Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nutmeg Essential Oil Emulsion Preparation0
2.3. Nutmeg Essential Oil Emulsion Stability
2.4. Emulsion and Microcapsule Morphology Study
2.5. Encapsulation of Nutmeg Essential Oil by Extrusion
2.6. Microcapsule Physical Parameters: Firmness and Size
2.7. Preparation of Nutmeg Essential Oil Standard Graph
2.8. Determination of Encapsulation Efficiency
2.9. Swelling Characteristic of Nutmeg Essential Oil Microcapsules
2.10. Statistical Analysis
3. Results and Discussion
3.1. Emulsion Preparation and Stability
3.2. The Study of Emulsion and Microcapsule Morphology
3.3. Physical Parameters of NEO-Loaded Calcium Alginate Microcapsules
3.4. Swelling Characteristic of NEO-Loaded Microcapsules
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Souza, S.P.; Chavannavar, S.V.; Kanchanashri, B.; Niveditha, S.B. Pharmaceutical Perspectives of Spices and Condiments as Alternative Antimicrobial Remedy. J. Evid. Based Complement. Altern. Med. 2017, 22, 1002–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1249. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015, 06, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Park, J.; Kim, M.S.; Seol, G.H.; Min, S.S. Analgesic effects of eucalyptus essential oil in mice. Korean J. Pain 2019, 32, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Bahr, T.; Allred, K.; Martinez, D.; Rodriguez, D.; Winterton, P. Effects of a massage-like essential oil application procedure using Copaiba and Deep Blue oils in individuals with hand arthritis. Complement. Ther. Clin. Pract. 2018, 33, 170–176. [Google Scholar] [CrossRef]
- Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of Lavender (Lavandula angustifolia) Essential Oil on Acute Inflammatory Response. Evid. Based Complement. Altern. Med. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, S.M.M.; Costa, C.R.R.; Gelfuso, G.M.; Guerra, E.N.S.; De Medeiros Nóbrega, Y.K.; Gomes, S.M.; Pic-Taylor, A.; Fonseca-Bazzo, Y.M.; Silveira, D.; De Oliveira Magalhães, P. Wound healing effect of essential oil extracted from eugenia dysenterica DC (Myrtaceae) leaves. Molecules 2019, 24, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labib, R.M.; Ayoub, I.M.; Michel, H.E.; Mehanny, M.; Kamil, V.; Hany, M.; Magdy, M.; Moataz, A.; Maged, B.; Mohamed, A. Appraisal on the wound healing potential of Melaleuca alternifolia and Rosmarinus officinalis L. Essential oil-loaded chitosan topical preparations. PLoS ONE 2019, 14, e0219561. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.D.; Rajpurohit, D. Antioxidant and Antimicrobial Activity of Nutmeg (Myristica fragrans). In Nuts and Seeds in Health and Disease Prevention; Academic Press: London, UK, 2011; pp. 831–839. [Google Scholar]
- Dubey, R.; Shami, T.C.; Bhasker Rao, K.U. Microencapsulation technology and applications. Def. Sci. J. 2009, 59, 82–95. [Google Scholar]
- Jemaa, M.B.; Falleh, H.; Ksouri, R. Encapsulation of Natural Bioactive Compounds: Nanoemulsion Formulation to Enhance Essential Oils Activities. In Microencapsulation; IntechOpen: London, UK, 2019; pp. 38–46. [Google Scholar]
- Manaf, M.A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A.N. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study. IOP Conf. Ser. Mater. Sci. Eng. 2018, 358, 012072. [Google Scholar] [CrossRef]
- Volić, M.; Pajić-Lijaković, I.; Djordjević, V.; Knežević-Jugović, Z.; Pećinar, I.; Stevanović-Dajić, Z.; Veljović, Đ.; Hadnadjev, M.; Bugarski, B. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr. Polym. 2018, 200, 15–24. [Google Scholar] [CrossRef]
- Dima, C.; Gitin, L.; Alexe, P.; Dima, S. Encapsulation of coriander essential oil in alginate and alginate/chitosan microspheres by emulsification external gelation method. Insid. Symp. 2013, 9, 9–12. [Google Scholar]
- Martin, M.J.; Trujillo, L.A.; Garcia, M.C.; Alfaro, M.C.; Muñoz, J. Effect of emulsifier HLB and stabilizer addition on the physical stability of thyme essential oil emulsions. J. Dispers. Sci. Technol. 2018, 39, 1627–1634. [Google Scholar] [CrossRef]
- Abd Manaf, M.; Jai, J.; Raslan, R.; Subuki, I.; Mustapa, A.N. Microencapsulation Methods of Volatile Essential Oils—A Review. Adv. Mater. Res. 2015, 1113, 679–683. [Google Scholar] [CrossRef]
- Bhargava, K.; Conti, D.S.; da Rocha, S.R.P.; Zhang, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 2015, 47, 69–73. [Google Scholar] [CrossRef]
- Szuts, A.; Szabó-Révész, P. Sucrose esters as natural surfactants in drug delivery systems—A mini-review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef]
- Tual, A.; Bourles, E.; Barey, P.; Houdoux, A.; Desprairies, M.; Courthaudon, J.L. Effect of surfactant sucrose ester on physical properties of dairy whipped emulsions in relation to those of O/W interfacial layers. J. Colloid Interface Sci. 2006, 295, 495–503. [Google Scholar] [CrossRef]
- Klang, V.; Schwarz, J.C.; Matsko, N.; Rezvani, E.; El-Hagin, N.; Wirth, M.; Valenta, C. Semi-solid sucrose stearate-based emulsions as dermal drug delivery systems. Pharmaceutics 2011, 3, 275–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Das, S.; Ng, K.Y.; Heng, P.W.S. Formulation, biological and pharmacokinetic studies of sucrose ester-stabilized nanosuspensions of oleanolic acid. Pharm. Res. 2011, 28, 2020–2033. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kawai, T.; Nonomura, Y. Effects of fatty acid addition to oil-in-water emulsions stabilized with sucrose fatty acid ester. J. Oleo Sci. 2018, 67, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timilsena, Y.P.; Akanbi, T.O.; Khalid, N.; Adhikari, B.; Barrow, C.J. Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef]
- Das, S.K.; David, S.R.N.; Rajabalaya, R.; Mukhopadhyay, H.K.; Halder, T.; Palanisamy, M.; Khanam, J.; Nanda, A. Microencapsulation Techniques and its Practices. Int. J. Pharm. Sci. Technol. 2011, 6, 1–23. [Google Scholar]
- Parthiban, M.; Paula, A.-W.; Richard, H. Stability of Lactobacillus reuteri in Different Types of Microcapsules. J. Food Sci. 2006, 71, 20–24. [Google Scholar]
- Wang, L.L.; Highley, C.B.; Yeh, Y.C.; Galarraga, J.H.; Uman, S.; Burdick, J.A. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. Part A 2018, 106, 865–875. [Google Scholar] [CrossRef]
- Tavassoli-Kafrani, E.; Goli, S.A.H.; Fathi, M. Encapsulation of Orange Essential Oil Using Cross-linked Electrospun Gelatin Nanofibers. Food Bioprocess Technol. 2018, 11, 427–434. [Google Scholar] [CrossRef]
- Azad, A.K.; Al-Mahmood, S.M.A.; Chatterjee, B.; Wan Sulaiman, W.M.A.; Elsayed, T.M.; Doolaanea, A.A. Encapsulation of black seed oil in alginate beads as a ph-sensitive carrier for intestine-targeted drug delivery: In vitro, in vivo and ex vivo study. Pharmaceutics 2020, 12, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaztekin, M.; Lević, S.; Kalušević, A.; Cam, M.; Bugarski, B.; Rakić, V.; Pavlović, V.; Nedović, V. Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. J. Microencapsul. 2019, 36, 109–119. [Google Scholar] [CrossRef]
- Chan, E.S. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydr. Polym. 2011, 84, 1267–1275. [Google Scholar] [CrossRef]
- Majeed, H.; Bian, Y.-Y.; Ali, B.; Jamil, A.; Majeed, U.; Khan, Q.F.; Iqbal, K.J.; Shoemaker, C.F.; Fang, Z. Essential oil encapsulations: Uses, procedures, and trends. RSC Adv. 2015, 5, 58449–58463. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Blandino, A.; Maćas, M.; Cantero, D. Glucose oxidase release from calcium alginate gel capsules. Enzyme Microb. Technol. 2000, 27, 319–324. [Google Scholar] [CrossRef]
- Dolçà, C.; Ferrándiz, M.; Capablanca, L.; Franco, E.; Mira, E.; López, F.; García, D. Microencapsulation of Rosemary Essential Oil by Co-Extrusion/Gelling Using Alginate as a Wall Material. J. Encapsul. Adsorpt. Sci. 2015, 05, 121–130. [Google Scholar]
- Purwanti, N.; Zehn, A.S.; Pusfitasari, E.D.; Khalid, N.; Febrianto, E.Y.; Mardjan, S.S.; Andreas; Kobayashi, I. Emulsion stability of clove oil in chitosan and sodium alginate matrix. Int. J. Food Prop. 2018, 21, 566–581. [Google Scholar] [CrossRef] [Green Version]
- Matulyte, I.; Marksa, M.; Ivanauskas, L.; Kalvenien e, Z.; Lazauskas, R.; Bernatoniene, J. GC-MS analysis of the composition of the extracts and essential Oil from Myristica fragrans Seeds Using Magnesium Aluminometasilicate as Excipient. Molecules 2019, 24, 1062. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Chen, J.; Bai, Y.; Ma, Z.; Huang, J.; Feng, W. Physical Properties and Stabilization of Microcapsules Containing Thyme Oil by Complex Coacervation. J. Food Sci. 2016, 81, N2258–N2262. [Google Scholar] [CrossRef] [PubMed]
- Lucía, C.; Marcela, F.; Ainhoa, L. Encapsulation of Almond Essential Oil by Co-Extrusion/Gelling Using Chitosan as Wall Material. J. Encapsul. Adsorpt. Sci. 2017, 7, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Poshadri, A.; Kuna, A. Microencapsulation technology: A review. J. Res. ANGRAU 2010, 38, 86–102. [Google Scholar]
- Arancibia, C.; Jublot, L.; Costell, E.; Bayarri, S. Flavor release and sensory characteristics of o/w emulsions. Influence of composition, microstructure and rheological behavior. Food Res. Int. 2011, 44, 1632–1641. [Google Scholar] [CrossRef]
- Dima, C.; Pətraşcu, L.; Cantaragiu, A.; Alexe, P.; Dima, Ş. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem. 2015, 195, 39–48. [Google Scholar] [CrossRef]
Group | Code | Sodium Alginate (g) | Polysorbate 80 (g) | Nutmeg Essential Oil (g) | Distilled Water (mL) | Magnesium Aluminometasilicate (g) | Sucrose Esters (g) | Amount of Excipients a (g) |
---|---|---|---|---|---|---|---|---|
1 | T1 b | 0.2 | 0.5 | 0.5 | 15 | - | - | 0.7 |
T2 c | 0.2 | 1.0 | 0.5 | 15 | - | - | 1.2 | |
T3 | 0.2 | 1.5 | 0.5 | 15 | - | - | 1.7 | |
2 | EO2 | 0.2 | 1.0 | 1.0 | 15 | - | - | 1.2 |
EO3 | 0.2 | 1.5 | 1.5 | 15 | - | - | 1.7 | |
3 | A2 | 0.4 | 1.0 | 0.5 | 15 | - | - | 1.4 |
A3 | 0.6 | 1.0 | 0.5 | 15 | - | - | 1.4 | |
4 | N1 | 0.2 | 1.0 | 0.5 | 15 | 0.2 | - | 1.4 |
N2 | 0.2 | 1.0 | 0.5 | 15 | 0.4 | - | 1.6 | |
5 | S2 | 0.2 | - | 1.5 | 15 | - | 0.5 | 0.7 |
S1 | 0.2 | - | 1.5 | 15 | - | 0.2 | 0.4 |
Code ** | CaCl2 Concentration (%) | Microcapsules Diameter (mm) | Force for Crushing (g Force) | EE (%) | |
---|---|---|---|---|---|
Wet | Dry | ||||
T1 a | 5 | 2.317 ± 0.15 | 0.842 ± 0.08 | 5702.66 ± 295 | 41.89 ± 1.91 |
2 | 2.280 ± 0.14 | 0.763 ± 0.08 | 5116.70 ± 209 | 43.88 ± 2.46 | |
T2 b | 5 | 2.286 ± 0.17 | 0.951 ± 0.10 | 5547.78 ± 260 | 60.59 ± 1.35 |
2 | 2.368 ± 0.13 | 0.892 ± 0.13 | 5128.76 ± 379 | 68.79 ± 1.54 | |
T3 | 5 | 2.419 ± 0.13 | 1.152 ± 0.10 | 5290.20 ± 497 | 58.35 ± 2.74 |
2 | 2.300 ± 0.14 | 1.024 ± 0.11 | 4711.92 ± 212 | 58.65 ± 2.92 | |
EO2 | 5 | 2.110 ± 0.11 | 0.893 ± 0.14 | 5113.04 ± 322 | 66.12 ± 4.71 |
2 | 2.120 ± 0.17 | 0.917 ± 0.08 | 4333.46 ± 180 | 70.53 ± 4.10 | |
EO3 | 5 | 2.395 ± 0.13 | 1.115 ± 0.12 | 5173.51 ± 309 | 71.88 ± 3.75 |
2 | 2.414 ± 0.12 | 1.166 ± 0.12 | 4044.36 ± 250 | 78.30 ± 3.44 | |
A2 | 5 | 2.433 ± 0.15 | 1.290 ± 0.13 | 6252.33 ± 123 | 40.77 ± 4.89 |
2 | 2.360 ± 0.13 | 1.336 ± 0.10 | 4554.90 ± 286 | 54.82 ± 4.34 | |
A3 | 5 | 2.678 ± 0.27 | 1.348 ± 0.17 | >6500 | 45.27 ± 1.88 |
2 | 2.668 ± 0.25 | 1.353 ± 0.18 | 6245.63 ± 170 | 51.79 ± 2.87 | |
N1 | 5 | 2.300 ± 0.14 | 1.049 ± 0.11 | 4261.80 ± 370 | 47.32 ± 2.52 |
2 | 2.254 ± 0.12 | 1.004 ± 0.10 | 3732.38 ± 237 | 45.55 ± 3.45 | |
N2 | 5 | 2.751 ± 0.12 | 1.272 ± 0.09 | 4457.20 ± 314 | 40.47 ± 4.81 |
2 | 2.611 ± 0.13 | 1.300 ± 0.11 | 3476.68 ± 241 | 39.65 ± 1.51 | |
S2 | 5 | 2.603 ± 0.21 | 1.177 ± 0.08 | 5160.73 ± 232 | 86.08 ± 2.41 |
2 | 2.562 ± 0.20 | 1.101 ± 0.18 | 4989.43 ± 200 | 86.38 ± 3.31 | |
S1 | 5 | 2.214 ± 0.21 | 0.900 ± 0.15 | 4610.1 ± 226 | 99.82 ± 4.94 |
2 | 2.196 ± 0.19 | 0.867 ± 0.18 | 4174.12 ± 186 | 106.92 ± 4.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matulyte, I.; Kasparaviciene, G.; Bernatoniene, J. Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics 2020, 12, 628. https://doi.org/10.3390/pharmaceutics12070628
Matulyte I, Kasparaviciene G, Bernatoniene J. Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics. 2020; 12(7):628. https://doi.org/10.3390/pharmaceutics12070628
Chicago/Turabian StyleMatulyte, Inga, Giedre Kasparaviciene, and Jurga Bernatoniene. 2020. "Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate" Pharmaceutics 12, no. 7: 628. https://doi.org/10.3390/pharmaceutics12070628
APA StyleMatulyte, I., Kasparaviciene, G., & Bernatoniene, J. (2020). Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics, 12(7), 628. https://doi.org/10.3390/pharmaceutics12070628