.; Sequist, L.V.; et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 2020, 15, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Du, Y.; Wen, R.; Yang, M.; Xu, J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol. Ther. 2020, 206, 107438. [Google Scholar] [CrossRef]
- Fancelli, S.; Caliman, E.; Mazzoni, F.; Brugia, M.; Castiglione, F.; Voltolini, L.; Pillozzi, S.; Antonuzzo, L. Chasing the target: New phenomena of resistance to novel selective RET inhibitors in lung cancer. Updated evidence and future perspectives. Cancers 2021, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Liu, S.V.; McCoach, C.E.; Zhu, V.W.; Tan, A.C.; Yoda, S.; Peterson, J.; Do, A.; Prutisto-Chang, K.; Dagogo-Jack, I.; et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann. Oncol. 2020, 31, 1725–1733. [Google Scholar] [CrossRef]
- Subbiah, V.; Shen, T.; Terzyan, S.S.; Liu, X.; Hu, X.; Patel, K.P.; Hu, M.; Cabanillas, M.; Behrang, A.; Meric-Bernstam, F.; et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 2021, 32, 261–268. [Google Scholar] [CrossRef]
- Newton, R.; Waszkowycz, B.; Seewooruthun, C.; Burschowsky, D.; Richards, M.; Hitchin, S.; Begum, H.; Watson, A.; French, E.; Hamilton, N.; et al. Discovery and Optimization of wt-RET/KDR-Selective Inhibitors of RETV804M Kinase. ACS Med. Chem. Lett. 2020, 11, 497–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 4582–4593. [Google Scholar] [CrossRef]
- Ammarah, U.; Kumar, A.; Pal, R.; Bal, N.C.; Misra, G. Identification of new inhibitors against human Great wall kinase using in silico approaches. Sci. Rep. 2018, 8, 4894. [Google Scholar] [CrossRef]
- Sharma, P.; Joshi, T.; Mathpal, S.; Joshi, T.; Pundir, H.; Chandra, S.; Tamta, S. Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods. J. Biomol. Struct. Dyn. 2020, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Kohno, T.; Tsuta, K.; Tsuchihara, K.; Nakaoku, T.; Yoh, K.; Goto, K. RET fusion gene: Translation to personalized lung cancer therapy. Cancer Sci. 2013, 104, 1396–1400. [Google Scholar] [CrossRef] [Green Version]
- Iams, W.T.; Lovly, C.M. Stop fRETting the target: Next-generation RET inhibitors have arrived. Cancer Discov. 2018, 8, 797–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, R.; Auger, N.; Auclin, E.; Besse, B. Clinical and Translational Implications of RET Rearrangements in Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 27–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangapandian, S.; John, S.; Sakkiah, S.; Lee, K.W. Potential virtual lead identification in the discovery of renin inhibitors: Application of ligand and structure-based pharmacophore modeling approaches. Eur. J. Med. Chem. 2011, 46, 2469–2476. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des. 2006, 67, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Maryam, A.; Khalid, R.R.; Siddiqi, A.R.; Ece, A. E-pharmacophore based virtual screening for identification of dual specific PDE5A and PDE3A inhibitors as potential leads against cardiovascular diseases. J. Biomol. Struct. Dyn. 2021, 39, 2302–2317. [Google Scholar] [CrossRef]
- Ali, R.; Badshah, S.L.; Faheem, M.; Abbasi, S.W.; Ullah, R.; Bari, A.; Jamal, S.B.; Mahmood, H.M.; Haider, A.; Haider, S. Identification of potential inhibitors of Zika virus NS5 RNA-dependent RNA polymerase through virtual screening and molecular dynamic simulations. Saudi Pharm. J. 2020, 28, 1580–1591. [Google Scholar]
- Murali, P.; Verma, K.; Rungrotmongkol, T.; Thangavelu, P.; Karuppasamy, R. Targeting the Autophagy Specific Lipid Kinase VPS34 for Cancer Treatment: An Integrative Repurposing Strategy. Protein J. 2021, 40, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Rácz, A.; Bajusz, D.; Héberger, K. Life beyond the Tanimoto coefficient: Similarity measures for interaction fingerprints. J. Cheminformatics 2018, 10, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S.H. Structure-based virtual screening for drug discovery: A problem-centric review. AAPS J. 2012, 14, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.; Siu, S.W. Identification of novel natural compound inhibitors for human complement component 5a receptor by homology modeling and virtual screening. Med. Chem. Res. 2016, 25, 1564–1573. [Google Scholar] [CrossRef] [Green Version]
- Sankar, M.; Jeyachandran, S.; Pandi, B. Screening of inhibitors as potential remedial against Ebolavirus infection: Pharmacophore-based approach. J. Biomol. Struct. Dyn. 2021, 39, 395–408. [Google Scholar] [CrossRef]
- Shukla, R.; Shukla, H.; Sonkar, A.; Pandey, T.; Tripathi, T. Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J. Biomol. Struct. Dyn. 2018, 36, 2045–2057. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bhardwaj, V.; Purohit, R. Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. J. Biomol. Struct. Dyn. 2021, 39, 348–356. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. In Cancer Cell Culture; Humana Press: Totowa, NJ, USA, 2011; pp. 237–245. [Google Scholar]
- Kaserer, T.; Beck, K.R.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore models and pharmacophore-based virtual screening: Concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules 2015, 20, 22799–22832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Chaput, L.; Villoutreix, B.O. Fast re-scoring protocols to improve the performance of structure-based virtual screening performed on protein–protein interfaces. J. Chem. Inf. Model. 2020, 60, 3910–3934. [Google Scholar] [CrossRef]
- Wang, D.; Cui, C.; Ding, X.; Xiong, Z.; Zheng, M.; Luo, X.; Jiang, H.; Chen, K. Improving the virtual screening ability of target-specific scoring functions using deep learning methods. Front. Pharmacol. 2019, 10, 924. [Google Scholar] [CrossRef] [Green Version]
- Aaldering, L.J.; Vasanthanathan Poongavanam, D.; Langkjær, N.; Murugan, N.A.; Jørgensen, P.T.; Wengel, J.; Veedu, R.N. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule. ChemBioChem 2017, 18, 755. [Google Scholar] [CrossRef] [Green Version]
- Madhavaram, M.; Nampally, V.; Gangadhari, S.; Palnati, M.K.; Tigulla, P. High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of Mycobacterium tuberculosis H37Rv. J. Recept. Signal Transduct. 2019, 39, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Ullah, M.A.; Adeel, M.; Khan, M.U.; Tahir, M.N.; Braga, A.A. Synthesis, crystal structure analysis, spectral IR, UV–Vis, NMR assessments, electronic and nonlinear optical properties of potent quinoline based derivatives: Interplay of experimental and DFT study. J. Saudi Chem. Soc. 2019, 23, 546–560. [Google Scholar] [CrossRef]
- Hoque, M.J.; Ahsan, A.; Hossain, M.B. Molecular Docking, Pharmacokinetic, and DFT Calculation of Naproxen and its Degradants. Biomed. J. Sci. Tech. Res. 2018, 9, 7360–7365. [Google Scholar]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Osafo, N.; Boakye, Y.D.; Agyare, C.; Obeng, S.; Foli, J.E.; Minkah, P.A. African plants with antiproliferative properties. In Natural Products and Cancer Drug Discovery; InTechOpen: London, UK, 2017; Volume 1. [Google Scholar]
- Al-Majid, A.M.; Islam, M.S.; Atef, S.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.; Ali, M.; Barakat, A.; Motiur Rahman, A.F. Synthesis of pyridine-dicarboxamide-cyclohexanone derivatives: Anticancer and α-glucosidase inhibitory activities and in silico study. Molecules 2019, 24, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guterres, H.; Im, W. Improving protein-ligand docking results with high-throughput molecular dynamics simulations. Journal of chemical information and modeling. J. Chem. Inf. Model. 2020, 60, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Swapna, L.S.; Bhaskara, R.M.; Sharma, J.; Srinivasan, N. Roles of residues in the interface of transient protein-protein complexes before complexation. Sci. Rep. 2012, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Londhe, A.M.; Gadhe, C.G.; Lim, S.M.; Pae, A.N. Investigation of molecular details of Keap1-Nrf2 inhibitors using molecular dynamics and umbrella sampling techniques. Molecules 2019, 24, 4085. [Google Scholar] [CrossRef] [Green Version]
- Cloete, R.; Akurugu, W.A.; Werely, C.J.; van Helden, P.D.; Christoffels, A. Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J. Mol. Graph. Model. 2017, 75, 330–339. [Google Scholar] [CrossRef]
- Farmer, L.J.; Bemis, G.; Britt, S.D.; Cochran, J.; Connors, M.; Harrington, E.M.; Hoock, T.; Markland, W.; Nanthakumar, S.; Taslimi, P.; et al. Discovery and SAR of novel 4-thiazolyl-2-phenylaminopyrimidines as potent inhibitors of spleen tyrosine kinase (SYK). Bioorganic Med. Chem. Lett. 2008, 18, 6231–6235. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Fan, K.; Dong, G.; Li, B.; Zhang, W.; Li, J.; Sheng, C. Discovery of new SYK inhibitors through structure-based virtual screening. Bioorganic Med. Chem. Lett. 2017, 27, 1776–1779. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
S. No | DrugBank ID | XP GScore (kcal/mol) | RF Score | Tanimoto Coefficient (Tc) |
---|---|---|---|---|
Reference | Pralsetinib | −7.79 | 5.962 | 1.000 |
1 | DB07194 | −9.556 | 5.974 | 0.418 |
2 | DB08583 | −9.012 | 6.235 | 0.423 |
3 | DB12672 | −9.579 | 6.986 | 0.435 |
4 | DB03496 | −10.791 | 7.108 | 0.48 |
5 | DB07606 | −9.291 | 7.099 | 0.502 |
6 | DB12848 | −8.066 | 5.978 | 0.405 |
7 | DB11982 | −9.001 | 6.644 | 0.436 |
8 | DB04751 | −8.395 | 6.955 | 0.432 |
9 | DB07981 | −8.117 | 6.054 | 0.484 |
10 | DB07248 | −8.133 | 6.268 | 0.413 |
11 | DB08052 | −9.398 | 7.098 | 0.451 |
12 | DB07474 | −8.133 | 6.219 | 0.447 |
13 | DB11665 | −9.034 | 5.99 | 0.48 |
14 | DB07382 | −9.381 | 6.071 | 0.4 |
15 | DB02933 | −9.169 | 6.084 | 0.429 |
16 | DB04338 | −9.691 | 7.005 | 0.401 |
17 | DB06852 | −9.327 | 6.589 | 0.432 |
18 | DB02282 | −9.108 | 6.048 | 0.436 |
S. No | DrugBank ID | dG Bind (kcal/mol) | Van der Waal’s Energy (kcal/mol) | Ligand Strain Energy (kcal/mol) | Electrostatic Potential (kcal/mol) | Lipophilicity (kcal/mol) | Covalent Interaction (kcal/mol) | Solvation Energy |
---|---|---|---|---|---|---|---|---|
Reference | Pralsetinib | −63.348 | −58.387 | 6.20432 | −12.472 | −19.969 | −0.4283 | 37.3355 |
1 | DB07194 | −69.235 | −46.133 | 3.22011 | −46.443 | −17.32 | 2.77209 | 40.7179 |
2 | DB08583 | −61.769 | −48.94 | 6.4073 | −11.888 | −18.303 | 7.34065 | 36.8761 |
3 | DB12672 | −60.017 | −51.402 | 5.56562 | −23.095 | −20.949 | 3.90398 | 33.2395 |
4 | DB03496 | −55.502 | −46.937 | 4.2076 | −21.81 | −20 | 2.56844 | 31.9131 |
5 | DB07606 | −55.367 | −42.62 | 8.36976 | −10.801 | −25.237 | 4.99298 | 28.2519 |
6 | DB12848 | −55.33 | −43.57 | 5.76015 | −27.463 | −23.935 | 0.53004 | 21.6655 |
7 | DB11982 | −55.102 | −41.865 | 5.45963 | −30.654 | −16.496 | 2.69688 | 30.5778 |
8 | DB04751 | −55.091 | −53.348 | 13.4545 | −16.888 | −18.303 | 11.9706 | 24.1207 |
S. No | DrugBank ID | Binding Energy (kJ/mol) | Van der Waal Energy (kJ/mol) | Electrostatic Energy (kJ/mol) | Polar Solvation Energy (kJ/mol) | SASA Energy (kJ/mol) |
---|---|---|---|---|---|---|
Reference | Pralsetinib | −9.445 ± 65.091 | −23.022 ± 53.334 | −0.074 ± 3.936 | 15.905 ± 55.514 | −2.254 ± 6.035 |
1 | DB07194 | −111.920 ± 17.179 | −141.170 ± 11.926 | −13.371 ± 9.680 | 55.122 ± 16.524 | −12.500 ± 1.161 |
2 | DB03496 | −74.514 ± 77.458 | −73.039 ± 94.546 | 1.261 ± 3.289 | 2.851 ± 61.775 | −5.587 ± 7.630 |
3 | DB11982 | −37.949 ± 42.565 | −90.713 ± 51.388 | −43.922 ± 25.645 | 106.888 ± 52.148 | −10.202 ± 6.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramesh, P.; Shin, W.-H.; Veerappapillai, S. Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer—A Combined In Silico and In Vitro Strategy. Pharmaceutics 2021, 13, 1775. https://doi.org/10.3390/pharmaceutics13111775
Ramesh P, Shin W-H, Veerappapillai S. Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer—A Combined In Silico and In Vitro Strategy. Pharmaceutics. 2021; 13(11):1775. https://doi.org/10.3390/pharmaceutics13111775
Chicago/Turabian StyleRamesh, Priyanka, Woong-Hee Shin, and Shanthi Veerappapillai. 2021. "Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer—A Combined In Silico and In Vitro Strategy" Pharmaceutics 13, no. 11: 1775. https://doi.org/10.3390/pharmaceutics13111775