Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing
Abstract
:1. Bilirubin in Health
2. Disruption of Bilirubin Homeostasis: Hyperbilirubinemia
3. Metabolism and Transport of Bilirubin
3.1. UGT1A1
3.2. OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3
3.3. MRP2/ABCC2
3.4. MRP3/ABCC3
3.5. BSEP
4. The Toxicity of Bilirubin
5. In Vitro Testing of Bilirubin Metabolism and Transport
6. Prediction of Drug-Induced Hyperbilirubinemia
7. Conclusions
Funding
Conflicts of Interest
References
- Sticova, E.; Jirsa, M. New insights in bilirubin metabolism and their clinical implications. World J. Gastroenterol. 2013, 19, 6398–6407. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, R.; Aronson, S.J.; De Waart, D.R.; Van De Graaf, S.F.; Duijst, S.; Seppen, J.; Elferink, R.O.; Beuers, U.; Bosma, P.J. Biliverdin Reductase inhibitors did not improve severe unconjugated hyperbilirubinemia in vivo. Sci. Rep. 2017, 7, 1646. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W. Bilirubin (Serum, Plasma) 2012. Available online: http://acb.org.uk/docs/default-source/committees/scientific/amalc/bilirubin.pdf (accessed on 5 June 2020).
- Schwesinger, W.H.; Kurtin, W.E. Changes in serum and bile bilirubin induced by acute hemolysis. J. Surg. Res. 1983, 35, 520–524. [Google Scholar] [CrossRef]
- Roy-Chowdhury, N.; Wang, X.; Roy-Chowdhury, J. Bile pigment metabolism and its disorders. In Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders; Pyeritz, R., Korf, B., Grody, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 507–553. [Google Scholar]
- Wang, S.; Lin, Y.; Zhou, Z.; Gao, L.; Yang, Z.; Li, F.; Wu, B. Circadian Clock Gene Bmal1 Regulates Bilirubin Detoxification: A Potential Mechanism of Feedback Control of Hyperbilirubinemia. Theranostics 2019, 9, 5122–5133. [Google Scholar] [CrossRef]
- Steventon, G.B. Uridine diphosphate glucuronosyltransferase 1A1. Xenobiotica 2019, 50, 64–76. [Google Scholar] [CrossRef]
- Johnson, A.D.; Kavousi, M.; Smith, A.V.; Chen, M.-H.; Dehghan, A.; Aspelund, T.; Lin, J.-P.; Van Duijn, C.M.; Harris, T.B.; Cupples, L.A.; et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum. Mol. Genet. 2009, 18, 2700–2710. [Google Scholar] [CrossRef] [Green Version]
- Memon, N.; Weinberger, B.I.; Hegyi, T.; Aleksunes, L.M. Inherited disorders of bilirubin clearance. Pediatr. Res. 2015, 79, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Ha, V.H.; Jupp, J.; Tsang, R.Y. Oncology Drug Dosing in Gilbert Syndrome Associated with UGT1A1: A Summary of the Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 956–972. [Google Scholar] [CrossRef]
- Bosma, P.J.; Chowdhury, J.R.; Bakker, C.; Gantla, S.; de Boer, A.; Oostra, B.A.; Lindhout, D.; Tytgat, G.N.; Jansen, P.L.; Oude Elferink, R.P.; et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N. Engl. J. Med. 1995, 333, 1171–1175. [Google Scholar] [CrossRef]
- Strauss, K.A.; Ahlfors, C.E.; Soltys, K.; Mazareigos, G.V.; Young, M.; Bowser, L.E.; Fox, M.D.; Squires, J.E.; McKiernan, P.; Brigatti, K.W.; et al. Crigler-Najjar Syndrome Type 1: Pathophysiology, Natural History, and Therapeutic Frontier. Hepatology 2020, 71, 1923–1939. [Google Scholar] [CrossRef]
- Sugatani, J. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab. Pharm. 2013, 28, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.; Bonzo, J.A.; Chen, S.; Chouinard, S.; Kelner, M.J.; Hardiman, G.; Bélanger, A.; Tukey, R.H. Disruption of the ugt1 locus in mice resembles human Crigler-Najjar type I disease. J. Biol. Chem. 2008, 283, 7901–7911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, C.K. Hereditary Acholuric Jaundice in the Rat. Can. Med. Assoc. J. 1944, 50, 230–237. [Google Scholar] [PubMed]
- Ronzitti, G.; Bortolussi, G.; Van Dijk, R.; Collaud, F.; Charles, S.; Leborgne, C.; Vidal, P.; Martin, S.; Gjata, B.; Sola, M.S.; et al. A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of Crigler-Najjar syndrome. Mol. Ther. Methods Clin. Dev. 2016, 3, 16049. [Google Scholar] [CrossRef] [PubMed]
- Choudhuri, S.; Klaassen, C.D. Klaassen. Elucidation of OATP1B1 and 1B3 transporter function using transgenic rodent models and commonly known single nucleotide polymorphisms. Toxicol. Appl. Pharmacol. 2020, 399, 115039. [Google Scholar] [CrossRef] [PubMed]
- Briz, O.; Serrano, M.A.; Macias, R.I.R.; González-Gallego, J.; Marin, J.J.G. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem. J. 2003, 371, 897–905. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; König, J.; Leier, I.; Buchholz, U.; Keppler, D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J. Biol. Chem. 2001, 276, 9626–9630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; He, Y.-J.; Gan, Z.; Fan, L.; Li, Q.; Wang, A.; Liu, Z.-Q.; Deng, S.; Huang, Y.-F.; Xu, L.-Y.; et al. OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1240–1244. [Google Scholar] [CrossRef]
- Van De Steeg, E.; Stránecký, V.; Hartmannová, H.; Nosková, L.; Hrebícek, M.; Wagenaar, E.; Van Esch, A.; De Waart, D.R.; Elferink, R.P.O.; Kenworthy, K.E.; et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J. Clin. Investig. 2012, 122, 519–528. [Google Scholar] [CrossRef]
- Sticova, E.; Lodererova, A.; Van De Steeg, E.; Frankova, S.; Kollar, M.; Lanska, V.; Kotalova, R.; Dedic, T.; Schinkel, A.H.; Jirsa, M. Down-regulation of OATP1B proteins correlates with hyperbilirubinemia in advanced cholestasis. Int. J. Clin. Exp. Pathol. 2015, 8, 5252–5262. [Google Scholar]
- Li, Y.; Wu, T.; Chen, L.; Zhu, Y. Associations between G6PD, OATP1B1 and BLVRA variants and susceptibility to neonatal hyperbilirubinaemia in a Chinese Han population. J. Paediatr. Child Health 2019, 55, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.D.; De Morais, S.M.; Xu, J.J. Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug-induced hyperbilirubinemia. Chem. Biol. Interact. 2004, 150, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Hagenbuch, B.; Gui, C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 2008, 38, 778–801. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, Y.; Izumi, S. Recent advances in preclinical in vitro approaches towards quantitative prediction of hepatic clearance and drug-drug interactions involving organic anion transporting polypeptide (OATP) 1B transporters. Drug Metab. Pharm. 2020, 35, 56–70. [Google Scholar] [CrossRef]
- Chang, J.H.; Plise, E.; Cheong, J.; Ho, Q.; Lin, M. Evaluating the in vitro inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in predicting drug-induced hyperbilirubinemia. Mol. Pharm. 2013, 10, 3067–3075. [Google Scholar] [CrossRef]
- Jedlitschky, G.; Leier, I.; Buchholz, U.; Hummel-Eisenbeiss, J.; Burchell, B.; Keppler, D. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem. J. 1997, 327, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Kamisako, T.; Leier, I.; Cui, Y.; König, J.; Buchholz, U.; Hummel-Eisenbeiss, J.; Keppler, D. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999, 30, 485–490. [Google Scholar] [CrossRef]
- Rigato, I.; Pascolo, L.; Fernetti, C.; Ostrow, J.D.; Tiribelli, C. The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem. J. 2004, 383, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Keppler, D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab. Dispos. 2014, 42, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Rosales, R.; Monte, M.J.; Blazquez, A.G.; Briz, O.; Marin, J. ABCC2 is involved in the hepatocyte perinuclear barrier for small organic compounds. Biochem. Pharmacol. 2012, 84, 1651–1659. [Google Scholar] [CrossRef]
- Kartenbeck, J. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology 1996, 23, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Strauss, J.R.; Mariano, M.A.; Li, J.; Newton, D.J.; Cai, X.; Wang, R.W.; Yabut, J.; Hartley, D.P.; Evans, D.C.; et al. Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J. Pharmacol. Exp. Ther. 2006, 317, 579–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, J.; Rost, D.; Cui, Y.; Keppler, D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 1999, 29, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Wlcek, K.; Koller, F.; Ferenci, P.; Stieger, B. Hepatocellular organic anion-transporting polypeptides (OATPs) and multidrug resistance-associated protein 2 (MRP2) are inhibited by silibinin. Drug Metab. Dispos. 2013, 41, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Köck, K.; Xie, Y.; Hawke, R.L.; Oberlies, N.H.; Brouwer, K.L. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug Metab. Dispos. 2013, 41, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhong, K.; Guo, Z.; Zhong, D.; Chen, X. Fasiglifam (TAK-875) Inhibits Hepatobiliary Transporters: A Possible Factor Contributing to Fasiglifam-Induced Liver Injury. Drug Metab. Dispos. 2015, 43, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Visentin, M.; Stieger, B.; Merz, M.; Kullak-Ublick, G.A. Octreotide inhibits the bilirubin carriers organic anion transporting polypeptides 1B1 and 1B3 and the multidrug resistance-associated protein 2. J. Pharmacol. Exp. Ther. 2015, 355, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Templeton, I.; Eichenbaum, G.; Sane, R.; Zhou, J. Case study 5. Deconvoluting hyperbilirubinemia: Differentiating between hepatotoxicity and reversible inhibition of UGT1A1, MRP2, or OATP1B1 in drug development. Methods Mol. Biol. 2014, 1113, 471–483. [Google Scholar]
- Lee, Y.-M.A.; Cui, Y.; König, J.; Risch, A.; Jäger, B.; Drings, P.; Bartsch, H.; Keppler, D.; Nies, A.T. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics 2004, 14, 213–223. [Google Scholar] [CrossRef]
- Zelcer, N.; Van De Wetering, K.; De Waart, R.; Scheffer, G.L.; Marschall, H.-U.; Wielinga, P.R.; Kuil, A.; Kunne, C.; Smith, A.; Van Der Valk, M.; et al. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J. Hepatol. 2006, 44, 768–775. [Google Scholar] [CrossRef]
- Otieno, M.A.; Snoeys, J.; Lam, W.; Ghosh, A.; Player, M.R.; Pocai, A.; Salter, R.; Simic, D.; Skaggs, H.; Singh, B.; et al. Fasiglifam (TAK-875): Mechanistic Investigation and Retrospective Identification of Hazards for Drug Induced Liver Injury. Toxicol. Sci. 2018, 163, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Herédi-Szabó, K.; Kis, E.; Krajcsi, P. The vesicular transport assay: Validated in vitro methods to study drug-mediated inhibition of canalicular efflux transporters ABCB11/BSEP and ABCC2/MRP2. Curr. Protoc. Toxicol. 2012, 54, 23.4.1–23.4.16. [Google Scholar]
- Chen, H.-L.; Wu, S.-H.; Hsu, S.-H.; Liou, B.-Y.; Chen, H.-L.; Chang, M.-H. Jaundice revisited: Recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. J. Biomed. Sci. 2018, 25, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapham, K.; Novak, J.; Marroquin, L.D.; Swiss, R.; Qin, S.; Strock, C.J.; Scialis, R.; Aleo, M.D.; Schroeter, T.; Eng, H.; et al. Inhibition of Hepatobiliary Transport Activity by the Antibacterial Agent Fusidic Acid: Insights into Factors Contributing to Conjugated Hyperbilirubinemia/Cholestasis. Chem. Res. Toxicol. 2016, 29, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W.R.; Wong, R.J.; Stevenson, D.K. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol. Rev. 2020, 100, 1291–1346. [Google Scholar] [CrossRef]
- Valaskova, P.; Dvorak, A.; Leníček, M.; Žížalová, K.; Kutinova-Canova, N.; Zelenka, J.; Cahova, M.; Vítek, L.; Muchová, L. Hyperbilirubinemia in Gunn Rats is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation. Int. J. Mol. Sci. 2019, 20, 2306. [Google Scholar] [CrossRef] [Green Version]
- Schwertner, H.A.; Vítek, L. Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: Possible protective effects and therapeutic applications of bilirubin. Atherosclerosis 2008, 198, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kundur, A.R.; Singh, I.; Bulmer, A.C. Bilirubin, platelet activation and heart disease: A missing link to cardiovascular protection in Gilbert’s syndrome? Atherosclerosis 2015, 239, 73–84. [Google Scholar] [CrossRef]
- Bulut, O.; Erek, A.; Duruyen, S. Effects of hyperbilirubinemia on markers of genotoxicity and total oxidant and antioxidant status in newborns. Drug Chem. Toxicol. 2020, 1–5. [Google Scholar] [CrossRef]
- Watchko, J.F.; Tiribelli, C. Tiribelli. Bilirubin-induced neurologic damage—Mechanisms and management approaches. N. Engl. J. Med. 2013, 369, 2021–2030. [Google Scholar] [CrossRef]
- Ochoa, E.L.M.; Wennberg, R.P.; An, Y.; Tandon, T.; Takashima, T.; Nguyen, T.; Chui, A. Interactions of bilirubin with isolated presynaptic nerve terminals: Functional effects on the uptake and release of neurotransmitters. Cell. Mol. Neurobiol. 1993, 13, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Zanelli, S.A.; Kubin, J.; Mishra, O.P.; Delivoria-Papadopoulos, M. The in vivo effect of bilirubin on the N-methyl-d-aspartate receptor/ion channel complex in the brains of newborn piglets. Pediatr. Res. 1996, 40, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayabyab, R.; Ramanathan, R. Ramanathan. High unbound bilirubin for age: A neurotoxin with major effects on the developing brain. Pediatr. Res. 2019, 85, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Guo, M.; Liu, N.; Zhao, C.; Chen, H.; Wang, X.; Liao, S.; Zhou, P.; Liao, Y.; Chen, X.; et al. Bilirubin neurotoxicity is associated with proteasome inhibition. Cell. Death Dis. 2017, 8, e2877. [Google Scholar] [CrossRef]
- Naveenkumar, S.K.; Thushara, R.M.; Sundaram, M.S.; Hemshekhar, M.; Paul, M.; Thirunavukkarasu, C.; Basappa; Nagaraju, G.; Raghavan, S.C.; Girish, K.S.; et al. Unconjugated Bilirubin exerts Pro-Apoptotic Effect on Platelets via p38-MAPK activation. Sci. Rep. 2015, 5, 15045. [Google Scholar] [CrossRef] [Green Version]
- Bátai-Konczos, A.; Veres, Z.; Szabó, M.; Ioja, E.; László, G.; Török, G.; Homolya, L.; Jemnitz, K. Comparative study of CYP2B1/2 induction and the transport of bilirubin and taurocholate in rat hepatocyte-mono- and hepatocyte-Kupffer cell co-cultures. J. Pharmacol. Toxicol. Methods 2016, 82, 1–8. [Google Scholar]
- Chiou, W.J.; De Morais, S.M.; Kikuchi, R.; Voorman, R.L.; Li, X.; Bow, D.A.J. In vitro OATP1B1 and OATP1B3 inhibition is associated with observations of benign clinical unconjugated hyperbilirubinemia. Xenobiotica 2014, 44, 276–282. [Google Scholar] [CrossRef]
- Sane, R.S.; Steinmann, G.G.; Huang, Q.; Li, Y.; Podila, L.; Mease, K.; Olson, S.; Taub, M.E.; Stern, J.O.; Nehmiz, G.; et al. Mechanisms underlying benign and reversible unconjugated hyperbilirubinemia observed with faldaprevir administration in hepatitis C virus patients. J. Pharmacol. Exp. Ther. 2014, 351, 403–412. [Google Scholar] [CrossRef]
- Xu, B.; Gao, S.; Wu, B.; Yin, T.; Hu, M. Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities. J. Pharm. Biomed. Anal. 2014, 88, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Ohno, S.; Kawana, K.; Nakajin, S. Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab. Dispos. 2008, 36, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, Y.; Li, Y.; Wen, B.; Dai, Z.; Ma, S.-C.; Zhang, Y. Identification and characterization of the structure-activity relationships involved in UGT1A1 inhibition by anthraquinone and dianthrone constituents of Polygonum multiflorum. Sci. Rep. 2017, 7, 17952. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Nakajima, M.; Ohashi, N.; Kume, T.; Yokoi, T. Glucuronidation of etoposide in human liver microsomes is specifically catalyzed by UDP-glucuronosyltransferase 1A1. Drug Metab. Dispos. 2003, 31, 589–595. [Google Scholar] [CrossRef] [Green Version]
- De Bruyn, T.; van Westen, G.J.P.; Ijzerman, A.P.; Stieger, B.; de Witte, P.; Augustijns, P.F.; Annaert, P.P. Structure-based identification of OATP1B1/3 inhibitors. Mol. Pharmacol. 2013, 83, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Sugiyama, Y. The use of hepatocytes to investigate drug uptake transporters. Methods Mol. Biol. 2010, 640, 327–353. [Google Scholar] [PubMed]
- Herédi-Szabó, K.; Glavinas, H.; Kis, E.; Méhn, D.; Báthori, G.; Veres, Z.; Kóbori, L.; von Richter, O.; Jemnitz, K.; Krajcsi, P. Multidrug resistance protein 2-mediated estradiol-17beta-D-glucuronide transport potentiation: In vitro-in vivo correlation and species specificity. Drug Metab. Dispos. 2009, 37, 794–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herédi-Szabó, K.; Kis, E.; Molnar, E.; Gyorfi, A.; Krajcsi, P. Characterization of 5(6)-carboxy-2,’7’-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. J. Biomol. Screen 2008, 13, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelheim, P.; Wüllner, A.; Galla, H.-J. Substrate translocation and stimulated ATP hydrolysis of human ABC transporter MRP3 show positive cooperativity and are half-coupled. Biophys. Chem. 2013, 171, 31–37. [Google Scholar] [CrossRef]
- Jani, M.; Beéry, E.; Heslop, T.; Tóth, B.; Jagota, B.; Kis, E.; Park, B.K.; Krajcsi, P.; Weaver, R.J. Kinetic characterization of bile salt transport by human NTCP (SLC10A1). Toxicol. In Vitro 2018, 46, 189–193. [Google Scholar] [CrossRef]
- Notenboom, S.; Weigand, K.M.; Proost, J.H.; Van Lipzig, M.M.; Van De Steeg, E.; Broek, P.H.V.D.; Greupink, R.; Russel, F.G.M.; Groothuis, G.M.M. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs. Eur. J. Pharm. Sci. 2018, 115, 175–184. [Google Scholar] [CrossRef]
- Ah, Y.-M.; Kim, Y.-M.; Kim, M.-J.; Choi, Y.H.; Park, K.-H.; Son, I.-J.; Kim, S.G. Drug-induced hyperbilirubinemia and the clinical influencing factors. Drug Metab. Rev. 2008, 40, 511–537. [Google Scholar] [CrossRef]
- Degasperi, E.; Spinetti, A.; Lombardi, A.; Landonio, S.; Rossi, M.C.; Pasulo, L.; Pozzoni, P.; Giorgini, A.; Fabris, P.; Romano, A.; et al. Real-life effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in hepatitis C patients with previous DAA failure. J. Hepatol. 2019, 71, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, E.S. Drug-induced liver injury due to antibiotics. Scand. J. Gastroenterol. 2017, 52, 617–623. [Google Scholar] [CrossRef]
- Qosa, H.; Avaritt, B.R.; Hartman, N.R.; Volpe, D.A. In vitro UGT1A1 inhibition by tyrosine kinase inhibitors and association with drug-induced hyperbilirubinemia. Cancer Chemother. Pharmacol. 2018, 82, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Sornsuvit, C.; Hongwiset, D.; Yotsawimonwat, S.; Toonkum, M.; Thongsawat, S.; Taesotikul, W. The Bioavailability and Pharmacokinetics of Silymarin SMEDDS Formulation Study in Healthy Thai Volunteers. Evid. Based Complement. Altern. Med. 2018, 2018, 1507834. [Google Scholar] [CrossRef] [PubMed]
- Flaig, T.W.; Gustafson, D.L.; Su, L.-J.; Zirrolli, J.A.; Crighton, F.; Harrison, G.S.; Pierson, A.S.; Agarwal, R.; Glode, L.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investig. New Drugs 2007, 25, 139–146. [Google Scholar] [CrossRef]
- Rendina, M.; D’Amato, M.; Castellaneta, A.; Castellaneta, N.M.; Brambilla, N.; Giacovelli, G.; Rovati, L.C.; Rizzi, S.F.; Zappimbulso, M.; Bringiotti, R.; et al. Antiviral activity and safety profile of silibinin in HCV patients with advanced fibrosis after liver transplantation: A randomized clinical trial. Transpl. Int. 2014, 27, 696–704. [Google Scholar] [CrossRef]
- Nakakariya, M.; Goto, A.; Amano, N. Appropriate risk criteria for OATP inhibition at the drug discovery stage based on the clinical relevancy between OATP inhibitors and drug-induced adverse effect. Drug Metab. Pharm. 2016, 31, 333–339. [Google Scholar] [CrossRef]
- Mayer, M.; Nudurupati, S.; Peng, X.; Marcinak, J. Evaluation of the pharmacokinetics and safety of a single oral dose of fasiglifam in subjects with normal or varying degrees of impaired renal function. Drugs R D 2014, 14, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Marcinak, J.; Munsaka, M.S.; Watkins, P.B.; Ohira, T.; Smith, N. Liver Safety of Fasiglifam (TAK-875) in Patients with Type 2 Diabetes: Review of the Global Clinical Trial Experience. Drug Saf. 2018, 41, 625–640. [Google Scholar] [CrossRef]
- Kotsampasakou, E.; Brenner, S.; Jaeger, W.; Ecker, G.F. Identification of Novel Inhibitors of Organic Anion Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using a Consensus Vote of Six Classification Models. Mol. Pharm. 2015, 12, 4395–4404. [Google Scholar] [CrossRef] [Green Version]
- Kotsampasakou, E.; Escher, S.E.; Ecker, G.F. Linking organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3) interaction profiles to hepatotoxicity—The hyperbilirubinemia use case. Eur. J. Pharm. Sci. 2017, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
Drug | Hyperbilirubinemia—Clinical Data | Cholestasis—Dlinical Data | OATP1B1 | OATP1B3 | BSEP | MRP2 | UGT1A1 | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ki or IC50 (µM) | Calculated Predictor(s) | IC50 (µM) | Calculated Predictor(s) | IC50 (µM) | Calculated Predictor(s) | IC50 (µM) | Calculated Predictor(s) | IC50 (µM) | Calculated Predictor(s) | ||||
Amprenavir | no | 7.5 | Fi = 0.19; Rin,free = 1.3–1.6 | 38 | Fi = 0.04; Rin,free = 1.1 | 64 | Fi = 0.027; Rin,free = 1.0 - 1.1 | [59] | |||||
Atazanavir | yes | 0.9 | Rfree = 1.6 | 3.7 | Rfree = 1.1 | 3.1 | Rfree = 1.2 | >100 | 6.8 | Rfree = 1.4 | [27] | ||
Atazanavir | yes | 0.37 | Fi = 0.74; Rin,free = 4.2 - 5.6 | 0.82 | Fi = 0.56; Rin,free = 2.5 - 3.0 | 0.76 | Fi = 0.58; Rin,free = 2.6 - 3.2 | [59] | |||||
Bromfenac | yes | >100 | >100 | 77 | Rfree = 1.0 | [27] | |||||||
Clarithromycin | yes, more than 1% | 5.1 | Rin,free = 6.2 | 9.8 | Rin,free = 3.7 | >100 | >100 | [79] | |||||
Cyclosporine A | yes, some patients | 0.2 | Fi = 0.43 | [24] | |||||||||
Cyclosporine A | yes, more than 1% | 0.55 | Rin,free = 3.8 | 0.5 | Rin,free = 4.1 | [79] | |||||||
Cyclosporine A | yes | 0.13 | Fi = 0.54; Rin,free = 4.9 | 0.057 | Fi = 0.73; Rin,free = 9.6 | 59 | Fi = 0.025; Rin,free = 1.0 | [59] | |||||
Fasiglifam (TAK-875) | yes | yes | 2.28 | Fi = 0.003; Rin,free = 1.0 | 3.98 | Fi = 0.002; Rin,free = 1.0 | 2.41 | Fi = 0.003; Rin,free = 1.0 | [38,80] | ||||
Indinavir | yes, some patients | 6.8 | Fi = 0.41 | [24] | |||||||||
Indinavir | yes | 4.1 | Rfree = 1.7 | >100 | 3.1 | Rfree = 1.9 | >100 | 6.8 | Rfree = 1.4 | [27] | |||
Indinavir | yes | 8.3 | Fi = 0.38; Rin,free = 2.0 - 3.2 | 16 | Fi = 0.24; Rin,free = 1.5 - 2.1 | 35 | Fi = 0.013; Rin,free = 1.2 - 1.5 | [59] | |||||
Lopinavir | yes, more than 1% 1 | 1 | 6,7 | [79] | |||||||||
Lopinavir/ritonavir | yes, more than 1% | Rin,free 2 = 2.0 | Rin,free 2 = 1.2 | [79] | |||||||||
Nelfinavir | yes, more than 1% | 5.3 | Rin,free = 1.5 | 15 | Rin,free = 1.2 | [79] | |||||||
Nelfinavir | no | 2 | Rfree = 1.0 | >100 | 24 | Rfree = 1.0 | >100 | 4.8 | Rfree = 1.0 | [27] | |||
Octreotide | yes, some patients | 23 | Rin,free = 1.0 | 68 | Rin,free = 1.0 | 116.6 | Rin,free = 1.0 | [39] | |||||
Rifamycin SV | yes, all patients | 0.2 | Fi = 0.96 | [24] | |||||||||
Rifamycin SV | yes | 0.05 | Fi = 0.99; Rin,free = 104 - 126 | 0.052 | Fi = 0.99; Rin,free = 104 - 122 | 12 | Fi = 0.29; Rin,free = 1.4 - 1.5 | [59] | |||||
Rifampicin | yes, more than 1% | 1.3 | Rin,free = 12 | 1.5 | Rin,free = 11 | [79] | |||||||
Rifampicin | yes | 0.59 | Fi = 0.70; Rin,free = 4.6 | 0.22 | Fi = 0.86; Rin,free = 10.7 | 33 | Fi = 0.04; Rin,free = 1.1 | [59] | |||||
Ritonavir | yes, more than 1% 1 | 2.5 | 7.6 | [79] | |||||||||
Ritonavir/saquinavir | yes, more than 1% | Rin,free 2 = 1.4 | Rin,free 2 = 1.2 | [79] | |||||||||
Ritonavir | no | 0.5 | Rfree = 1.2 | >100 | 2.6 | Rfree = 1.0 | >100 | 3.1 | Rfree = 1.0 | [27] | |||
Saquinavir | no | 1.2 | Fi = 0.07 | [24] | |||||||||
Saquinavir | no, less than 1% 1 | 6.1 | 57 | [79] | |||||||||
Saquinavir | no | 0.41 | Fi = 0.021; Rin,free = 1.1 | 0.47 | Fi = 0.020; Rin,free = 1.1 | 23 | Fi = 0.00038; Rin,free = 1.0 | [59] | |||||
Silibinin 3 | yes, in HCV patients [36] and/or at high doses [77] | 9.7/8.5 | Rin,free = 1.02/1.08 | 2.7/5.0 | Rin,free = 1.08/1.14 | [37] | |||||||
Silibinin 4 | 3.28 | Fi = 0.31; Rfree = 1.46 | 5.0 | Fi = 0.23; Rfree = 1.30 | >100 | 6.79 | Fi = 0.18; Rfree = 1.22 | [36] | |||||
Tipranavir | yes, more than 1%1 | 0.7 | 0.61 | [79] | |||||||||
Tipranavir/ritonavir | yes, more than 1% | Rin,free 2 = 3.6 | Rin,free 2 = 3.9 | [79] | |||||||||
Troglitazone | yes | 1.2 | Rfree = 1.0 | >100 | 18 | Rfree = 1.0 | 17 | Rfree = 1.0 | 4.5 | Rfree = 1.0 | [27] | ||
Trovafloxacin | yes | >100 | >100 | 1.7 | Rfree = 1.9 | >100 | >100 | [27] |
Calculated Predictor | Formula |
---|---|
R | |
Rfree | |
Rin,free | |
Fi |
Drug | EBGM Score for Hyperbilirubinemia | Cmax,total (μM) | IC50 (µM) | IC50 ≤ 12 µM | Cmax,total/IC50 | (Cmax,total/IC50) > 1 | In vivo Fi | Rin,free |
---|---|---|---|---|---|---|---|---|
Afatinib | 1.859 | 0.099 | 13.4 | TN | 0.0074 | TN | 0.0004 | 1.006 |
Axitinib | 2.262 | 0.072 | 9.9 | TP | 0.0073 | FN | 0.0001 | 1.0002 |
Bosutinib | 0.668 | 0.404 | 74.6 | TN | 0.0054 | TN | 0.0002 | 1.0043 |
Cabozantinib | 0.586 | 0.218 | 82.1 | TN | 0.0026 | TN | 0.0001 | 1.0007 |
Cediranib | – | 1.292 | – | – | – | – | – | – |
Ceritinib | 1.418 | 2.186 | 35.2 | TN | 0.0621 | TN | 0.0056 | 1.0228 |
Crizotinib | – | 0.913 | 99.5 | TN | 0.0092 | TN | 0.0004 | 1.0023 |
Dasatinib | 1.913 | 0.163 | 9 | FP | 0.0182 | TN | 0.0013 | 1.0164 |
Erlotinib | 3.07 | 3.410 | 1.6 | TP | 2.0743 | TP | 0.094 | 1.243 |
Imatinib | 1.73 | 7.716 | 130 | TN | 0.0589 | TN | 0.0006 | 1.003 |
Lapatinib | 15.073 | 2.943 | 5.2 | TP | 0.6714 | FN | 0.0132 | 1.1116 |
Nilotinib | 8.742 | 2.571 | 1.1 | TP | 2.3232 | TP | 0.0444 | 1.149 |
Nintedanib | 1.177 | 0.064 | – | – | – | – | – | – |
Pazopanib | 2.631 | 5.240 | 1.9 | TP | 2.8167 | TP | 0.0274 | 1.0695 |
Ponatinib | 2.252 | 0.156 | 11.1 | TP | 0.014 | FN | 0.0001 | 1.0011 |
Regorafenib | 13.602 | 8.278 | 1 | TP | 8.1545 | TP | 0.0081 | 1.1358 |
Sorafenib | 5.681 | 10.54 | 2.7 | TP | 3.8858 | TP | 0.1627 | 1.3497 |
Sunitinib | 2.955 | 0.231 | 131 | FN | 0.0018 | FN | 0.0002 | 1.0021 |
Vandetanib | 1.283 | 4.261 | 98.3 | TN | 0.0433 | TN | 0.0004 | 1.0017 |
Vemurafenib | 3.368 | 125.3 | 10.9 | TP | 11.4531 | TP | 0.3641 | 1.6622 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tátrai, P.; Krajcsi, P. Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing. Pharmaceutics 2020, 12, 755. https://doi.org/10.3390/pharmaceutics12080755
Tátrai P, Krajcsi P. Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing. Pharmaceutics. 2020; 12(8):755. https://doi.org/10.3390/pharmaceutics12080755
Chicago/Turabian StyleTátrai, Péter, and Péter Krajcsi. 2020. "Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing" Pharmaceutics 12, no. 8: 755. https://doi.org/10.3390/pharmaceutics12080755
APA StyleTátrai, P., & Krajcsi, P. (2020). Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing. Pharmaceutics, 12(8), 755. https://doi.org/10.3390/pharmaceutics12080755