Next Article in Journal
Formulation and In-Vitro Characterization of Chitosan-Nanoparticles Loaded with the Iron Chelator Deferoxamine Mesylate (DFO)
Previous Article in Journal
Patients’ Preferences and Willingness to Pay for Solid Forms of Oral Medications—Results of the Discrete Choice Experiment in Polish Outpatients
Previous Article in Special Issue
Development and Validation of an in-line API Quantification Method Using AQbD Principles Based on UV-Vis Spectroscopy to Monitor and Optimise Continuous Hot Melt Extrusion Process
Open AccessArticle

A Rational Design of a Biphasic Dissolution Setup—Modelling of Biorelevant Kinetics for a Ritonavir Hot-Melt Extruded Amorphous Solid Dispersion

1
Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
2
AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, D-67061 Ludwigshafen, Germany
*
Author to whom correspondence should be addressed.
Pharmaceutics 2020, 12(3), 237; https://doi.org/10.3390/pharmaceutics12030237
Received: 7 February 2020 / Revised: 4 March 2020 / Accepted: 4 March 2020 / Published: 6 March 2020
(This article belongs to the Special Issue Hot-Melt Extrusion)
Biphasic dissolution systems achieved good predictability for the in vivo performance of several formulations of poorly water-soluble drugs by characterizing dissolution, precipitation, re-dissolution, and absorption. To achieve a high degree of predictive performance, acceptor media, aqueous phase composition, and the apparatus type have to be carefully selected. Hence, a combination of 1-decanol and an optimized buffer system are proposed as a new, one-vessel biphasic dissolution method (BiPHa+). The BiPHa+ was developed to combine the advantages of the well-described biorelevance of the United States Pharmacopeia (USP) apparatus II coupled with USP apparatus IV and a small-scale, one-vessel method. The BiPHa+ was designed for automated medium addition and pH control of the aqueous phase. In combination with the diode array UV-spectrophotometer, the system was able to determine the aqueous and the organic medium simultaneously, even if scattering or overlapping of spectra occurred. At controlled hydrodynamic conditions, the relative absorption area, the ratio between the organic and aqueous phase, and the selected drug concentrations were identified to be the discriminating factors. The performance of a hot-melt extruded ritonavir-containing amorphous solid dispersion (ritonavir-ASD) was compared in fasted-state dissolution media leading to different dissolution-partitioning profiles depending on the content of bile salts. An advanced kinetic model for ASD-based well described all phenomena from dispersing of the ASD to the partitioning of the dissolved ritonavir into the organic phase. View Full-Text
Keywords: biphasic dissolution; liquid-liquid-phase-separation; kinetic modelling; biorelevant media; hot melt extruded amorphous solid dispersion biphasic dissolution; liquid-liquid-phase-separation; kinetic modelling; biorelevant media; hot melt extruded amorphous solid dispersion
Show Figures

Graphical abstract

MDPI and ACS Style

Denninger, A.; Westedt, U.; Rosenberg, J.; Wagner, K.G. A Rational Design of a Biphasic Dissolution Setup—Modelling of Biorelevant Kinetics for a Ritonavir Hot-Melt Extruded Amorphous Solid Dispersion. Pharmaceutics 2020, 12, 237.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop